US3696657A - Metal working crank and slide press mechanism - Google Patents
Metal working crank and slide press mechanism Download PDFInfo
- Publication number
- US3696657A US3696657A US91020A US3696657DA US3696657A US 3696657 A US3696657 A US 3696657A US 91020 A US91020 A US 91020A US 3696657D A US3696657D A US 3696657DA US 3696657 A US3696657 A US 3696657A
- Authority
- US
- United States
- Prior art keywords
- carriage
- ram
- connecting rod
- assembly
- pivotally connected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D24/00—Special deep-drawing arrangements in, or in connection with, presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B1/00—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
- B30B1/26—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by cams, eccentrics, or cranks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B1/00—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
- B30B1/26—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by cams, eccentrics, or cranks
- B30B1/261—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by cams, eccentrics, or cranks by cams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/007—Means for maintaining the press table, the press platen or the press ram against tilting or deflection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/04—Frames; Guides
- B30B15/041—Guides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H21/00—Gearings comprising primarily only links or levers, with or without slides
- F16H21/10—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
- F16H21/16—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
- F16H21/18—Crank gearings; Eccentric gearings
- F16H21/22—Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric
- F16H21/32—Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric with additional members comprising only pivoted links or arms
Definitions
- ABSTRACT A metal working crank and slide press mechanism for reciprocating parallel members, for example, a carriage-mounted ram and a sleeve slidable on the ram.
- the press mechanism is arranged to resist heavy side pressure exerted upon the connecting rod which assumes extremely angular positions relatively to the carriage.
- a cross head and side thrust resisting levers produce a straight line motion by translating the thrust of the connecting rod into a direction in line with the travel of the ram-carrying carriage connected to the cross head.
- the carriage is mounted on wheels running on the top and bottom of hardened way strips, the wheels being adjustably mounted on eccentric axles to grip the ways with a predetermined amount of pre-load to prevent slack in the wheels.
- the working surfaces of the wheels and way strips extend radially with respect to the center of mass of the carriage assembly to minimize the effect of thermal expansion on the wheel pre-load.
- the cup is fed into position ahead of the ram, is clamped by the sleeve, between the sleeve and a tool pack housing, and then is forced by the ram through a redraw die and a plurality of ironing dies located in the tool pack housing.
- the connecting rod In a machine employing a crank and connecting rod for the reciprocatory movement of the ram, the connecting rod must be short in relation to the crank length in order to provide enough time to feed the cup in front of the ram at a reasonable speed, and consequently the connecting rod assumes extremely angularv positions relatively to the carriage-mounted ram and exerts heavy side pressure thereon; causing the ram to travel in other than a straight line.
- the object of thisinvention is to provide means for eliminating side thrust exerted by the connecting rod on the ram, to ensure straight line motion of the carriage-mounted ram, and thus consistently produce uniform can walls.
- Another object of the invention is to provide means for eliminating conditions which affect adversely the straight line motion of the carriage mounted ram, said means including the mounting of the carriage on wheels which run on the top and bottom surfaces of hardened way strips, and the mounting of the wheels on eccentric axles adjustable to a position so that they 'grip the way strips with a predetermined amount of pre-load and avoid slack in the wheels.
- Another object of the invention is to maintain the straight line motion of the connecting rod by providing means for minimizing deflection in the machine frame and carriage due to temperature differences, and thus to avoid change in the pre-load on the carriage wheels.
- This object is achieved by arranging the working surfaces of the carriage wheels and way strips on which they travel in a radial pattern relatively to the center of mass of the carriage assembly. By this means, any temperature expansion and contraction will occur radially from the center of mass of the carriage assembly (the axial center of the ram), and by arranging the carriage wheels and faces of the way strips to coincide with this radial pattern, the effect of thermal expansion on the wheel pre-load is minimized.
- the aforementioned improvements may be embodied in mechanism for reciprocating various kinds of machine members, as well as the herein described can body forming apparatus including a ram and a redraw sleeve concentric with slidable relatively to the ram, the ram being moved a substantially greater distance in axial directions than the redraw sleeve which surrounds the ram.
- the ram may be moved 28 inches from retracted to extended positions while the redraw sleeve moves only 4 inches from its retracted to extended positions.
- FIG. 2 is a top plan view of'the mechanism shown in FIG. I.
- FIG. 3 is a transverse vertical sectional view in the plane of the line 3-3 of FIG.'2.
- FIG. 4 is a transverse vertical sectional view in the plane of the line 4-4 of FIG. 2.
