US3689418A - Detergent formulations - Google Patents
Detergent formulations Download PDFInfo
- Publication number
- US3689418A US3689418A US107468A US3689418DA US3689418A US 3689418 A US3689418 A US 3689418A US 107468 A US107468 A US 107468A US 3689418D A US3689418D A US 3689418DA US 3689418 A US3689418 A US 3689418A
- Authority
- US
- United States
- Prior art keywords
- sodium
- tetracarboxylate
- ethene
- detergent formulations
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2082—Polycarboxylic acids-salts thereof
Definitions
- the basic and essential ingredient of any detergent formulation is a surfactant which by reason of its surface active characteristics in solution, wetting properties, foaming properties, emulsifying action and/or other properties is effective in removal of soil or dirt.
- Detergent formulations commonly contain at least one other ingredient serving as a adjuvant, re-enforcer, supplement, augmentor, potentiator and/or remediator which serves to improve or enhance the cleansing ability of the formulation in various applications.
- Such other ingredients are usually referred to as detergency builders.
- the ingredients of detergent formulations be free of adverse ecological effects, at least in those instances where the ingredients will be released into the environment.
- organic ingredients of detergent formulations be capable of bio-degradation in conventional sewage processing operations.
- the quantities of phosphorus contained in detergency builders may contribute to eutrophication processes. Accordingly, it may be ecologically desirable to provide detergency builders of reduced phosphorus content.
- formulations comprise a surfactant and tetra alkali metal ethene 1,1,2,2 tetracarboxylate.
- the tetra alkali metal ethene-l,1,2,2-tetracarboxylate in addition to providing detergency builder function is free from phosphorus and substantially totally bio-degradable in activated sludge treatment such as utilized in many sewage processing operations.
- the detergent formulations of this invention will contain from 1% to 60% by weight, preferably from 5% to 40% by weight, of tetra alkali metal ethene-1,l,2,2-tetracarboxylate.
- the tetra sodium salt is generally preferred.
- the tetra alkali metal ethene-1,l,2,2-tetracarboxylate can be prepared by treating diethyl bromomalonate with sodium carbonate followed by basic hydrolysis of the tetraethyl ester according to procedures such as described by Malachowski and Sienkiewiczowa, Ber., 68, 33 (1935) and in Organic Synthesis, coll. vol. II, p. 273 (1943).
- the tetra alkali metal ethene-l,1,2,2-tetracarboxylate can be utilized as the sole detergency builder in the compositions of this invention or in combination with other known detergency builders such as water-soluble, inorganic builder salts, for example, alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates and silicates or organic builders, for example, alkali metal, ammonium or substituted ammonium, aminopolycarboxylates, salts of pyhtic acid, sodium citrate, water-soluble polymeric polycarboxylates as described in US. Pat. 3,308,067 and the like.
- Examples of such other known builders which have been extensively utilized commercially include sodium tripolyphosphate and sodium nitrilotriacetate.
- the detergent formulations of this invention will additionally contain at least 8% by weight of a surfactant. Any of the numerous well-known anionic, nonionic, zwitterionic or ampholytic surfactants can be employed.
- anionic surfactants include alkyl ethyl sulfonates, alkyl sulfates, acyl sarcosinates; acyl esters of isethionates, acyl N-methyl taurides, and alkyl aryl sulfonates.
- the foregoing materials are used in the form of their water-soluble sodium potassium, ammonium and alkyl ammonium salts. Specific examples include sodium lauryl sulfate; sodium N-methyl lauryl tauride; sodium dodecyl benzene sulfonate; and triethanol amine undecanol benzene sulfonate.
- nonionic detergents include alkyl phenol and alcohol alkoxylates including condensates of l-decanol or l-undecanol with from 3 to 5 molecular proportions of ethylene oxide such as described in US. patent application Ser. No. 707,480 filed Feb. 23, 1968 and copending herewith; condensates of monohydroxy or polyhydroxy alcohols such as oleyl alcohol or 1 tridecanol with from 9 to 15 molecular proportions of ethylene oxides; alkyl internal vicinal dialkoxy or hydroxy alkoxy compounds as described in US. patent application Ser. No. 852,898 filed Aug. 25, 1969 and copending herewith; and condensates of alkylene oxides with organo amines, for example, ethylene diamine and amides such as N-octadecyl diethanol amide.
