US3689039A - Method of heating oxygen-containing gases - Google Patents
Method of heating oxygen-containing gases Download PDFInfo
- Publication number
- US3689039A US3689039A US92903A US3689039DA US3689039A US 3689039 A US3689039 A US 3689039A US 92903 A US92903 A US 92903A US 3689039D A US3689039D A US 3689039DA US 3689039 A US3689039 A US 3689039A
- Authority
- US
- United States
- Prior art keywords
- oxygen
- fuel
- containing gas
- gas
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/20—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
- C01B13/22—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides
Definitions
- the oxygen containing gas is first preheated by known means above the ignition temperature of a fuel used in a burner apparatus having a fuel nozzle.
- the oxygencontaining gas is then passed rectilinearly around the nozzle between 350 and 1,000 feet per second thereby preventing flame eddies.
- the oxygen-containing gas is commingled with fuel distribution by the nozzle in a combustion zone resulting in an elevation of the gas temperature and is then transferred to a reaction zone where the oxidation process takes place.
- This invention pertains to a method of heating oxygen-containing gases to a temperature sufficient to produce finely divided metal oxides through vapor phase oxidation of metal chlorides.
- the invention is primarily concerned with heating oxygen to a temperature between 1,200 and l,800 C. to be employed in a reaction with titanium for the production of pigmentary titanium dioxide; however, heated oxygen-containing gases may also be advantageous for the oxidation of other volatile metal chlorides such as aluminum, chromium, iron, tin, silicon and zirconium.
- a practical method of obtaining a bulk temperature of these gases above 900 C. is tosubject the gases to an open flame.
- a disadvantage of this method, particularly in the pigment industry, is that the products of combustion contaminate the oxygen-containing gas rendering it unsuitable for use in producing a high quality product. Therefore, a method which limits these contaminates of combustion to a minimal level is desirable.
- One such method is to preheat the gases by a heat exchanging apparatus before exposing them to the open flame to a temperature ranging between the ignition temperature of the fuel being used, usually 900 C. is sufficient, and a temperature limited by the materials of construction of the apparatus, usually 1,200 C. Due to the high' temperatures of the gases, 900 to 1,200 C., particular consideration is given to problems of equipment failure.
- Typical heat exchanging apparatus include externally heated tubes, pebble heaters, checker brick interchangers and the like.
- the gas may be contacted with the open flame from a burner.
- Using an oxygen supply at or above the ignition temperature of the fuel prevents flame out and enables a stable flame to be maintained without the use of flame holders.
- the high temperature of the preheated gases and the very high temperature of the flame have caused failure in the burner. Destruction occurred even when the burner was water cooled. It is, therefore, the object of this invention to provide a method of heating oxygen without destruction of the burner.
- Heating an oxygen-containing gas to temperatures in excess of 1,200 C. is accomplished by the method of this invention.
- An oxygen-containing gas is preheated by conventional heat exchange means to at least the ignition temperature of a fuel used in a burner apparatus.
- the burner apparatus is designed in order that fuel is jetted from a cylindrical nozzle having a tip and preheated oxygen is passed rectilinearly around the tip at a velocity sufficient to prevent flame eddies from forming adjacent to the burner. More quantitatively, the gas velocity along the fuel nozzle should be greater than the back diffusion velocity of yet unburned fuel.
- the velocity should be sufficient to sweep any flame eddies, derived from the violent turbulence in the flame, away from the tip of the nozzle and to prevent standing eddies from occurring adjacent to the zone is large enough to prevent contact of the flame with the walls.
- the ratio of oxygen to fuel on a mole basis is controlled to obtain the necessary gas velocityand to provide a heat balance giving the desired bulk temperature of the gases leaving the burner apparatus.
- Final oxygenchlorides Preferably less than 10 percent by weight of a pure oxygen gas is consumed by the fuel. For more dilute oxygen, e.g., air, the desired temperatures are attained by consuming less than 25-percent by weight of the oxygen.
- FIG. 1 is a schematic vertical cross-sectional view of one type of apparatus contemplated for use with this invention.
- FIG. 2 is a cross-sectional view of the apparatus in FIG. 1 along line 2-2.