- FIG.'5 is an elevational view, partly in section, of the rear end of the machine.
- FIG. 6 is an elevational side view of the mechanism of FIG. 1, with the forward side of the machine omitted, showing the ram and sleeve in partially extended positions.
- FIG. 7 is an elevational side view, partly broken away, showing the ram and sleeve in fully extended positions.
- FIG. 8 is a view similar to FIG. 7, also partly broken away, showing the ram and sleeve partially retracted in their return movements to the retracted positions of FIG. I.
- FIG. 9 is an elevational side view partly in section of one of the carriage wheels and the stud on which his mounted, detached from the rest of the machine.
- FIG. 10 is an elevational side view on an enlarged scale of the straight line motion mechanism between the connecting rod and the carriage.
- FIG. 11 is a horizontal sectional view in the plane of the line llll ofFIG.10.
- FIG. 12 is an elevational view, partly in section, of the redraw carriage assembly.
- FIG. 13 is an elevational view, partly in section, showing one side of the structure shown in FIG. 12.
- a frame 10 has mounted thereon a motor 11 which drives a large pulley wheel 12 by belts 13.
- the pulley 12 is fixedly mounted on one of a pair of transversely extending axially aligned crank shafts 15 with crank arms 16.
- the shafts 15 are rotatable in bearing 15' mounted in opposite sides of the frame 10.
- the crank arms 16 are connected together by a crank pin 17 extending through the bearing 18 of a main connecting rod 19 which terminates at its other end in two parallel transversely spaced apart arms for engaging the circumferential surfaces of cross head members 21, 22, which are parts of the straight line motion assembly designated 20 as a whole in FIGS. I and 2 and shown in detail in FIGS. 10 and 11.
- the pivotal point of the assembly is designated 24.
- the members 21, 22 are engaged circumferentially by the end of a carriage connecting rod 23 between the arms of the connecting rod 19, as shown in FIG. 11.
- the carriage connecting rod 23 is pivotally connected at its other end by a pin 25 to a ram carriage 26, in which is mounted a ram or punch 27.
- the ram carriage 26 is mounted on a plurality of cam followers comprising wheels 30 rotatable on studs 31, at opposite sides of the carriage body 26.
- the supports 32 The lower ends of the supports 32 carry wheels 33.
- the wheels 30 and 33 are retained by nuts 34.
- the wheels 30 travel on the inclined edge surfaces of hardened way strips 36 at opposite longitudinal sides of the machine, and the wheels 33 travel on the bottom surfaces of the strips 36.
- the working surfaces of the way strips and of the carriage wheels 30 extend radially relatively to the center of mass of the carriage assembly, i.e., the axial center of the ram 27, as indicated by the arrows in FIG. 3.
- the carriage wheels or cam followers 30 comprise bearings 37, and the center 38 of the bearings is off center relatively to the center 39 of the stud 31 on which the wheels are rotatably mounted.
- the wheels are adjustable to a position where they grip the inclined surfaces 35 of the way strips 36 with a predetermined amount of pre-load which avoids slack in the wheels.
- a redraw sleeve 40 is slidable on the forward portion of the ram 27 and is fastened at its rearward end to a redraw carriage 41.
- the latter is connected at each of its sides to an elongated redraw sleeve actuating bar 42 parallel to the ram 27 and movable in longitudinal direction independently of the ram.
- the redraw carriage 41 has pivotally connected thereto a downwardly directed rocker arm 43 provided with rollers 44 which travel on the carriage way strips 36.
- the rocker arm 43 will be described in detail hereinafter by reference to FIGS. 12 and 13.
- Each bar 42 is pivotally connected at its rearward end 45 to a cam follower lever 46 which has its lower end mounted on a fixed pivot 47 on the frame and has on its upper end a laterally extending arm shaped to provide a cam follower 48 for contacting a cam 50.
- Each of the two earns 50 is keyed to one of the crank shafts or may be fastened to or be integral with one of the crank arms 16 to rotate with the shafts 15.
- the straight line motion assembly includes a side thrust resisting upper swing lever 55 and lower swing lever 56, both bifurcated at their inner ends so as to straddle the cross head members 21, 22.
- the upper swing lever 55 is pivotally connected to each of the cross head members 21, 22, as indicated at 57, and the lower swing lever 56 is pivotally connected at 58 to each of the cross head members 21, 22.
- the upper end of the upper swing lever 55 is pivotally connected to the fixed pivots 59 on frame members 10, and the lower end of the lower swing lever 56 is pivotally connected to the fixed pivots 60 on frame members 10, as shown in FIGS. 1 and 5.