- organo amines for example, ethylene diamine and amides such as N-octadecyl diethanol amide.
- cationic surfactants include octadecyl ammonium chloride; straight chain fatty amines having 8 to 18 carbon atoms; and quaternary ammonium compounds such as octadecyl trimethyl ammonium chloride.
- Suitable ampholytic surfactants include the amido alkene sulfonates such as sodium C-pentadecyl, N-methyl amido ethyl sulfonate potassium C-octyl N-naphthalene amido propyl sulfonate; ammonium C-decyl, N-cyclo propyl amido butyl sulfonate, and aliphatic amine derivatives in which the aliphatic substituent contains an anionic water-solubilizing substituent such as a carboxy, sulfo, phosphato, or phosphino group, for example, sodium-3-dodecyl amino propionate and sodium-3-dodecyl amino propane sulfonate,
- zwitterionic surfactants include derivatives of quaternary ammonium phosphonium and sulfonium compounds such as 3-(N,N-dimethyl-N-hexadecyl ammonio) propane-l-sulfonate and 3-(N,N-dimethyl-N-hexadecyl ammonio-Z-hydroxy propane-l-sulfonate).
- surfactants are by no means comprehensive. Numerous other surfactants are known to those skilled in the art are set forth in such familiar references as Surface Active Agents by A. M. Schwarz and James W. Perry. It will be further understood that the use of such surfactants will be in accordance with conventional, wellunderstood practices of detergent formulation. For example, cationic and anionic detergents will not normally be employed in combination due to recognized problems of precipitation of insoluble products.
- the alkali metal ethene tetracarboxylate builder is substantially totally bio-degradable, preferably the surfactant chosen will be similarly bio-degradable.
- the ratio of the deter'gency builder components to the surfactant components will be in the range of from 1:2 to about 12:1 by weight.
- the detergent formulations of this invention may contain fillers such as sodium sulfate and minor amounts of bleaches, dyes, optical brighteners, soil anti-redeposition agents, perfumes and similar conventional detergent formulation additives.
- EXAMPLE Detergent formulations are prepared containing about 17 parts linear sodium alkylbenzene sulfonate having an average molecular weight of about 230; 8.5 parts silicate having a 1:2 ratio of Na O:SiO 24.5 parts sodium sulfate and 50 parts tetra sodium ethene-1,1,2,2-tetracarboxylate. This composition is compared in cleaning effectiveness on polyester/cotton and cotton fabrics with an otherwise identical composition containing no tetra sodium ethene- 1,1,2,2-tetracarboxylate.
- Detergency performance of the formulations containing the builder as determined by measurement of the difference in reflectance of washed and unwashed samples averages more than 30% better 30 tained with formulations containing 25 parts and 38 parts tetra sodium ethene-l,1,2,2-tetracarboxylate.
- a detergent composition consisting essentially of at least 8% by weight of a surfactant selected from the group consisting of anionic, nonionic, zwitterionic, and ampholytic surfactants and from 1% to 60% by weight tetra alkali metal ethene-l,1,2,2-tetracarboxylate.
- composition of claim 1 wherein said tetra alkali metal ethene-1,l,2,2-tetracarboxylate is tetra sodium ethene-l,1,2,2-tetracarboxylate.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
DETERGENT FORMULATIONS COMPRISING TETRA ALKALI METAL ETHENE TETRACARBOXYLATE AS A DETERGENCY BUILDER IN COMBINATION WITH CONVENTIONAL SURFACTANTS PROVIDE EFFECTIVE CLEANING ACTION.
Description
United States Patent 3,689,418 DETERGENT FORMULATIONS Russell D. Harken, St. Louis, Mo., assignor to Monsanto Company, St. Louis, M0. N0 Drawing. Filed Jan. 18, 1971, Ser. No. 107,468
Int. Cl. Clld 1/12 US. Cl. 252-89 '3 Claims ABSTRACT OF THE DISCLOSURE BACKGROUND OF THE INVENTION This invention relates to novel detergent formulations characterized by the use therein of tetra alkali metal ethene-1,l,2,2-tetracarboxylate as a detergency builder in combination with conventional surfactants.