- An oxygen-containing gas is preheated by a heat exchanger means 10.
- the preheated gas enters the apparatus at entry port 12.
- Ceramic lining 14 is provided on the walls of the apparatus to enable it to withstand high temperatures.
- the gas is then forced through an annular port 24 formed between a restricting device 22 and a tip 20 of a cylindrical nozzle 16.
- the cylindrical nozzle 16 has an insulating sleeve 18 to prevent undue cooling of the incoming preheated gas.
- Heating fuel is supplied to the nozzle tip through fuel supply pipe 26.
- the fuel supply pipe is cooled by a water jacket 32 wherein cooling water enters in entry pipe 28 and exits through exit pipe 30.
- Other cooling mediums such as oil with a low vapor tension may also'be used.
- the fuel is distributed by the nozzle tip 20.
- the gas passing through the annular port is commingled with the fuel in a combustion zone 34.
- the nozzle tip and the restricting device are tapered to give a streamlined flow through the annular port enabling high velocity passage of the gas with minimal friction.
- the heated gases pass through exit duct 36 to a subsequent reaction zone 38. 4
- the composition of the oxygen-containing gas may range from low concentrations of oxygen such as air and air enriched with oxygen to pure oxygen.
- Other ancillary substances may be present which are beneficial in reactions where heated oxygen is used.
- water vapor, alkali and alkaline earth metals in the oxygen-containing gas produce better quality titanium dioxide pigments.
- the oxygen-containing gas is preheated to a minimum of the ignition temperature of the particular fuel being used for heating. It is preferred that a higher her temperature be maintained, e.g., 900 to 1,200 C., so that fuel by-products from combustion are minimal.
- An essential step of this process is passing the preheated oxygen-containing gas rectilinearly around the nozzle tip at a velocity sufficient to prevent flame eddies from occurring adjacent to the burner.
- the minimum velocity to prevent these flame eddies is about 350 feet per second. This velocity can be produced by either increasing the flow through the annular port surrounding the fuel tip or by restricting the area of the annular port in order that a greater velocity per volume input is achieved.
- the restriction should be constructed with heat resistant materials.
- Typical methods of restricting the flow are converging ducts, orifices such as knife edged circular orifices, sudden contraction ducts, and a straight duct of the correct diameter.
- a method which creates a low pressure drop should be utilized.
- Restrictions which follow the contour of the nozzle tip appear to provide better reduction of the flame eddies since it insures that the turbulent flow of the oxygen-containing gases will be in a general forward movement. Velocities up to 1,000 feet per second are practical in this invention.
- Fuel for this process may be any gas, liquid or pulverized solid capable of reacting spontaneously with the preheated oxygen-containing gases.
- Carbon monoxide, hydrogen, hydrocarbon gases, benzene, toluene, liquid hydrocarbons, powdered carbon, coke, and coal are examples of fuel operable in this invention.
- Low ash fuels are preferable where the heated oxygen is to be used in producing titanium dioxide pigment.
- the oxygen-containing gases are preheated to at least the ignition temperature of the fuel, ignition devices are unnecessary.
- the flames produced by the combustion usually reach levels in excess of the operating temperatures of most refractories, therefore, it is preferable to construct a combustion zone large to a reaction zone for oxidation of volatile metal chlorides such as titanium, zircronium, silicon, aluminum, tin and iron.
- EXAMPLE I This example illustrates the application of this inventionto the heating of oxygen for subsequent reaction with titanium tetrachloride and productionof pigmentary titanium dioxide.
- the apparatus is similar to that in FIG. 1 having an entry port of 8 inches diameter and an annular port of 4 inches outside diameter and 1 inch inside diameter.
- the combustion zone flares rapidly to a 24 inch diameter cylindrical space 4 feet long which reduces to a 10 inch exit duct suitable for passage of the high temperature oxygen to a subsequent reaction zone such as described in U.S. Pat. No. 2,791,490.
- preheated '99 percent oxygen is supplied to-the entry port at 1,100 C. from a pebble heater at 7,200
- the calculated l'n 10 't f th gas in th annular port is 796feet pei' s ec nrfi fuel supply line is equipped with a concentric pipe in order that the fuel be atomized upon entry to the combustion zone.
