US3648858A - Stabilized load hoist apparatus - Google Patents
Stabilized load hoist apparatus Download PDFInfo
- Publication number
- US3648858A US3648858A US35370A US3648858DA US3648858A US 3648858 A US3648858 A US 3648858A US 35370 A US35370 A US 35370A US 3648858D A US3648858D A US 3648858DA US 3648858 A US3648858 A US 3648858A
- Authority
- US
- United States
- Prior art keywords
- hoist
- load
- cable
- tension
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims description 29
- 230000007246 mechanism Effects 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 230000006872 improvement Effects 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 5
- 239000002826 coolant Substances 0.000 description 7
- 230000009471 action Effects 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000009987 spinning Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B27/00—Arrangement of ship-based loading or unloading equipment for cargo or passengers
- B63B27/16—Arrangement of ship-based loading or unloading equipment for cargo or passengers of lifts or hoists
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B27/00—Arrangement of ship-based loading or unloading equipment for cargo or passengers
- B63B27/10—Arrangement of ship-based loading or unloading equipment for cargo or passengers of cranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66D—CAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
- B66D1/00—Rope, cable, or chain winding mechanisms; Capstans
- B66D1/28—Other constructional details
- B66D1/40—Control devices
- B66D1/48—Control devices automatic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66D—CAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
- B66D2700/00—Capstans, winches or hoists
- B66D2700/01—Winches, capstans or pivots
- B66D2700/0108—Winches, capstans or pivots with devices for paying out or automatically tightening the cable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S254/00—Implements or apparatus for applying pushing or pulling force
- Y10S254/90—Cable pulling drum having wave motion responsive actuator for operating drive or rotation retarding means
Definitions
- ABSTRACT Hoist apparatus for moving a load between relatively vertically movable locations, wherein the load is moved by a pair of load hoist cables, and a tension hoist cable is connected between the relatively vertically movable locations, the load hoist and the tension hoist being coupled together to cause movement of the load corresponding to the movement between the locations, the load hoist also being operable to move the load between such locations, the load being connected to the pair of load hoist cables and being guided on the tension hoist cable.
- motion compensating hoist apparatus for moving the load between the two locations such as between a well drilling platform or barge at sea and a vessel used to transport men and equipment to and from the platform or barge, wherein the load is caused to move vertically in synchronism with the vessel, so that the load can be conveniently and also safely moved relative to the vessel.
- Such apparatus facilitates the movement of personnel or equipment onto or from the vessel notwithstanding the fact that the vessel may be caused to move vertically by the action of waves passing beneath the vessel.
- a load hoist and a tensioning hoist are provided and are adapted to be coupled together so that the motion of the transport vessel is imposed on the load, but the load may also be moved relative to the vessel by the load hoist.
- the tension hoist has a tension line connected to the vessel and a fluid pressure actuated slip clutch drives the tension hoist to apply a substantially constant tension to the tension line and the load hoist is coupled to the tension hoist, the rise and fall of the vessel causing a variable control signal to be supplied to a fluid pressure controller to vary the pressure of actuator fluid supplied to the clutch.
- the load slidably engages the tension line so as to be guided to and from the deck of the transport vessel.
- the present invention provides a motion compensating hoist system, wherein the load is substantially stabilized by at least three lines which are connected to the load in spaced relation, certain of the lines supporting the load and other of the lines guiding the load, whereby the load is substantially stabilized against swingingabout either line.
- one of the load and tension hoists has two drums and two cables or lines which are guided in axially spaced sheaves on the boom which projects from the platform or barge, and the other hoist has its cable or line guided in an intermediate sheave, whereby the three cables or lines can be connected to and slidably engaged with the load to stabilize the load.
- the load hoist preferably has two drums and cables or lines, so that as a safety precaution the load'is supported by two cables,-and the load slidably engages the intermediate tension line.
- a pair of tension hoist drums and cables or lines and a single load hoist drum and cable or line could be employed to accomplish the same results.
- the load hoist and the tension hoist are adapted to be coupled so as to be driven together by the same power source, through a slip clutch which, on the one hand, allows downward movement of the vessel to pull cable or line from'the tension hoist and correspondingly cause load cable or line to be played off of the load hoist, and which, on the other hand, causes the load hoist to reel in cable or line at a rate determined by the allowable reeling of tension cable or line onto the tension hoist as the vessel moves upwardly, and in addition, a load hoist drive is provided to separately move the load relative to the vessel when the load hoist and tension hoist are coupled or uncoupled.