- a tool pack housing 65 in a can body making machine, encloses a series of drawing and ironing dies (not shown) through which a work piece such as a cup (not shown) is pushed by the ram 27. In its extended position, the ram 27 passes through the tool pack as shown in FIG. 7.
- the downwardly directed rocker arm 43 is rotatably attached at its upper end to the horizontal center of the redraw carriage 41 by means of rocker pivots 71, and at near its center to a shoe 74 fixedly attached to the actuating bar 42 by means of a rocker shaft 72.
- An adjustable stop screw 73 engages the shoe end passes the rocker arm 43 and rests against the lower end of the shoe 74.
- a threaded stud 75 engages the shoe and passes through the rocker arm 43, a suitable spring 76 and a spring retainer 77.
- the spring 76 is compressed by adjustment of the nut 78 causing the spring through the rocker arm 43 to urge the redraw carriage 41, carrying redraw sleeve 40, to the most forward position permitted by the stop screw resting on the shoe 74. As the actuating bar 42 approaches the forward extreme of its motion, 1
- the workpiece or cup (not shown) covering the end of the redraw sleeve 40 strikes the face of the die pack 65, terminating the forward motion of the redraw carriage 41. Further motion of the actuating bar 42 causes the spring to be compressed and the stop screw to withdraw from the stop. By proper adjustment of the stop screw, the motion of the redraw carriage 41 may be arrested as gently as possible, and by means of the spring adjusting nut, the pressure of the redraw sleeve on the cup may be adjusted for proper metal control for the redrawing operation.
- the redraw sleeve 40 and actuating bar 42 receive their forward moving power from the rotated cams 50 imparted to the cam followers 48 on levers 46.
- the return mechanism for imparting rearward movement to the redraw sleeve 40 and actuating bars 42 comprises an air cylinder 66 mounted on a support 67, and a piston rod 68 connected to the bar 42 by the joint 69 and link 70.
- the air cylinder maintains contact between the cam followers 48 and the cam face.
- the redraw sleeve 40 In order that the redraw sleeve 40 will not rebound when striking the bottom of the cup and the redraw die, the redraw sleeve must overtake and pass the ram 27 in its forward motion and must precede the ram sufficiently to have time for proper deceleration before striking the bottom of the cup ahead of the punch. This timed relationship is accomplished by the contour of the cams and the angular relationship of the cams to the crank which operates the ram.
- the operation of the mechanism for imparting reciprocatory motion to two members, such as the ram 27 and redraw sleeve 40 shown herein, or other parallel members, is as follows: Motor 11 drives the pulley wheel 12 through belts 13; pulley wheel 12 rotates the crank shafts 15 and thereby rotates the two oppositely located crank arms 16 connected by crank pin 17. Rotation of the crank shafts 15 and arms 16 rotates the cams 50.
- crank arms 16 and connecting pin 17 move bodily in a circular path around the axis of the shafts 15 and move the connecting rod 19, the straight line motion assembly 20, carriage connecting rod 23, ram carriage 26 and ram 27 from the retracted position of FIG. 1 to the partially extended position of FIG. 6, and then to the fully extended position of FIG. 7.
- continued movement of the reciprocating mechanism causes the ram to be retraced to the FIG. 8 position and then returned to the FIG. 1 position.
- the redraw sleeve 40 is actuated by the earns 50 rotated by cranks 15, 16.
- the cams 50 are engaged by the cam followers 48 on levers 46 connected pivotally at 45 to actuating bars 42.
- the sleeve 40 is thereby moved from its retracted position of FIG. 1, to the fully extended position as shown in FIG. 6, where its motion is arrested by contact of the workpiece (carried by the sleeve 40) with the face of the tool pack 65. From the FIG. 6 position, the sleeve 40 is moved by the cam means above described to the FIG. 7 position while the ram 27 has passed through and beyond the housing 65.
- the redraw sleeve 40 remains stationary during the travel of the ram through and beyond the tool pack housing 65, as well as during most of the ram s return travel to the FIG. 8 position. From the FIG. 8 position to the FIG. 1 position, the ram and sleeve return to retracted positions.