- toluene fuel, supplied at 124 pounds per hour, is atomized with 3 scfm of nitrogen.
- Water is circulated through the water jacket at a rate sufficient to maintain the bulk temperature of the fuel below C.
- the preheated oxygen is passed through the burner apparatus until it is near the operating temperature and the oxygen passing the throat is at least at the ignition temperature for toluene.
- toluene spray is started and immediate combustion follows raising the outlet temperature to about l,600 C.
- Oxygen at l,600 C. is produced for at least 100 hours without visible damage to the parts due to contact with the flame.
- About 5.4 percent of the initial oxygen was consumed in the booster burner.
- Example II Example I is repeated except the restricting device is lacking thus the consequent gas velocity is about feet per second. The fuel tip was burned out in less than 12 hours. i
- a method of heating an oxygen-containing gas to a temperature between l,200 and l,800 C. using a burner having a cylindrical shaped fuel nozzle with a tip and an annular port surrounding the tip through which the oxygen-containing gas is passed comprising preheating the oxygen-containing gas to a temperature between the ignition temperature of a fuel used in the burner and 1200C., passing the preheated gas rectilinearly around the tip at a velocity sufficient to prevent flame eddies from occurring adjacent to the burner, and commingling the preheated gas with a heating fuel distributed by the nozzle tip wherein oxygen is supplied in excess of an amount stoichiometrically required for combustion with the fuel resulting in combustion of the fuel and heating'of the excess gas.
- Claim 1 wherein the velocity of the oxygen-containing gases passing the tip of the nozzle is from 350 to 1,000 feet per second.
- Claim 2 wherein the oxygen-containing gas is oxygen and less than 10 percent by weight is consumed in the combustion.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
Abstract
An oxygen-containing gas is heated to a temperature between 1,200* and 1,800* C. to be used in oxidizing titanium chloride to titanium dioxide. The oxygen containing gas is first preheated by known means above the ignition temperature of a fuel used in a burner apparatus having a fuel nozzle. The oxygen-containing gas is then passed rectilinearly around the nozzle between 350 and 1,000 feet per second thereby preventing flame eddies. The oxygen-containing gas is commingled with fuel distribution by the nozzle in a combustion zone resulting in an elevation of the gas temperature and is then transferred to a reaction zone where the oxidation process takes place.
Description
[ Sept. 5, 1972 [54] METHOD OF HEATING OXYGEN- CONTAINING GASES [72] Inventor: Arnold W. Kilgren, Wilmington,
Del.
[73] Assignee: E. I. du Pont de Nemours and Company, Wilmington, Del.
[22] Filed: Nov. 25, 1970 [21] App]. No.: 92,903
Related US. Application Data [62] Division of Ser. No. 816,962, April 17, 1969,
Pat. No. 3,632,313.
521 U.S.Cl ..263/52, 263/19 A, 431/11 51 lnt.Cl ..F23l15/00 58 Field of Search ....263/l9 A, 52; 431/1 1; 23/202 [56] References Cited Wiggihton et a] ..23/202 V Kemeny et al. ..263/19 A Primary ExaminerEdward G. Favors Attorneyl-lerbert M. Wolfson [5 7] ABSTRACT An oxygen-containing gas is heated to a temperature between 1,200 and 1,800 C. to be used in oxidizing titanium chloride to titanium dioxide. The oxygen containing gas is first preheated by known means above the ignition temperature of a fuel used in a burner apparatus having a fuel nozzle. The oxygencontaining gas is then passed rectilinearly around the nozzle between 350 and 1,000 feet per second thereby preventing flame eddies. The oxygen-containing gas is commingled with fuel distribution by the nozzle in a combustion zone resulting in an elevation of the gas temperature and is then transferred to a reaction zone where the oxidation process takes place.
4 Claims, 2 Drawing Figures UNITED STATES PATENTS 3,403,001 9/1968 Mars et al. ..23/202 v METHOD OF HEATING OXYGEN-CONTAINING GASES This application is a division of application Ser. No. 816,962, filed Apr. 17, 1969 now US. Pat. No. 3 ,632,3 13.