- FIG. 1 is a perspective, fragmentary view, sh,0wing a platform or barge above the water and equipped with the invention for moving a load to or from a boat afloat in the water;
- FIG. 2 is an end elevation of the power unit and the hoist and tension winches
- FIG. 3 is a fragmentary detail view, on an enlarged scale, with parts broken away and showing the connection of the load hoist lines and the sliding connection of the tension line to the elevator;
- FIG. 4a is a fragmentary view in side elevation, as taken on the line 4-4 of FIG. 2, on an enlarged scale, and showing a portion of the hoist means with parts broken away to expose the drive for the tension winch;
- FIG. 4b is a fragmentary view, as taken on the line 4-4 of FIG. 2, constituting a lateral continuation of FIG. 4a, and showing the selective drive connection of the tension winch to the load hoist;
- FIG. 4c is a fragmentary view, as taken on the line 4-4 of FIG. 2, constituting a lateral continuation of FIG. 4b, and showing the motion compensating drive for the load hoist;
- FIG. 5 is a diagrammatic illustration of the combined winches and control means therefor.
- FIGS. 1 and 2 there is generally illustrated a barge or platform P adapted to be supported above the water on a number of suitably located legs L which extend to the bottom of the water, and on which the platform or barge P is mounted.
- the platform is adapted to be elevated to a selected height above the water on the legs L, a distance of feet more or less.
- On the barge or platform may be located the usual well drilling and/or completion or workover apparatus (not shown), as is well known in the art.
- a boat or vessel V is in part illustrated, and such boats or vessels range considerably in size from comparatively large work boats adapted to move heavy gear and supplies between the shore and the platform, and small personnel carrying boats. In either case, problems are experienced in transferring the gear or personnel between the vessel and the platform.
- the present invention contemplates a motion compensating hoist system .whereby an elevator E or other load support is adapted to be raised or lowered between the outer extremity of a boom B and the vessel V, the elevator E being suspended by a pair of load hoist cables or lines 10a, 10b.
- a tensioning line or cable 11 extends between the outer extremity of the boom B and a point of attachment 12 to the deck of the boat or vessel V.
- the lines or cables a, 10b and 11 respectively, are controlled by load hoist means LH and tensioning hoist means th, whereby during the initial stages of the lifting of the elevator E from the deck of the vessel V and during the final stages of movement of the elevator E onto the deck of the vessel V, the elevator is caused to move synchronously with the vertical movement of the vessel V, i.e., the elevator E moves in the same direction and at the same rate that the vessel V moves, as the vessel V is subjected to wave action.
- superimposed on the synchronous movement of the elevator E with the vessel V is independent movement of the elevator E in a controlled manner whereby the elevator E is moved smoothly and gently to or from the deck of the vessel V by the load hoist means LH.
- the load hoist means LH is also operable, when the elevator E is moving through the portion of its travel safely above the deck of the vessel V to independently cause vertical traverse of the elevator E.
- the boom B is mounted on suitable support structure 13 which is affixed to a side of the platform P.
- the boom comprises in the illustrative embodiment a pair of laterally spaced outwardly convergent V-shaped arms 14 and 15, which are preferably fabricated from upper and lower rails 16 and 17 reinforced by suitable struts 18 for rigidity, the arms 14 and being suitably connected to the support structure 13.
- a power unit platform 20 on which is mounted a power source, such as an engine 21, adapted through a suitable reduction gear box 22 and a chain drive 23, by way of illustration, to drive the hoist means consisting of the tensioning hoist means TH and the load hoist means LH previously referred to.
- a control cab C in which an operator has good vision of the hoisting operations.
- the walkway W, the power unit platform 20, as well as the barge or platform P are all provided with suitable guard rails thereabout, and a stairway 27 leads between the deck of the platform or barge P and the power unit platform 20.
- the load hoist lines or cables 10a, 10b extend from load hoist drums 28a, 28b outwardly of the boom B and over sheaves 29a, 29b which are rotatably supported at the outer extremity of the boom.
- the load hoist lines 10a and 10b are connected to the top of load supporting means shown as an elevator E, and more particularly, the elevator E has equalizing means 30, best seen in FIG. 3, which allow the elevator to hang vertically, notwithstanding any tendency of one of the load lines 100 or 10b tending to wind on or unwind from its drum 28a, 28b, respectively, at a greater rate than the other load line.
- the lines 10a, 10b are constituted by a single length of line or cable the ends of which are respectively wound on the load hoist drums 28a, 28b, and the bight 31 of which engages the equalizing means including a pair of spaced rollers 32, 32 carried by a support member 33 which spans the elevator E and is welded or otherwise affixed to the elevator.