The basic and essential ingredient of any detergent formulation is a surfactant which by reason of its surface active characteristics in solution, wetting properties, foaming properties, emulsifying action and/or other properties is effective in removal of soil or dirt.
Detergent formulations commonly contain at least one other ingredient serving as a adjuvant, re-enforcer, supplement, augmentor, potentiator and/or beneficator which serves to improve or enhance the cleansing ability of the formulation in various applications. Such other ingredients are usually referred to as detergency builders.
In addition to providing adequate functional charac-' teristics, it is desirable that the ingredients of detergent formulations be free of adverse ecological effects, at least in those instances where the ingredients will be released into the environment. For example, it is desirable that organic ingredients of detergent formulations be capable of bio-degradation in conventional sewage processing operations. Further, it has been suggested that the quantities of phosphorus contained in detergency builders may contribute to eutrophication processes. Accordingly, it may be ecologically desirable to provide detergency builders of reduced phosphorus content.
SUMMARY OF THE INVENTION It is object of this invention to provide novel detergent formulations.
These formulations comprise a surfactant and tetra alkali metal ethene 1,1,2,2 tetracarboxylate. The tetra alkali metal ethene-l,1,2,2-tetracarboxylate in addition to providing detergency builder function is free from phosphorus and substantially totally bio-degradable in activated sludge treatment such as utilized in many sewage processing operations.
The invention will be better understood from the following description of the preferred embodiments.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The detergent formulations of this invention will contain from 1% to 60% by weight, preferably from 5% to 40% by weight, of tetra alkali metal ethene-1,l,2,2-tetracarboxylate. The tetra sodium salt is generally preferred.
The tetra alkali metal ethene-1,l,2,2-tetracarboxylate can be prepared by treating diethyl bromomalonate with sodium carbonate followed by basic hydrolysis of the tetraethyl ester according to procedures such as described by Malachowski and Sienkiewiczowa, Ber., 68, 33 (1935) and in Organic Synthesis, coll. vol. II, p. 273 (1943).
Patented Sept. 5, 1972 The tetra alkali metal ethene-l,1,2,2-tetracarboxylate can be utilized as the sole detergency builder in the compositions of this invention or in combination with other known detergency builders such as water-soluble, inorganic builder salts, for example, alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates and silicates or organic builders, for example, alkali metal, ammonium or substituted ammonium, aminopolycarboxylates, salts of pyhtic acid, sodium citrate, water-soluble polymeric polycarboxylates as described in US. Pat. 3,308,067 and the like. Examples of such other known builders which have been extensively utilized commercially include sodium tripolyphosphate and sodium nitrilotriacetate.
The detergent formulations of this invention will additionally contain at least 8% by weight of a surfactant. Any of the numerous well-known anionic, nonionic, zwitterionic or ampholytic surfactants can be employed.
Examples of suitable anionic surfactants include alkyl ethyl sulfonates, alkyl sulfates, acyl sarcosinates; acyl esters of isethionates, acyl N-methyl taurides, and alkyl aryl sulfonates. The foregoing materials are used in the form of their water-soluble sodium potassium, ammonium and alkyl ammonium salts. Specific examples include sodium lauryl sulfate; sodium N-methyl lauryl tauride; sodium dodecyl benzene sulfonate; and triethanol amine undecanol benzene sulfonate.
Examples of suitable nonionic detergents include alkyl phenol and alcohol alkoxylates including condensates of l-decanol or l-undecanol with from 3 to 5 molecular proportions of ethylene oxide such as described in US. patent application Ser. No. 707,480 filed Feb. 23, 1968 and copending herewith; condensates of monohydroxy or polyhydroxy alcohols such as oleyl alcohol or 1 tridecanol with from 9 to 15 molecular proportions of ethylene oxides; alkyl internal vicinal dialkoxy or hydroxy alkoxy compounds as described in US. patent application Ser. No. 852,898 filed Aug. 25, 1969 and copending herewith; and condensates of alkylene oxides with organo amines, for example, ethylene diamine and amides such as N-octadecyl diethanol amide.