This invention pertains to a method of heating oxygen-containing gases to a temperature sufficient to produce finely divided metal oxides through vapor phase oxidation of metal chlorides. The invention is primarily concerned with heating oxygen to a temperature between 1,200 and l,800 C. to be employed in a reaction with titanium for the production of pigmentary titanium dioxide; however, heated oxygen-containing gases may also be advantageous for the oxidation of other volatile metal chlorides such as aluminum, chromium, iron, tin, silicon and zirconium.
Several problems are encountered in obtaining oxygen-containing gas temperatures in excess of 900 C. and more particularly above 1,200 C. A practical method of obtaining a bulk temperature of these gases above 900 C. is tosubject the gases to an open flame. A disadvantage of this method, particularly in the pigment industry, is that the products of combustion contaminate the oxygen-containing gas rendering it unsuitable for use in producing a high quality product. Therefore, a method which limits these contaminates of combustion to a minimal level is desirable. One such method is to preheat the gases by a heat exchanging apparatus before exposing them to the open flame to a temperature ranging between the ignition temperature of the fuel being used, usually 900 C. is sufficient, and a temperature limited by the materials of construction of the apparatus, usually 1,200 C. Due to the high' temperatures of the gases, 900 to 1,200 C., particular consideration is given to problems of equipment failure. Typical heat exchanging apparatus include externally heated tubes, pebble heaters, checker brick interchangers and the like.
In obtaining gas temperatures in the range of 1,200 to 1,800 C. the gas may be contacted with the open flame from a burner. Using an oxygen supply at or above the ignition temperature of the fuel prevents flame out and enables a stable flame to be maintained without the use of flame holders. The high temperature of the preheated gases and the very high temperature of the flame have caused failure in the burner. Destruction occurred even when the burner was water cooled. It is, therefore, the object of this invention to provide a method of heating oxygen without destruction of the burner.
Heating an oxygen-containing gas to temperatures in excess of 1,200 C. is accomplished by the method of this invention. An oxygen-containing gas is preheated by conventional heat exchange means to at least the ignition temperature of a fuel used in a burner apparatus. The burner apparatus is designed in order that fuel is jetted from a cylindrical nozzle having a tip and preheated oxygen is passed rectilinearly around the tip at a velocity sufficient to prevent flame eddies from forming adjacent to the burner. More quantitatively, the gas velocity along the fuel nozzle should be greater than the back diffusion velocity of yet unburned fuel. Preferably, the velocity should be sufficient to sweep any flame eddies, derived from the violent turbulence in the flame, away from the tip of the nozzle and to prevent standing eddies from occurring adjacent to the zone is large enough to prevent contact of the flame with the walls.
The ratio of oxygen to fuel on a mole basis is controlled to obtain the necessary gas velocityand to provide a heat balance giving the desired bulk temperature of the gases leaving the burner apparatus. Final oxygenchlorides. Preferably less than 10 percent by weight of a pure oxygen gas is consumed by the fuel. For more dilute oxygen, e.g., air, the desired temperatures are attained by consuming less than 25-percent by weight of the oxygen.
FIG. 1 is a schematic vertical cross-sectional view of one type of apparatus contemplated for use with this invention.
FIG. 2is a cross-sectional view of the apparatus in FIG. 1 along line 2-2.
An oxygen-containing gas is preheated by a heat exchanger means 10. The preheated gas enters the apparatus at entry port 12. Ceramic lining 14 is provided on the walls of the apparatus to enable it to withstand high temperatures. The gas is then forced through an annular port 24 formed between a restricting device 22 and a tip 20 of a cylindrical nozzle 16. The cylindrical nozzle 16 has an insulating sleeve 18 to prevent undue cooling of the incoming preheated gas. Heating fuel is supplied to the nozzle tip through fuel supply pipe 26. The fuel supply pipe is cooled by a water jacket 32 wherein cooling water enters in entry pipe 28 and exits through exit pipe 30. Other cooling mediums such as oil with a low vapor tension may also'be used. The fuel is distributed by the nozzle tip 20. The gas passing through the annular port is commingled with the fuel in a combustion zone 34. The nozzle tip and the restricting device are tapered to give a streamlined flow through the annular port enabling high velocity passage of the gas with minimal friction. After the combustion, the heated gases pass through exit duct 36 to a subsequent reaction zone 38. 4
The composition of the oxygen-containing gas may range from low concentrations of oxygen such as air and air enriched with oxygen to pure oxygen. Other ancillary substances may be present which are beneficial in reactions where heated oxygen is used. For example, water vapor, alkali and alkaline earth metals in the oxygen-containing gas produce better quality titanium dioxide pigments.