- Metal working crank and slide press mechanism for reciprocating a member in axial directions in a straight line motion comprising a. a power driven crank actuated connecting rod,
- a straight line motion assembly pivotally connected to the connecting rod consisting of a pivotally and bodily movable cross head and side thrust resisting levers extending in opposite directions from the cross head and each pivotally connected at one end to a fixed part of the machine,
- Metal working crank and slide press mechanism for reciprocating a ram in axial directions in a straight line motion comprising a. a ram,
- a straight line motion assembly pivotally connected to the connecting rod consisting of a pivotally and bodily movable cross head and side thrust resisting levers extending in opposite directions from the cross head and each being pivotally connected at one end to a fixed part of v the machine,
- a carriage connecting rod connected to the assembly and to the carriage, whereby angular thrust of the connecting rod is translated into a direction in line with the travel of the carriage.
- Metal working crank and slide press mechanism for reciprocating a ram and a sleeve on the ram in axial directions comprising .a. frame members spaced apart transversely of the machine,
- a straight line motion assembly pivotally connected to the connecting rod consisting of a pivotally and bodily movable cross head and side thrust resisting levers extending in opposite directions from the cross head, each pivotally connected at one end to the machine frame members and pivotally connected at the other end to the assembly at points equally diametrically spaced from the pivotal point of the cross head,
- cam followers on the actuator bar levers in contact with the cams for slidably moving said sleeve on the ram in predetermined time and speed relatively to the ram, said straight line motion assembly translating the angular thrust of the connecting rod into a direction in line with the travel of the ram and sleeve.
- the ram carriage is provided with rotatable wheels mounted adjustably eccentrically on studs fastened to the carriage to provide a predetermined amount of preload on the wheels, and in which the ram carriage is provided with bearing surfaces inclined downwardly toward each other in planes radially aligned with the center of mass of the carriage and ram on which said wheels travel.
- Metal working crank and slide press mechanism for reciprocating a ram a ram and a redraw sleeve on the ram in axial directions at different speeds, comprisa. frame members spaced apart transversely of the machine, b. parallel carriage ways between the frame members,
- a cross head assembly pivotally connected to the connecting rod and including slide thrust resisting levers pivotally connected to the cross head assembly and to the frame members,
- a pair of actuator bar levers each pivotally connected to one of said actuator bars and to a frame member and m. cam followers on the actuator bar levers in contact with the cams for slidably moving said sleeve on the ram in predetermined time and speed relatively to the ram.
- rocker arm is attached to the redraw carriage by rocker pivots, and at near its center to a shoe fixedly attached to the actuating bars by means of a rocker shaft, and said rocker arm is engaged by an adjustable stop screw which rests against the shoe, said shoe being engaged by a threaded stud extending through the rocker arm, a compression spring and spring retainer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Press Drives And Press Lines (AREA)
- Forging (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Transmission Devices (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9102070A | 1970-11-19 | 1970-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3696657A true US3696657A (en) | 1972-10-10 |
Family
ID=22225416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US91020A Expired - Lifetime US3696657A (en) | 1970-11-19 | 1970-11-19 | Metal working crank and slide press mechanism |