- the tensioning line 11 leads from the tensioning hoist drum 34 along the boom B and over a sheave 35 which is suitably rotatably supported at the outer extremity of the boom.
- the tension line extends through a guide or tube 36 which is centrally disposed in the elevator.
- the elevator E is supported at spaced locations by the lines 10a and 10b and guided on the intermediate tension line 1 1, so that the load elevator is effectively stabilized against swinging or spinning, and wrapping of the lines one about the other is precluded.
- the elevator or other load will be guided to and from the deck of the vessel V, even though the vessel may tend to move relative to the barge or platform P.
- the support structure for the hoist means includes four laterally spaced uprights or posts 40, 41, 42 and 43.
- the uprights 40 and 41 have mounted thereon a pair of laterally spaced bearing blocks 40a and 41a in which is rotatably joumaled a horizontally extended tensioning hoist shaft 44.
- the tensioning hoist means TH includes the drum 34 on which the tensioning line or cable 11 is wound, the hub 45 of the drum 34 being keyed as at 46 to the shaft 44 for rotation therewith.
- the shaft 44 extends through the bearing block 40a to provide a driven shaft end 48 adapted to be driven by the drive means 23 under control of slip clutch means SC.
- the drive means 23 includes a drive chain 49 adapted to be driven by the output sprocket (not shown) of the reduction gear box 22 of the power source 21.
- This chain 49 is engaged with a sprocket 50, the hub 51 of which is rotatably mounted on the shaft end 48 by bearings 52.
- Affixed to the sprocket 50 is a disc 54 which is in turn affixed by fasteners 55 to the outer periphery of the backup plate 56 of the slip clutch means SC.
- This slip clutch means SC includes an outer annular body 57 to which an annular flange 58 is connected by fasteners 59 in opposed relation to the plate 56. Internally thereof, the body 57 has a splined connection 60 with the outer periphery of an axially shiftable clutch pressure plate 61. Between the clutch plates 56 and 61 is a clutch friction disc 62 having friction facing 63 on opposite sides thereof and having, as at 64, a splined connection with a hub 65 which is disposed upon the shaft end 48 and is keyed thereto by a key 66.
- rotation from the sprocket 50 will be transmitted to the tensioning hoist shaft 44 when the slip clutch means SC is engaged to transmit rotation from the clutch body 57 and its plates 56 and 61 to the friction disc 62.
- annular expansible actuator tube 67 having an air inlet 68.
- the actuator tube 67 engages an annular body of insulating material 69 interposed between the tube 67 and the clutch pressure plate 61.
- Each of the clutch plates 56 and 61 has a number of annular radially spaced and concentric coolant passages 56a and 61a to which a coolant is supplied to dissipate the heat of friction caused by slippage of the clutch SC.
- These passages 56a and 61a are defined respectively between the clutch plates and wear disc 56b carried by the plate 56 and wear disc 61B carried by the plate 61, the friction material on the friction disc 62 being engaged with the wear discs 56b, 6112.
- Such cooled, slip clutches are well known, and generally are provided with a coolant circulating system including a sta tionary coolant connector 71 through which coolant flows to and from a rotary connector 72 which is connected, as by fasteners 72a, to the clutch flange 58 and which has conduit means 73 for supplying coolant to the passages 56a and 610, as well as conduit means for the return flow of coolant to the connector 71 and thence to a heat exchanger.
- the rotary connector 72 provides a connection for air conduit means 74 which leads to the air inlet 68 for the clutch actuator tube 67 from a stationary air inlet fitting 75.
- the torque transmitting capacity of such slip clutches varies with the pressure of air in the actuator tube 67.
- the slip clutch means SC is made in accordance with the disclosure of US. Pat. application Ser. No. 19,601, filed Mar. 16, 1970, in the name of C. D. Barron, so that the clutch plates and discs are more effectively cooled.
- motion compensating drive means are adapted to selectively drivingly connect the shaft 44 of the tensioning hoist means TH to a shaft 44a which is in turn drivingly connected to a shaft of the load hoist means LI-I.
- This shaft 80 is preferably in two parts connected by a chain or other coupling 80a mounted for rotation in bearings 40b, 41b, 42b and 43b which are mounted on the supports 40, 41, 42 and 43 so that the shaft 80 extends in parallel relation to the shaft 44 and the shaft 44a in laterally spaced relation.
- the relationship between the tensioning hoist means and the load hoist means is only illustrative of a preferred arrangement under given conditions, but that the shafts 44, 44a and 80 may be otherwise arranged.
- the shaft 44 has a chain or other coupling 81 connected thereto by a key 82, the coupling also being connected to an adapter 83' which is in turn connected by fasteners 84 to an annular body 85 of the motion compensating drive clutch means MC.