The oxygen-containing gas is preheated to a minimum of the ignition temperature of the particular fuel being used for heating. It is preferred that a higher her temperature be maintained, e.g., 900 to 1,200 C., so that fuel by-products from combustion are minimal. An essential step of this process is passing the preheated oxygen-containing gas rectilinearly around the nozzle tip at a velocity sufficient to prevent flame eddies from occurring adjacent to the burner. The minimum velocity to prevent these flame eddies is about 350 feet per second. This velocity can be produced by either increasing the flow through the annular port surrounding the fuel tip or by restricting the area of the annular port in order that a greater velocity per volume input is achieved. The restriction should be constructed with heat resistant materials. Typical methods of restricting the flow are converging ducts, orifices such as knife edged circular orifices, sudden contraction ducts, and a straight duct of the correct diameter. Preferably, a method which creates a low pressure drop should be utilized. Restrictions which follow the contour of the nozzle tip appear to provide better reduction of the flame eddies since it insures that the turbulent flow of the oxygen-containing gases will be in a general forward movement. Velocities up to 1,000 feet per second are practical in this invention.
Fuel for this process may be any gas, liquid or pulverized solid capable of reacting spontaneously with the preheated oxygen-containing gases. Carbon monoxide, hydrogen, hydrocarbon gases, benzene, toluene, liquid hydrocarbons, powdered carbon, coke, and coal are examples of fuel operable in this invention. Low ash fuels are preferable where the heated oxygen is to be used in producing titanium dioxide pigment.
Since the oxygen-containing gases are preheated to at least the ignition temperature of the fuel, ignition devices are unnecessary. The flames produced by the combustion usually reach levels in excess of the operating temperatures of most refractories, therefore, it is preferable to construct a combustion zone large to a reaction zone for oxidation of volatile metal chlorides such as titanium, zircronium, silicon, aluminum, tin and iron.
The following examples are illustrations of the methods of this invention and are not limitations thereof. Parts and percentages are by weight unless otherwise specified.
EXAMPLE I This example illustrates the application of this inventionto the heating of oxygen for subsequent reaction with titanium tetrachloride and productionof pigmentary titanium dioxide. The apparatus is similar to that in FIG. 1 having an entry port of 8 inches diameter and an annular port of 4 inches outside diameter and 1 inch inside diameter. Immediately downstream from the restricting device the combustion zone flares rapidly to a 24 inch diameter cylindrical space 4 feet long which reduces to a 10 inch exit duct suitable for passage of the high temperature oxygen to a subsequent reaction zone such as described in U.S. Pat. No. 2,791,490. In the test, preheated '99 percent oxygen is supplied to-the entry port at 1,100 C. from a pebble heater at 7,200
ounds r hour. The calculated l'n 10 't f th gas in th annular port is 796feet pei' s ec nrfi fuel supply line is equipped with a concentric pipe in order that the fuel be atomized upon entry to the combustion zone. Thus, toluene, fuel, supplied at 124 pounds per hour, is atomized with 3 scfm of nitrogen. Water is circulated through the water jacket at a rate sufficient to maintain the bulk temperature of the fuel below C. To start the process the preheated oxygen is passed through the burner apparatus until it is near the operating temperature and the oxygen passing the throat is at least at the ignition temperature for toluene. The
toluene spray is started and immediate combustion follows raising the outlet temperature to about l,600 C. Oxygen at l,600 C. is produced for at least 100 hours without visible damage to the parts due to contact with the flame. About 5.4 percent of the initial oxygen was consumed in the booster burner.