Examples of cationic surfactants include octadecyl ammonium chloride; straight chain fatty amines having 8 to 18 carbon atoms; and quaternary ammonium compounds such as octadecyl trimethyl ammonium chloride.
Suitable ampholytic surfactants include the amido alkene sulfonates such as sodium C-pentadecyl, N-methyl amido ethyl sulfonate potassium C-octyl N-naphthalene amido propyl sulfonate; ammonium C-decyl, N-cyclo propyl amido butyl sulfonate, and aliphatic amine derivatives in which the aliphatic substituent contains an anionic water-solubilizing substituent such as a carboxy, sulfo, phosphato, or phosphino group, for example, sodium-3-dodecyl amino propionate and sodium-3-dodecyl amino propane sulfonate,
Examples of zwitterionic surfactants include derivatives of quaternary ammonium phosphonium and sulfonium compounds such as 3-(N,N-dimethyl-N-hexadecyl ammonio) propane-l-sulfonate and 3-(N,N-dimethyl-N-hexadecyl ammonio-Z-hydroxy propane-l-sulfonate).
It will be understood that the above examples of supplementary surfactants are by no means comprehensive. Numerous other surfactants are known to those skilled in the art are set forth in such familiar references as Surface Active Agents by A. M. Schwarz and James W. Perry. It will be further understood that the use of such surfactants will be in accordance with conventional, wellunderstood practices of detergent formulation. For example, cationic and anionic detergents will not normally be employed in combination due to recognized problems of precipitation of insoluble products.
Since the alkali metal ethene tetracarboxylate builder is substantially totally bio-degradable, preferably the surfactant chosen will be similarly bio-degradable.
In accordance with general practice, the ratio of the deter'gency builder components to the surfactant components will be in the range of from 1:2 to about 12:1 by weight.
In addition to surfactant and builder components, the detergent formulations of this invention may contain fillers such as sodium sulfate and minor amounts of bleaches, dyes, optical brighteners, soil anti-redeposition agents, perfumes and similar conventional detergent formulation additives.
The invention is further illustrated by the following ex ample wherein all parts and percentages are by weight unless otherwise indicated.
EXAMPLE Detergent formulations are prepared containing about 17 parts linear sodium alkylbenzene sulfonate having an average molecular weight of about 230; 8.5 parts silicate having a 1:2 ratio of Na O:SiO 24.5 parts sodium sulfate and 50 parts tetra sodium ethene-1,1,2,2-tetracarboxylate. This composition is compared in cleaning effectiveness on polyester/cotton and cotton fabrics with an otherwise identical composition containing no tetra sodium ethene- 1,1,2,2-tetracarboxylate. Detergency performance of the formulations containing the builder as determined by measurement of the difference in reflectance of washed and unwashed samples averages more than 30% better 30 tained with formulations containing 25 parts and 38 parts tetra sodium ethene-l,1,2,2-tetracarboxylate. I
What is claimed is:
1. A detergent composition consisting essentially of at least 8% by weight of a surfactant selected from the group consisting of anionic, nonionic, zwitterionic, and ampholytic surfactants and from 1% to 60% by weight tetra alkali metal ethene-l,1,2,2-tetracarboxylate.
2. The composition of claim 1 wherein said tetra alkali metal ethene-1,l,2,2-tetracarboxylate is tetra sodium ethene-l,1,2,2-tetracarboxylate.
3. The composition of claim 2 wherein said tetra sodium ethene-1,1,2,2-tetracarboxylate is present in an amount of from 5% to 40% by weight.
References Cited UNITED STATES PATENTS 2,264,103 11/ 1941 Tucker 21023 2,311,008 2/1943 Tucker 21023 3,459,670 8/ 1969 Carter 252-99 3,580,582 5/1971 Yang 252-135 OTHER REFERENCES Chem. Absts., vol. 52, p. 16192.