- the adapter 83 and the clutch body 85 are revolvably mounted on bearings 86 on a sleeve 87 which is splined to the end of the shaft 44a as at 88 for rotation therewith.
- the clutch assembly MC also includes a plurality of clutch discs 89.
- Alternate discs 89 are splined to the adapter sleeve 87, and the other discs 89 are splined to the annular clutch body 85, whereby rotation is transmitted to the shaft 44a from the shaft 44 when the discs 89 are engaged between the usual backup plate 90 and the shiftable pressure plate 91.
- actuator means responsive to fluid pressure including a thrust bearing 92 which is engaged with the pressure plate 91 to shift the latter towards the backup plate 90 in response to corresponding movement of an outer actuator sleeve 93 which also is engageable with the thrust bearing 92.
- This actuator sleeve is slidable on a fixed actuator sleeve 94 within which the adapter sleeve is rotatable on a bearing 95.
- These actuator sleeves 93 and 94 are suitably formed and sealed to provide a pressure chamber 96 to which fluid, such as air, may be admitted through a conduit 97 to effect engagement of the clutch MC, or to allow its release in the absence of pressure fluid.
- the shaft 440 has a brake 100 adapted to brake the shaft 440 when the clutch MC is disengaged.
- This brake 100 in the illustrative embodiment, is like the clutch MC. More particularly, the brake 100 includes an adapter 101 which is fastened, as at 102, to a stationary plate or flange 103 which is suitably affixed to the support 42.
- a pin 104 connects the adapter 101 to an annular brake body 105, and an adapter sleeve 106 which is splined to the shaft 440, as at 107, is revolvable in bearings 108 within the adapter 101 and the brake body 105.
- a pack of discs 109 are disposed between a backup plate 110 and a pressure plate 111, and alternate discs 109 are splined to the body 105 and the sleeve 106, whereby to hold the shaft 44a against rotation when the brake 100 is engaged.
- a thrust bearing 112 is interposed between the pressure plate 111 and an annular actuator member 113 which is axially shiftable on an internal actuator member 114 within which the shaft 44a revolves in a bearing 115.
- These actuator members 113 and 114 are formed and sealed to provide a chamber 116 into which pressure fluid is supplied through a conduit 117 to engage the brake 100.
- the clutch MC and brake 100 are preferably supplied with actuating fluid pressure simultaneously, so that when the brake 100 is engaged, the clutch MC is released, and vice versa.
- actuating fluid pressure When the clutch MC is engaged, rotary motion will be transmitted from the shaft 44a to the shaft 80, in the direction and at the rate determined by operation of the tension hoist TH and the slip clutch means SC.
- rotation o the shaft 44a is not only adapted to be transmitted to the shaft 80 of the load hoist, but, in addition, the load hoist shaft 80 may be further driven to superimpose a traverse movement of the elevator E on the compensating movement.
- the shaft 44a extends through a bearing 43a carried by the support 43 and has a sprocket 120 carried by a hub 121 and revolvable about the shaft 44a on bearings 122.
- a chain 123 is engaged with the sprocket 120 and with a similar sprocket 124 which is keyed, as at 125, on the shaft 80.
- Motor brake means 126 are provided to connect the sprocket 120 to the shaft 44a to drive shafts 44a and 80 in unison and to further, separately drive shaft 80.
- a plate 127 is keyed on the shaft 44a by a key 128, and a gear 129 having external teeth thereon is fixed on the hub 121.
- Motor means 130 and brake means 131 are carried by the plate 127 and are selectively operable to drive the gear 129, and hence the drive sprocket 120, simultaneously synchronously with and oppositely relative to the shaft 44a, or to lock the gear 129, and hence the drive sprocket 120 and the plate 127 together for unitized rotation.
- the motor means 130 includes a housing 132 connected by fasteners 133 to the plate 127 and an output shaft 134 which extends through the plate 127.
- a pinion 135 On the output shaft 134 is a pinion 135 which is drivingly in mesh with the external gear teeth of the gear 129.
- Fluid is supplied to the motor 130 in selected, reversible directions through conduits 136 and 137 to effect reverse operation of the motor, such fluid being supplied through passages 136a and 137a which extend longitudinally in the shaft 44a and are supplied from stationary source conduits 136b and 137b, respectively, which are connected to a rotary fluid connector 138 suitably mounted in a housing 139, as by fasteners 146.
- a rotary connector 138 is common and requires no further specific discussion.