Country Status (9)
Country | Link |
---|---|
US (1) | US3696657A (nl) |
JP (1) | JPS5039516B1 (nl) |
CA (1) | CA931433A (nl) |
DE (1) | DE2125172C3 (nl) |
FR (1) | FR2095092A5 (nl) |
GB (1) | GB1320483A (nl) |
NL (1) | NL166526C (nl) |
NO (1) | NO136700C (nl) |
SE (1) | SE388384B (nl) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4100638A (en) * | 1977-03-21 | 1978-07-18 | Kalt Manufacturing Company | Forging machine |
US4614104A (en) * | 1984-08-27 | 1986-09-30 | Ball Corporation | Apparatus for supporting a body for reciprocal movement |
EP0248094A2 (en) * | 1986-05-28 | 1987-12-09 | Ball Corporation | Apparatus for supporting a body for reciprocal movement |
EP0297596A2 (en) * | 1987-07-01 | 1989-01-04 | Coors Brewing Company | Can body making apparatus |
US4807459A (en) * | 1987-07-01 | 1989-02-28 | Adolph Coors Company | Redraw apparatus for a can body making apparatus |
US4934167A (en) * | 1987-07-01 | 1990-06-19 | Adolph Coors Company | Can body making apparatus |
WO1990009851A1 (en) * | 1989-02-27 | 1990-09-07 | Adolph Coors Company | Can body making apparatus |
US4956990A (en) * | 1989-09-05 | 1990-09-18 | Adolph Coors Company | Apparatus for forming can bodies |
US4976131A (en) * | 1987-07-01 | 1990-12-11 | Adolph Coors Company | Can body making apparatus |
US5046374A (en) * | 1989-09-05 | 1991-09-10 | Coors Brewing Company | Apparatus for preforming work |
US5129252A (en) * | 1990-09-07 | 1992-07-14 | Coors Brewing Company | Can body maker with magnetic ram bearing and redraw actuator |
US5134874A (en) * | 1989-09-05 | 1992-08-04 | Coors Brewing Company | Method for performing work |
US5154075A (en) * | 1990-09-07 | 1992-10-13 | Coors Brewing Company | Can body maker with magnetic ram bearing and domer |
US5249448A (en) * | 1992-07-09 | 1993-10-05 | Ball Corporation | Redraw carriage for crank and slide press |
US5257523A (en) * | 1990-09-07 | 1993-11-02 | Coors Brewing Company | Can body maker with magnetic ram bearing and redraw actuator |
WO1993025331A1 (en) * | 1992-06-16 | 1993-12-23 | Aluminum Company Of America | Improved body maker apparatus |
US5325699A (en) * | 1991-07-16 | 1994-07-05 | Aura Systems, Inc. | Electromagnetic re-draw sleeve actuator |
US5355709A (en) * | 1992-11-10 | 1994-10-18 | Crown Cork & Seal Company | Methods and apparatus for expansion reforming the bottom profile of a drawn and ironed container |
US5357779A (en) * | 1990-09-07 | 1994-10-25 | Coors Brewing Company | Can body maker with magnetic ram bearing and redraw actuator |
US5454253A (en) * | 1993-12-28 | 1995-10-03 | Aluminum Company Of America | Reddraw mechanism for can body maker apparatus |
US5546785A (en) * | 1995-05-05 | 1996-08-20 | Aluminum Company Of America | Crank mechanism for can body maker apparatus |
US5564300A (en) * | 1993-12-28 | 1996-10-15 | Aluminum Company Of America | Ram guidance mechanism for can body maker apparatus |
US5691582A (en) * | 1993-03-23 | 1997-11-25 | Coors Brewing Company | Can body maker with linear motor redraw actuator |
US6553806B1 (en) | 2001-04-13 | 2003-04-29 | O.K.L. Can Line Inc. | Reciprocation apparatus including a guide assembly |
US6616393B1 (en) | 2000-02-07 | 2003-09-09 | Ball Corporation | Link coupling apparatus and method for container bottom reformer |
US20070220944A1 (en) * | 2006-03-27 | 2007-09-27 | Yun-Te Chang | Forging machine having rollers between a support and a slide body of a die assembly |
US20080041132A1 (en) * | 2006-08-16 | 2008-02-21 | Werth Advanced Packaging Innovations, Ltd. | Container Bodymaker |
WO2015031585A1 (en) * | 2013-08-28 | 2015-03-05 | Stolle Machinery Company, Llc | Mechanism and design for addressing ram droop |
WO2015038388A1 (en) * | 2013-09-11 | 2015-03-19 | Stolle Machinery Company, Llc | Variable speed servo motor for redraw assembly |
USD739732S1 (en) | 2013-10-03 | 2015-09-29 | Anheuser-Busch, Llc | Metal beverage bottle |
USD739731S1 (en) | 2013-10-03 | 2015-09-29 | Anheuser-Busch, Llc | Metal beverage bottle |