LEON D. ROSDOL, Primary Examiner P. E. WILLIS, Assistant Examiner US. Cl. X.R.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10746871A | 1971-01-18 | 1971-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3689418A true US3689418A (en) | 1972-09-05 |
Family
ID=22316764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US107468A Expired - Lifetime US3689418A (en) | 1971-01-18 | 1971-01-18 | Detergent formulations |
Country Status (1)
Country | Link |
---|---|
US (1) | US3689418A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080110624A1 (en) * | 2005-07-15 | 2008-05-15 | Halliburton Energy Services, Inc. | Methods for controlling water and particulate production in subterranean wells |
US7398825B2 (en) | 2004-12-03 | 2008-07-15 | Halliburton Energy Services, Inc. | Methods of controlling sand and water production in subterranean zones |
US20080173448A1 (en) * | 2007-01-19 | 2008-07-24 | Halliburton Energy Services, Inc. | Methods for treating intervals of a subterranean formation having variable permeability |
US7493957B2 (en) | 2005-07-15 | 2009-02-24 | Halliburton Energy Services, Inc. | Methods for controlling water and sand production in subterranean wells |
US20090120639A1 (en) * | 2007-11-14 | 2009-05-14 | Halliburton Energy Services, Inc. | Methods for controlling migration of particulates in a subterranean formation |
US7552771B2 (en) | 2007-11-14 | 2009-06-30 | Halliburton Energy Services, Inc. | Methods to enhance gas production following a relative-permeability-modifier treatment |
US7589048B2 (en) | 2004-01-20 | 2009-09-15 | Halliburton Energy Services, Inc. | Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation |
US7741251B2 (en) | 2002-09-06 | 2010-06-22 | Halliburton Energy Services, Inc. | Compositions and methods of stabilizing subterranean formations containing reactive shales |
US7934557B2 (en) | 2007-02-15 | 2011-05-03 | Halliburton Energy Services, Inc. | Methods of completing wells for controlling water and particulate production |
US7998910B2 (en) | 2009-02-24 | 2011-08-16 | Halliburton Energy Services, Inc. | Treatment fluids comprising relative permeability modifiers and methods of use |
US8181703B2 (en) | 2003-05-16 | 2012-05-22 | Halliburton Energy Services, Inc. | Method useful for controlling fluid loss in subterranean formations |
US8251141B2 (en) | 2003-05-16 | 2012-08-28 | Halliburton Energy Services, Inc. | Methods useful for controlling fluid loss during sand control operations |
US8272440B2 (en) | 2008-04-04 | 2012-09-25 | Halliburton Energy Services, Inc. | Methods for placement of sealant in subterranean intervals |
US8278250B2 (en) | 2003-05-16 | 2012-10-02 | Halliburton Energy Services, Inc. | Methods useful for diverting aqueous fluids in subterranean operations |
US8420576B2 (en) | 2009-08-10 | 2013-04-16 | Halliburton Energy Services, Inc. | Hydrophobically and cationically modified relative permeability modifiers and associated methods |
US8631869B2 (en) | 2003-05-16 | 2014-01-21 | Leopoldo Sierra | Methods useful for controlling fluid loss in subterranean treatments |
US8962535B2 (en) | 2003-05-16 | 2015-02-24 | Halliburton Energy Services, Inc. | Methods of diverting chelating agents in subterranean treatments |
-
1971
- 1971-01-18 US US107468A patent/US3689418A/en not_active Expired - Lifetime
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7741251B2 (en) | 2002-09-06 | 2010-06-22 | Halliburton Energy Services, Inc. | Compositions and methods of stabilizing subterranean formations containing reactive shales |
US8251141B2 (en) | 2003-05-16 | 2012-08-28 | Halliburton Energy Services, Inc. | Methods useful for controlling fluid loss during sand control operations |
US7759292B2 (en) | 2003-05-16 | 2010-07-20 | Halliburton Energy Services, Inc. | Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation |
US8962535B2 (en) | 2003-05-16 | 2015-02-24 | Halliburton Energy Services, Inc. | Methods of diverting chelating agents in subterranean treatments |
US8631869B2 (en) | 2003-05-16 | 2014-01-21 | Leopoldo Sierra | Methods useful for controlling fluid loss in subterranean treatments |