- the motor 130 also has a fluid outlet 141 which, as will be more fully described hereinafter, supplies fluid to the inlet conduit 142 of the brake means 131 to release the latter when the motor 130 is operating, whereby the load hoist shaft 80 is revolvable whether or not the shaft 44a is revolving.
- the load hoist lines 10a and 10b and the elevator E may be raised or lowered by the motor 130, while the lines 10a and 10b are also moving the elevator E in unison with movement of the boat or vessel V.
- the brake means 131 comprises a housing 145 secured to the plate 127 so as to revolve with the shaft 440. Carried by and disposed in the housing 145 is a rotatable stub shaft 146.
- This shaft 146 extends through the plate 127 and has a pinion gear 147 keyed thereon and engaged with the gear 129.
- a brake rotor 148 is keyed on the shaft 146, and friction discs 149 are interposed between the brake rotor 148 and an actuator member 150, alternate discs being splined to the rotor 148 and to the housing 145, so that when the discs are engaged, the rotor 148 will be held stationary, thereby holding the pinion 147 against rotation, to brake the gear 129, and hence the load hoist shaft 80.
- the brake 131 is normally engaged by a number of coiled compression springs 151 spaced circumferentially of the actuator member 150 and acting on the same and on an internal flange 152 in the housing 145 to bias the member 150 in a brake-engaging direction.
- fluid under pressure is supplied from the conduit 142, previously referred to, to a sealed piston chamber 153 in which is a piston 154 connected to the actuator member 150, as by screws 155, to move the actuator member 150 to a brake-release position.
- the hoist shaft When the brake means 131 is engaged, the hoist shaft is effectively connected to the shaft 440 for rotation therewith, but when the brake means 131 is released, the motor means 130 is effective to not only connect the shaft 44a to the shaft 80, but also to effect relative rotation thereof, as previously described.
- FIG. 5 wherein the apparatus is schematically illustrated together with operating and control means therefor.
- the tension line is not shown as slidably engaged with the elevator E, but in practice would be so engaged, as previously described.
- air under pressure is supplied to the inlet connector 75 os the slip clutch means SC through a controller or pressure regulator R1, so that the slip clutch means may be adjusted to transmit sufficient torque to the drum shaft 44 as to maintain a predetermined tension on the tension line 11 of the tension hoist means TH which is connected to the vessel V.
- the controller R1 needs no specific illustration, but is preferably of the type that will cause an outlet pressure which is a function of a SET POINT signal and a signal derived from tension on the tension line 11.
- the line tension of the tension hoist TH is selected so as to be proportionate to load, represented by the elevator E, namely, the weight of the elevator E together with the weight of the load to be carried in the elevator, and inertia forces to be overcome in accelerating and decelerating the load when the system is compensating for movement of the vessel V.
- the motion compensating clutch means MC is engaged and the brake means 100 is released.
- suitable valve means herein illustrated as including a control valve CV1 which is interposed between a suitable source of air under pressure and the pressure conduits 97 and 117, the valve CV1 being operable in one position to connect the air supply to both the clutch means MC to engage the same and the brake means 100 to release the same, and conversely, in the other position, to exhaust the clutch and brake to allow release and engagement thereof, respectively.
- the load hoist shaft 80 With the clutch means MC engaged, the load hoist shaft 80 will be driven synchronously with the shaft 44 through chain 123, and rotation of the load hoist shaft 80, which is locked to the shaft 44a by the motor-brake means 126, will be in the same direction and at the same rate as rotation of the tension hoist shaft 44, as the latter is caused, alternately, to turn in one direction by the pull on the line 11 by the vessel V, as the vessel moves downward, and in the other direction, as the vessel rises on a wave, the tension on line 11 remaining substantially constant at the value established by the slip clutch means SC.
- the lines 100 and 10b may be raised or lowered, whether or not connected to the elevator E, by the operation of the reversible hydraulic motor 130, when the brake means 131 is released, whereby the load hoist drums 28a and 28b are subjected to a motion which is superimposed on the motion of shafts 44 and 80 caused by the rise and fall of the vessel V.
- valve means are provided, herein illustrated as a control valve CV2, adapted to control the flow of hydraulic motor fluid to the motor means 130 and to the brake means 131, and from the motor means to a reservoir.
- the valve means CV2 has a position for directing fluid from a suitable pressure source through conduits l36b and 136 and to an exhaust to cause motor rotation in on direction, and another position for directing fluid through the conduits 137b and 137 to cause motor rotation in the other direction.
- pressure fluid is also supplied to the brake inlet conduit 142 from a shuttle valve SV interposed between the conduits 136 and 137.