WO2015181791A1 (en) | 2014-05-30 | 2015-12-03 | Anheuser-Busch, Llc | Two iron tool pack and method for forming tall metal bottle shaped containers and such a metal bottle |
CN105451907A (zh) * | 2013-08-28 | 2016-03-30 | 斯多里机械有限责任公司 | 用于制罐机的外侧流体静力学轴承组件 |
US9375774B1 (en) | 2012-07-24 | 2016-06-28 | Aleco Container Llc | Container body forming apparatus and method |
US10022773B2 (en) | 2014-04-30 | 2018-07-17 | Alcoa Usa Corp. | Aluminum sheet with enhanced formability and an aluminum container made from aluminum sheet |
WO2021242359A1 (en) * | 2020-05-28 | 2021-12-02 | Stolle Machinery Company, Llc | Cam driven bodymaker |
EP3922372A1 (en) | 2020-06-09 | 2021-12-15 | Simat SRL | Forming machine for ends of tubes |
WO2022267484A1 (zh) * | 2021-06-24 | 2022-12-29 | 华为技术有限公司 | 一种转轴装置和电子设备 |
US20240198409A1 (en) * | 2022-12-20 | 2024-06-20 | Stolle Machinery Company, Llc | Ram support assembly for a can bodymaker and can bodymaker including same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2265269C2 (de) * | 1972-10-13 | 1984-01-19 | L. Schuler GmbH, 7320 Göppingen | Fliegende Schere zum Unterteilen von laufendem Blechband |
CH679471A5 (nl) * | 1989-05-03 | 1992-02-28 | Bruderer Ag |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US461917A (en) * | 1891-10-27 | Power-hammer | ||
US2482678A (en) * | 1947-08-01 | 1949-09-20 | Atlas Imp Diesel Engine Co | Can bodymaker side seam flattening apparatus |
US2652801A (en) * | 1951-01-19 | 1953-09-22 | Laxo Ed | Can body maker |
US3221690A (en) * | 1962-05-03 | 1965-12-07 | Thelma E Laxo | Bumper stabilizer for a can body side seamer |
-
1970
- 1970-11-19 US US91020A patent/US3696657A/en not_active Expired - Lifetime
-
1971
- 1971-03-18 CA CA108050A patent/CA931433A/en not_active Expired
- 1971-05-21 DE DE2125172A patent/DE2125172C3/de not_active Expired
- 1971-06-07 FR FR7120433A patent/FR2095092A5/fr not_active Expired
- 1971-06-07 GB GB1927271*[A patent/GB1320483A/en not_active Expired
- 1971-07-02 JP JP46048692A patent/JPS5039516B1/ja active Pending
- 1971-08-19 SE SE7110559A patent/SE388384B/xx unknown
- 1971-09-24 NO NO3535/71A patent/NO136700C/no unknown
- 1971-11-11 NL NL7115491.A patent/NL166526C/nl not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US461917A (en) * | 1891-10-27 | Power-hammer | ||
US2482678A (en) * | 1947-08-01 | 1949-09-20 | Atlas Imp Diesel Engine Co | Can bodymaker side seam flattening apparatus |
US2652801A (en) * | 1951-01-19 | 1953-09-22 | Laxo Ed | Can body maker |
US3221690A (en) * | 1962-05-03 | 1965-12-07 | Thelma E Laxo | Bumper stabilizer for a can body side seamer |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4100638A (en) * | 1977-03-21 | 1978-07-18 | Kalt Manufacturing Company | Forging machine |
US4614104A (en) * | 1984-08-27 | 1986-09-30 | Ball Corporation | Apparatus for supporting a body for reciprocal movement |
EP0248094A2 (en) * | 1986-05-28 | 1987-12-09 | Ball Corporation | Apparatus for supporting a body for reciprocal movement |
EP0248094A3 (en) * | 1986-05-28 | 1988-10-12 | Ball Corporation | Apparatus for supporting a body for reciprocal movement |
EP0297596A2 (en) * | 1987-07-01 | 1989-01-04 | Coors Brewing Company | Can body making apparatus |
US4807459A (en) * | 1987-07-01 | 1989-02-28 | Adolph Coors Company | Redraw apparatus for a can body making apparatus |
US4934167A (en) * | 1987-07-01 | 1990-06-19 | Adolph Coors Company | Can body making apparatus |
EP0297596A3 (en) * | 1987-07-01 | 1990-09-05 | Coors Brewing Company | Can body making apparatus |
EP0536812A3 (en) * | 1987-07-01 | 1993-05-12 | Coors Brewing Company | Can body making apparatus |
US4976131A (en) * | 1987-07-01 | 1990-12-11 | Adolph Coors Company | Can body making apparatus |
EP0536812A2 (en) * | 1987-07-01 | 1993-04-14 | Coors Brewing Company | Can body making apparatus |
WO1990009851A1 (en) * | 1989-02-27 | 1990-09-07 | Adolph Coors Company | Can body making apparatus |
US5134874A (en) * | 1989-09-05 | 1992-08-04 | Coors Brewing Company | Method for performing work |