EXAMPLE II Example I is repeated except the restricting device is lacking thus the consequent gas velocity is about feet per second. The fuel tip was burned out in less than 12 hours. i
I claim:
1. A method of heating an oxygen-containing gas to a temperature between l,200 and l,800 C. using a burner having a cylindrical shaped fuel nozzle with a tip and an annular port surrounding the tip through which the oxygen-containing gas is passed comprising preheating the oxygen-containing gas to a temperature between the ignition temperature of a fuel used in the burner and 1200C., passing the preheated gas rectilinearly around the tip at a velocity sufficient to prevent flame eddies from occurring adjacent to the burner, and commingling the preheated gas with a heating fuel distributed by the nozzle tip wherein oxygen is supplied in excess of an amount stoichiometrically required for combustion with the fuel resulting in combustion of the fuel and heating'of the excess gas.
2. Claim 1 wherein the velocity of the oxygen-containing gases passing the tip of the nozzle is from 350 to 1,000 feet per second.
3. Claim 2 wherein the oxygen-containing gas is oxygen and less than 10 percent by weight is consumed in the combustion.
4. Claim 2 wherein the oxygen-containing gas is air and less than 25 percent by weight of the oxygen is consumed in the combustion.
Claims (3)
- 2. Claim 1 wherein the velocity of the oxygen-containing gases passing the tip of the nozzle is from 350 to 1,000 feet per second.
- 3. Claim 2 wherein the oxygen-containing gas is oxygen and less than 10 percent by weight is consumed in the combustion.
- 4. Claim 2 wherein the oxygen-containing gas is air and less than 25 percent by weight of the oxygen is consumed in the combustion.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9290370A | 1970-11-25 | 1970-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3689039A true US3689039A (en) | 1972-09-05 |
Family
ID=22235726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US92903A Expired - Lifetime US3689039A (en) | 1970-11-25 | 1970-11-25 | Method of heating oxygen-containing gases |
Country Status (1)
Country | Link |
---|---|
US (1) | US3689039A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3942941A (en) * | 1973-10-26 | 1976-03-09 | The Mead Corporation | Arrangement for sterilizing a stream of gas |
DE3314675A1 (en) * | 1983-04-22 | 1984-10-25 | Deutsche Babcock Werke AG, 4200 Oberhausen | METHOD AND DEVICE FOR FINISHING FUELS |
US4726763A (en) * | 1982-09-24 | 1988-02-23 | Gte Products Corporation | Dual insulated ceramic burner |
DE3708911A1 (en) * | 1987-03-19 | 1988-09-29 | Praezisions Werkzeuge Ag | METHOD AND ARRANGEMENT FOR HEATING A WORKPIECE SURFACE |
US5266024A (en) * | 1992-09-28 | 1993-11-30 | Praxair Technology, Inc. | Thermal nozzle combustion method |
US20040209129A1 (en) * | 2001-10-01 | 2004-10-21 | Elisabetta Carrea | Combustion process, in particular for a process for generating electrical current and/or heat |
US20080092544A1 (en) * | 2006-10-18 | 2008-04-24 | Lean Flame, Inc. | Premixer for gas and fuel for use in combination with energy release/conversion device |
US20110061395A1 (en) * | 2009-09-13 | 2011-03-17 | Kendrick Donald W | Method of fuel staging in combustion apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3403001A (en) * | 1962-07-17 | 1968-09-24 | Thann Fab Prod Chem | Process and apparatus for the production of metal oxides |
US3414379A (en) * | 1964-06-03 | 1968-12-03 | Laporte Titanium Ltd | Manufacture of titanium dioxide |
US3461190A (en) * | 1964-08-20 | 1969-08-12 | Westinghouse Electric Corp | Method of and apparatus for establishing and maintaining an atmosphere controlled as to pressure,temperature,gas content and rate of gas flow,and closed and semi-closed arc heater loop apparatus for use therein |
-
1970
- 1970-11-25 US US92903A patent/US3689039A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3403001A (en) * | 1962-07-17 | 1968-09-24 | Thann Fab Prod Chem | Process and apparatus for the production of metal oxides |