- control valve CV1 For moving the load hoist lines 10a and 10b independently of the tension line 11, the control valve CV1 is operated to relieve operating air pressure from the clutch means MC and the brake means 100, so that the drums 28a and 28b may be driven independently of the tension hoist means, to raise or lower the load lines 10a and 1017 when the load is safely above the vessel V, whether the lines 10a and 10b are loaded or unloaded.
- load sensing means LS are provided to cause the application of a variable air pressure to the slip clutch means SC toadjust the torque capacity of the slip clutch means SC so that the pressure supply to the slip clutch means is decreased, if the tension on line 11 tends to increase, or the pressure supply to the slip clutch means is increased, if the tension on the line tends to decrease.
- Such load sensing means may be any typical devices adapted to sense load on a line to produce a related signal, such as a load cell of the hydraulic type, as indicated at 200 in FIG. 5.
- This load cell 200 has a piston 20] which projects from the cylinder 202 and is engaged by a portion 203 of a lever 204 which supports a tension line sheave 205 on the axle 206, the lever being pivotally mounted on a pin 207 carried by the support structure, as is obvious.
- a conduit 208 Leading from the load cell cylinder 202 is a conduit 208 which is connected to a pressure regulator or transmitter R2 of any suitable type which, as is well known, is operative to regulate the drop in air pressure supplied from a source and establish an outlet air signal pressure pressure in a conduit 209 which is a function of the applied hydraulic pressure from the load sensor means LS.
- the air pressure from the regulator R2 is conducted by the conduit 209 to the controller R1 to modify the net output pressure from the controller R1 to the slip clutch means SC.
- the tension line 11 is lowered, either first or with the load lines 10a and 10b, and the tension line 11 is connected to the vessel V, with the line extending through the guide 36 of the elevator E.
- Air is supplied at a preset value to the slip clutch means SC to apply a tension to the line 11 proportionate to the weight of the elevator E and any load which it is to lift.
- the rise and fall of the vessel V will cause the tension drum 34 to oscillate.
- the motion compensating clutch means MC is engaged, and the drum shaft brake means correspondingly released, so that the load hoist drums 28a and 28b will oscillate in unison with the tension hoist drum 34, causing synchronous movement of the load lines with the tension line, corresponding to movement of the vessel. While such synchronous motion occurs, the load hoist drum motor may be supplied with fluid, and the brake means 131 is released, to enable controlled downward movement of the elevator E, or other load support, to the deck of the vessel for loading.
- the motor 130 is reversed, causing upward movement of the load relative to the vessel, while the load continues to rise and fall synchronously with the rise and fall of the vessel.
- the load will require substantially the full output of the slip clutch means SC which has been preset for the known load value.
- the load will require substantially the full output of the slip clutch means SC which has been preset for the known load value.
- the reduced hydraulic signal from the load cell 200 causes an increase in the air pressure supplied from regulator R2 to controller R1 and a resultant increase in the air pressure supplied from the regulator R1 to the slip clutch means until the torque capacity of the slip clutch SC is sufflcient to not only maintain the initial tension on the line 11, but also to elevate the load, while the motion compensation continues.
- the brake means 100 for the load hoist means are engaged and the motion compensating clutch means MC are released.
- fail safe means may be provided.
- hoists or winches have normally engaged or spring-set band brakes associated with the drum, and more particularly with the flange 280 (FIG, 4c) of the hoist drum 28b, for example, and with the corresponding flange 34a (FIG. 4a) of tensioning hoist drum 34.
- Such brakes may be also employed in the present apparatus and released responsive to the fluid pressure in the operating system, so that the band brakes would automatically set in the event of loss of pressure in the system or any portion thereof.
- the brake means 100 and 131 may be employed as a fail safe means for holding the load hoist against movement upon loss of operating fluid pressure. Any such fail safe brake for the tension hoist TH should allow the line 11 to be played off of the drum 34 under tension applied by fall of the vessel, so as to avoid any tendency to overload the tension line.
- ln motion compensating hoist mechanism including a support structure adapted to be mounted at a location over a vessel floating in the water for raising or lowering a load from or to said vessel, hoist means on said support structure including a load hoist and a tension hoist, drive means for releasably coupling said hoists for unitized operation, a source of power, slip clutch means for connecting said hoist means to said source of power for driving said hoist means, said tension hoist having cable means connectable to said vessel and slidably engaging said load, and said load hoist having cable means connectable to said load, fluid pressure operated means for varying the torque transmitting capacity of said slip clutch means, pressure controller means for varying the actuating fluid pressure to said fluid pressure operated means, and load responsive means for operating said controller means to vary the pressure of actuating fluid to increase the torque transmitting capacity of said slip clutch means when the tension on said tension hoist cable means decreases and to decrease the torque transmitting capacity of said slip clutch means when the tension on said tension hoist cable means increases, the improvement where
- said cable means of said load hoist comprising said pair of cables.