US8278250B2 (en) | 2003-05-16 | 2012-10-02 | Halliburton Energy Services, Inc. | Methods useful for diverting aqueous fluids in subterranean operations |
US8181703B2 (en) | 2003-05-16 | 2012-05-22 | Halliburton Energy Services, Inc. | Method useful for controlling fluid loss in subterranean formations |
US7589048B2 (en) | 2004-01-20 | 2009-09-15 | Halliburton Energy Services, Inc. | Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation |
US8008235B2 (en) | 2004-01-20 | 2011-08-30 | Halliburton Energy Services, Inc. | Permeability-modifying drilling fluids and methods of use |
US7595283B2 (en) | 2004-01-20 | 2009-09-29 | Halliburton Energy Services, Inc. | Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation |
US7398825B2 (en) | 2004-12-03 | 2008-07-15 | Halliburton Energy Services, Inc. | Methods of controlling sand and water production in subterranean zones |
US20080110624A1 (en) * | 2005-07-15 | 2008-05-15 | Halliburton Energy Services, Inc. | Methods for controlling water and particulate production in subterranean wells |
US7493957B2 (en) | 2005-07-15 | 2009-02-24 | Halliburton Energy Services, Inc. | Methods for controlling water and sand production in subterranean wells |
US20080173448A1 (en) * | 2007-01-19 | 2008-07-24 | Halliburton Energy Services, Inc. | Methods for treating intervals of a subterranean formation having variable permeability |
US7730950B2 (en) | 2007-01-19 | 2010-06-08 | Halliburton Energy Services, Inc. | Methods for treating intervals of a subterranean formation having variable permeability |
US7934557B2 (en) | 2007-02-15 | 2011-05-03 | Halliburton Energy Services, Inc. | Methods of completing wells for controlling water and particulate production |
US7552771B2 (en) | 2007-11-14 | 2009-06-30 | Halliburton Energy Services, Inc. | Methods to enhance gas production following a relative-permeability-modifier treatment |
US20090120639A1 (en) * | 2007-11-14 | 2009-05-14 | Halliburton Energy Services, Inc. | Methods for controlling migration of particulates in a subterranean formation |
US8272440B2 (en) | 2008-04-04 | 2012-09-25 | Halliburton Energy Services, Inc. | Methods for placement of sealant in subterranean intervals |
US7998910B2 (en) | 2009-02-24 | 2011-08-16 | Halliburton Energy Services, Inc. | Treatment fluids comprising relative permeability modifiers and methods of use |
US8420576B2 (en) | 2009-08-10 | 2013-04-16 | Halliburton Energy Services, Inc. | Hydrophobically and cationically modified relative permeability modifiers and associated methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3689418A (en) | Detergent formulations | |
US3741911A (en) | Phosphate-free detergent composition | |
US3001945A (en) | Liquid detergent composition | |
JPH06506716A (en) | Granular laundry detergent compositions with improved solubility | |
WO1991017232A1 (en) | Low ph granular laundry detergent compositions containing aluminosilicate, citric acid and carbonate builders | |
JPH0559394A (en) | Detergent composition | |
IE63070B1 (en) | Liquid detergent containing solid peroxygen bleach | |
US4206070A (en) | Detergent compositions | |
US3635829A (en) | Detergent formulations | |
US3637511A (en) | Detergent formulations | |
US3085982A (en) | Liquid detergent composition | |
US3539521A (en) | Detergent composition | |
US4242215A (en) | Substantially environmental-pollution-free laundry detergent composition | |
CA1122094A (en) | Built liquid detergent composition | |
US3697453A (en) | Iminodisuccinic acid salts as detergent builders | |
US3798168A (en) | Detergent composition | |
US3876563A (en) | Liquid detergent compositions | |
US3925228A (en) | Carbonate built detergents | |
US3704320A (en) | Detergent formulations | |
US3769223A (en) | Detergent formulations | |
JPH07506618A (en) | Granular detergent composition containing lipase | |
CA2081357A1 (en) | Low ph granular laundry detergent compositions containing chlorine scavengers | |
US3392121A (en) | Built detergent compositions | |
FI66901C (en) | TVAETT- OCH RENGOERINGSMEDEL INNEHAOLLANDE SMAELTFOSFAT | |
CA2090239A1 (en) | Liquid detergent compositions |