WO1991004115A1 (en) * | 1989-09-05 | 1991-04-04 | Adolph Coors Company | Apparatus for forming can bodies |
US5046374A (en) * | 1989-09-05 | 1991-09-10 | Coors Brewing Company | Apparatus for preforming work |
US4956990A (en) * | 1989-09-05 | 1990-09-18 | Adolph Coors Company | Apparatus for forming can bodies |
US5357779A (en) * | 1990-09-07 | 1994-10-25 | Coors Brewing Company | Can body maker with magnetic ram bearing and redraw actuator |
US5154075A (en) * | 1990-09-07 | 1992-10-13 | Coors Brewing Company | Can body maker with magnetic ram bearing and domer |
US5257523A (en) * | 1990-09-07 | 1993-11-02 | Coors Brewing Company | Can body maker with magnetic ram bearing and redraw actuator |
US5129252A (en) * | 1990-09-07 | 1992-07-14 | Coors Brewing Company | Can body maker with magnetic ram bearing and redraw actuator |
US5325699A (en) * | 1991-07-16 | 1994-07-05 | Aura Systems, Inc. | Electromagnetic re-draw sleeve actuator |
WO1993025331A1 (en) * | 1992-06-16 | 1993-12-23 | Aluminum Company Of America | Improved body maker apparatus |
US5335532A (en) * | 1992-06-16 | 1994-08-09 | Aluminum Company Of America | Body maker apparatus |
GB2283932A (en) * | 1992-06-16 | 1995-05-24 | Aluminum Co Of America | Improved body maker apparatus |
GB2283932B (en) * | 1992-06-16 | 1996-04-03 | Aluminum Co Of America | Improved body maker apparatus |
US5249448A (en) * | 1992-07-09 | 1993-10-05 | Ball Corporation | Redraw carriage for crank and slide press |
EP0579119A1 (en) * | 1992-07-09 | 1994-01-19 | Ball Corporation | Redraw carriage for crank and slide press |
US5355709A (en) * | 1992-11-10 | 1994-10-18 | Crown Cork & Seal Company | Methods and apparatus for expansion reforming the bottom profile of a drawn and ironed container |
US5691582A (en) * | 1993-03-23 | 1997-11-25 | Coors Brewing Company | Can body maker with linear motor redraw actuator |
US5564300A (en) * | 1993-12-28 | 1996-10-15 | Aluminum Company Of America | Ram guidance mechanism for can body maker apparatus |
US5454253A (en) * | 1993-12-28 | 1995-10-03 | Aluminum Company Of America | Reddraw mechanism for can body maker apparatus |
US5546785A (en) * | 1995-05-05 | 1996-08-20 | Aluminum Company Of America | Crank mechanism for can body maker apparatus |
US6616393B1 (en) | 2000-02-07 | 2003-09-09 | Ball Corporation | Link coupling apparatus and method for container bottom reformer |
US6553806B1 (en) | 2001-04-13 | 2003-04-29 | O.K.L. Can Line Inc. | Reciprocation apparatus including a guide assembly |
US7584641B2 (en) * | 2006-03-27 | 2009-09-08 | Fwu Kuang Enterprises Co., Ltd. | Forging machine having rollers between a support and a slide body of a die assembly |
US20070220944A1 (en) * | 2006-03-27 | 2007-09-27 | Yun-Te Chang | Forging machine having rollers between a support and a slide body of a die assembly |
US20080041132A1 (en) * | 2006-08-16 | 2008-02-21 | Werth Advanced Packaging Innovations, Ltd. | Container Bodymaker |
US20080041133A1 (en) * | 2006-08-16 | 2008-02-21 | Werth Advanced Packaging Innovations Ltd | Container bodymaker |
WO2008022229A3 (en) * | 2006-08-16 | 2008-05-02 | Werth Advanced Packaging Innov | Container bodymaker |
US7434442B2 (en) | 2006-08-16 | 2008-10-14 | Werth Advanced Packaging Innovations, Ltd. | Container bodymaker |
WO2008022229A2 (en) * | 2006-08-16 | 2008-02-21 | Werth Advanced Packaging Innovations, Ltd | Container bodymaker |
US7882721B2 (en) | 2006-08-16 | 2011-02-08 | Gombas Laszlo A | Container bodymaker |
US9375774B1 (en) | 2012-07-24 | 2016-06-28 | Aleco Container Llc | Container body forming apparatus and method |
US10814376B2 (en) | 2013-08-28 | 2020-10-27 | Stolle Machinery Company, Llc | Mechanism and design for addressing ram droop |
CN105451907A (zh) * | 2013-08-28 | 2016-03-30 | 斯多里机械有限责任公司 | 用于制罐机的外侧流体静力学轴承组件 |
WO2015031585A1 (en) * | 2013-08-28 | 2015-03-05 | Stolle Machinery Company, Llc | Mechanism and design for addressing ram droop |
US9868146B2 (en) | 2013-08-28 | 2018-01-16 | Stolle Machinery Company, Llc | Mechanism and design for addressing ram droop |