US3414379A (en) * | 1964-06-03 | 1968-12-03 | Laporte Titanium Ltd | Manufacture of titanium dioxide |
US3461190A (en) * | 1964-08-20 | 1969-08-12 | Westinghouse Electric Corp | Method of and apparatus for establishing and maintaining an atmosphere controlled as to pressure,temperature,gas content and rate of gas flow,and closed and semi-closed arc heater loop apparatus for use therein |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3942941A (en) * | 1973-10-26 | 1976-03-09 | The Mead Corporation | Arrangement for sterilizing a stream of gas |
US4726763A (en) * | 1982-09-24 | 1988-02-23 | Gte Products Corporation | Dual insulated ceramic burner |
DE3314675A1 (en) * | 1983-04-22 | 1984-10-25 | Deutsche Babcock Werke AG, 4200 Oberhausen | METHOD AND DEVICE FOR FINISHING FUELS |
DE3708911A1 (en) * | 1987-03-19 | 1988-09-29 | Praezisions Werkzeuge Ag | METHOD AND ARRANGEMENT FOR HEATING A WORKPIECE SURFACE |
US5266024A (en) * | 1992-09-28 | 1993-11-30 | Praxair Technology, Inc. | Thermal nozzle combustion method |
US20040209129A1 (en) * | 2001-10-01 | 2004-10-21 | Elisabetta Carrea | Combustion process, in particular for a process for generating electrical current and/or heat |
US20080092544A1 (en) * | 2006-10-18 | 2008-04-24 | Lean Flame, Inc. | Premixer for gas and fuel for use in combination with energy release/conversion device |
US20110061395A1 (en) * | 2009-09-13 | 2011-03-17 | Kendrick Donald W | Method of fuel staging in combustion apparatus |
US20110061391A1 (en) * | 2009-09-13 | 2011-03-17 | Kendrick Donald W | Vortex premixer for combustion apparatus |
US20110061392A1 (en) * | 2009-09-13 | 2011-03-17 | Kendrick Donald W | Combustion cavity layouts for fuel staging in trapped vortex combustors |
US20110061390A1 (en) * | 2009-09-13 | 2011-03-17 | Kendrick Donald W | Inlet premixer for combustion apparatus |
US8549862B2 (en) | 2009-09-13 | 2013-10-08 | Lean Flame, Inc. | Method of fuel staging in combustion apparatus |
US8689562B2 (en) | 2009-09-13 | 2014-04-08 | Donald W. Kendrick | Combustion cavity layouts for fuel staging in trapped vortex combustors |
US8689561B2 (en) | 2009-09-13 | 2014-04-08 | Donald W. Kendrick | Vortex premixer for combustion apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2823982A (en) | Production of finely divided metal oxides | |
US3512219A (en) | Injection reactor for titanium dioxide production | |
US3847564A (en) | Apparatus and process for burning liquid hydrocarbons in a synthesis gas generator | |
US2790838A (en) | Process for pyrolysis of hydrocarbons | |
US6207131B1 (en) | Method and apparatus for producing titanium dioxide | |
US2635946A (en) | Process and apparatus for the production of finely divided metallic oxides useful as pigments | |
US3743606A (en) | Synthesis gas generation | |
JPS62402B2 (en) | ||
US2957753A (en) | Titanium dioxide from titanium tetrachloride | |
US3403001A (en) | Process and apparatus for the production of metal oxides | |
US3705108A (en) | Synthesis gas generation | |
GB661685A (en) | Improvements in or relating to the production of finely divided oxides of titanium, silicon, zirconium and aluminium | |
JP2587242B2 (en) | Partial oxidation of hydrocarbon-containing fuels | |
US3351427A (en) | Vapor phase process for producing metal oxides | |
US2769692A (en) | Carbon black process and apparatus | |
US3689039A (en) | Method of heating oxygen-containing gases | |
US3650694A (en) | Process for preparing pigmentary metal oxide | |
US3615202A (en) | Process for the manufacture of titanium dioxide | |
US3676060A (en) | Apparatus for the combustion of titanium tetrachloride with oxygen for the production of titanium dioxide pigment | |
US1965770A (en) | Production of acetylene | |
US2836481A (en) | Method and apparatus for the combustion of hydrogen sulfide and the production of sulfur | |
US2838105A (en) | Burner for the production of carbon monoxide and hydrogen | |
US2772729A (en) | Apparatus for combustion of hydrocarbons | |
US3365274A (en) | Metal and metalloid oxide production | |
US3735000A (en) | Process for preparing titanium dioxide |