- said pair of cables being connectable to said load, and including equalizer means associated with said pair of cables and said load for allowing said load to hang vertically between said pair of cables when said load hoist raises and lowers said pair of cables.
- said cable means of said load hoist comprising said pair of cables, a pair of drums disposed in axially spaced relation, said. pair of cables respectively being wound on said spaced drums.
- said load including a load support having guide means thereon, said cable means of said tension hoist slidably extending through said guide means.
- said load support comprising an elevator cage.
- said cable means of said load hoist comprising said pair of cables, and said load including a load support slidably engaging said cable of said tension hoist.
- said load support comprising an elevator cage having a central cable guide, said tension hoist cable extending slidably through said guide, and said pair of load hoist cables being connected to said cage in spaced relation at opposite sides of said tension hoist cable.
- said support structure having a boom projecting therefrom, said hoist means being adjacent to said support structure, said boom having an outer end provided with spaced cable guides for laterally spacing said cables, said pair of cables extending over a pair of said guides and said single cable extending 'over one said guide located between said pair of guides.
- hoist means on said support structure including a load hoist and a tension hoist, drive means for releasably coupling said hoists for unitized operation, a source of power, slip clutch means for connecting said hoist means to said source of power for driving said hoist means, said tension hoist having cable means connectable to said vessel and slidably engaging said load, and said load hoist having cable means connectable to said load, said tension hoist comprising a drum shaft, tension hoist drum means rotatable with said shaft, said slip clutch means connecting said shaft to said source of power, said load hoist comprising a drum shaft, load hoist drum means rotatable with said latter drum shaft, said drive means comprising clutch means for connecting said shafts for unitized rotation, and means for selectively separately rotating said load hoist shaft, the improvement wherein the cable means of one of said hoists includes
- hoist means on said support structure including a load hoist and a tension hoist, drive means for releasably coupling said hoists for unitized operation, a source of power, slip clutch means for connecting said hoist means to said source of power for driving said hoist means, said tension hoist having cable means connectable to said vessel and slidably engaging said load, and said load hoist having cable means connectable to said load, clutch means for selectively driving said tension hoist and said load hoist in unison, and separate drive means for driving said load hoist, the improvement wherein the cable means of one of said hoists includes a pair of cables, the cable means of the other of said hoist comprises a single cable disposed between said pair of cables.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Earth Drilling (AREA)
- Jib Cranes (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
Abstract
Description
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3537070A | 1970-05-07 | 1970-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3648858A true US3648858A (en) | 1972-03-14 |
Family
ID=21882252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US35370A Expired - Lifetime US3648858A (en) | 1970-05-07 | 1970-05-07 | Stabilized load hoist apparatus |
Country Status (8)
Country | Link |
---|---|
US (1) | US3648858A (en) |
AT (1) | AT310994B (en) |
CA (1) | CA937923A (en) |
DE (1) | DE2120766A1 (en) |
FR (1) | FR2088408B1 (en) |
GB (1) | GB1335413A (en) |
NL (1) | NL7106170A (en) |
RO (1) | RO58468A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3785511A (en) * | 1971-03-02 | 1974-01-15 | Petroles Cie Francaise | Anti-pounding device mounted on a boat for maintaining a cable at a given level above an underwater bed |
US3787031A (en) * | 1971-12-08 | 1974-01-22 | Garrett Corp | Cable drum highline system |
US3836122A (en) * | 1972-11-20 | 1974-09-17 | W Pierce | Cable winch |
US4412598A (en) * | 1981-01-23 | 1983-11-01 | Exxon Research And Engineering Co. | Personnel transfer apparatus and method |