US10220429B2 (en) | 2013-09-11 | 2019-03-05 | Stolle Machinery Company, Llc | Actuator with variable speed servo motor for redraw assembly |
US11033946B2 (en) | 2013-09-11 | 2021-06-15 | Stolle Machinery Company, Llc | Actuator with variable speed servo motor for redraw assembly |
WO2015038388A1 (en) * | 2013-09-11 | 2015-03-19 | Stolle Machinery Company, Llc | Variable speed servo motor for redraw assembly |
US9352375B2 (en) | 2013-09-11 | 2016-05-31 | Stolle Machinery Company, Llc | Actuator with variable speed servo motor for redraw assembly |
USD739732S1 (en) | 2013-10-03 | 2015-09-29 | Anheuser-Busch, Llc | Metal beverage bottle |
USD739731S1 (en) | 2013-10-03 | 2015-09-29 | Anheuser-Busch, Llc | Metal beverage bottle |
US10022773B2 (en) | 2014-04-30 | 2018-07-17 | Alcoa Usa Corp. | Aluminum sheet with enhanced formability and an aluminum container made from aluminum sheet |
WO2015181791A1 (en) | 2014-05-30 | 2015-12-03 | Anheuser-Busch, Llc | Two iron tool pack and method for forming tall metal bottle shaped containers and such a metal bottle |
WO2021242359A1 (en) * | 2020-05-28 | 2021-12-02 | Stolle Machinery Company, Llc | Cam driven bodymaker |
US11511332B2 (en) | 2020-05-28 | 2022-11-29 | Stolle Machinery Company, Llc | Cam driven bodymaker |
EP3922372A1 (en) | 2020-06-09 | 2021-12-15 | Simat SRL | Forming machine for ends of tubes |
WO2022267484A1 (zh) * | 2021-06-24 | 2022-12-29 | 华为技术有限公司 | 一种转轴装置和电子设备 |
US20240198409A1 (en) * | 2022-12-20 | 2024-06-20 | Stolle Machinery Company, Llc | Ram support assembly for a can bodymaker and can bodymaker including same |
WO2024137218A1 (en) * | 2022-12-20 | 2024-06-27 | Stolle Machinery Company, Llc | Ram support assembly for a can bodymaker and can bodymaker including same |
Also Published As
Publication number | Publication date |
---|---|
SE388384B (sv) | 1976-10-04 |
NL166526C (nl) | 1981-08-17 |
GB1320483A (en) | 1973-06-13 |
CA931433A (en) | 1973-08-07 |
DE2125172A1 (de) | 1972-05-25 |
JPS5039516B1 (nl) | 1975-12-17 |
NO136700B (nl) | 1977-07-18 |
NL7115491A (nl) | 1972-05-24 |
NO136700C (no) | 1977-10-26 |
DE2125172B2 (nl) | 1974-11-07 |
DE2125172C3 (de) | 1975-06-19 |
FR2095092A5 (nl) | 1972-02-04 |
NL166526B (nl) | 1981-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3696657A (en) | Metal working crank and slide press mechanism | |
US6041699A (en) | Ram driving device and press machine using same | |
US4044588A (en) | High speed ball header | |
US3604242A (en) | Transfer and ejection mechanism for forging machine | |
US6745638B1 (en) | Device mounted onto a slider crank for generating a displacement of a part mounted onto the slide in relation to the latter | |
US3120770A (en) | Transfer mechanism | |
GB1129247A (en) | Sheet metal working machine particularly a nibbling machine | |
GB2023473A (en) | Press | |
JP2647715B2 (ja) | 順送り鍛造機およびその製造方法 | |
US3888104A (en) | Forging machine | |
US1935854A (en) | Punch press for forming sheet metal shells | |
GB1473406A (en) | Starter slide and blade assembly for a thread rolling machine | |
US3579685A (en) | Mechanism for ejecting workpieces from the matrices of upsetting machines | |
CN109396317A (zh) | 冷镦机超短件辅助夹持挡料装置 | |
JP2020075339A (ja) | 線材切断装置 | |
EP0297312B1 (en) | Multipurpose swaging machine | |
US4003237A (en) | Multiple station forming press with blank accelerator | |
US3948134A (en) | Machine tool driving apparatus | |
US3357223A (en) | Tube reducing machine | |
US2790541A (en) | High speed nailmaker feed mechanism | |
US3054315A (en) | Variable feed for strip material to a flying cutter | |
US3183532A (en) | Automatic transfer mechanism for forging machines | |
US3143008A (en) | Press for performing work on metal workpieces | |
JPS6339331B2 (nl) | ||
JPH0442025Y2 (nl) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADOLPH COORS COMPANY, A CO CORP., COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:COORS CONTAINER COMPANY;REEL/FRAME:005012/0119 Effective date: 19851216 |