US4448396A (en) * | 1982-02-25 | 1984-05-15 | American Hoist & Derrick Company | Heave motion compensation apparatus |
US4630542A (en) * | 1982-09-07 | 1986-12-23 | Alsthom-Atlantique and Plastibenne | Nacelle |
US5160286A (en) * | 1990-07-04 | 1992-11-03 | George Hill | Personnel transfer system |
US20070272906A1 (en) * | 2004-03-19 | 2007-11-29 | Subsea 7 Bv | Apparatus And Method For Heave Compensation |
US20130256615A1 (en) * | 2012-03-30 | 2013-10-03 | Oracle International Corporation | Magnetic z-directional clutch |
US20160083228A1 (en) * | 2013-04-18 | 2016-03-24 | Maersk Drilling A/S | An offshore floating vessel and a method of operating the same |
US20180065714A1 (en) * | 2015-05-12 | 2018-03-08 | Fredrik VON HELAND | System for transporting objects to ocean structures |
US20210254601A1 (en) * | 2020-02-19 | 2021-08-19 | Siemens Gamesa Renewable Energy A/S | System and method for assembling or disassembling of a wind turbine |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2353477A1 (en) * | 1976-06-02 | 1977-12-30 | Petroles Cie Francaise | PROCESS FOR TRANSHIPMENT OF LOADS AT SEA AND MEANS OF IMPLEMENTATION |
US4395178A (en) * | 1980-12-08 | 1983-07-26 | The Boeing Company | Transfer system for use between platforms having relative motion between one another |
DE3216051A1 (en) * | 1982-04-29 | 1983-11-10 | ZF-Herion-Systemtechnik GmbH, 7990 Friedrichshafen | LOADING DEVICE FOR A WATER LEVEL RELATIVELY MOVABLE LOADS |
DE3766976D1 (en) * | 1986-02-19 | 1991-02-07 | Liebherr Werk Nenzing | CRANE. |
DE102004024257B4 (en) * | 2004-05-15 | 2006-08-17 | Jensen, Marten, Dipl.-Ing. | System for transferring heavy loads to and from offshore installation using a floating mat between ship and installation and using winches |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1999936A (en) * | 1933-07-22 | 1935-04-30 | Kampnagel Ag | Lifting device |
US2609181A (en) * | 1948-06-01 | 1952-09-02 | Dynamatic Corp | Hoist control |
US2854154A (en) * | 1956-03-21 | 1958-09-30 | Hepinstall Robert Edward | Sea elevator |
US2945675A (en) * | 1957-10-24 | 1960-07-19 | California Research Corp | Drawworks |
US3565217A (en) * | 1968-10-10 | 1971-02-23 | Alaska Elevator Corp | Offshore elevator improvements |
-
1970
- 1970-05-07 US US35370A patent/US3648858A/en not_active Expired - Lifetime
-
1971
- 1971-03-12 CA CA107607A patent/CA937923A/en not_active Expired
- 1971-04-19 RO RO66625A patent/RO58468A/ro unknown
- 1971-04-19 GB GB2471071*A patent/GB1335413A/en not_active Expired
- 1971-04-28 DE DE19712120766 patent/DE2120766A1/en active Pending
- 1971-05-05 NL NL7106170A patent/NL7106170A/xx unknown
- 1971-05-07 AT AT398271A patent/AT310994B/en not_active IP Right Cessation
- 1971-05-07 FR FR7116598A patent/FR2088408B1/fr not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1999936A (en) * | 1933-07-22 | 1935-04-30 | Kampnagel Ag | Lifting device |
US2609181A (en) * | 1948-06-01 | 1952-09-02 | Dynamatic Corp | Hoist control |
US2854154A (en) * | 1956-03-21 | 1958-09-30 | Hepinstall Robert Edward | Sea elevator |
US2945675A (en) * | 1957-10-24 | 1960-07-19 | California Research Corp | Drawworks |
US3565217A (en) * | 1968-10-10 | 1971-02-23 | Alaska Elevator Corp | Offshore elevator improvements |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3785511A (en) * | 1971-03-02 | 1974-01-15 | Petroles Cie Francaise | Anti-pounding device mounted on a boat for maintaining a cable at a given level above an underwater bed |
US3787031A (en) * | 1971-12-08 | 1974-01-22 | Garrett Corp | Cable drum highline system |
US3836122A (en) * | 1972-11-20 | 1974-09-17 | W Pierce | Cable winch |
US4412598A (en) * | 1981-01-23 | 1983-11-01 | Exxon Research And Engineering Co. | Personnel transfer apparatus and method |
US4448396A (en) * | 1982-02-25 | 1984-05-15 | American Hoist & Derrick Company | Heave motion compensation apparatus |
US4630542A (en) * | 1982-09-07 | 1986-12-23 | Alsthom-Atlantique and Plastibenne | Nacelle |
US5160286A (en) * | 1990-07-04 | 1992-11-03 | George Hill | Personnel transfer system |
US7731157B2 (en) * | 2004-03-19 | 2010-06-08 | Subsea 7 Limited | Apparatus and method for heave compensation |
US20070272906A1 (en) * | 2004-03-19 | 2007-11-29 | Subsea 7 Bv | Apparatus And Method For Heave Compensation |
US20130256615A1 (en) * | 2012-03-30 | 2013-10-03 | Oracle International Corporation | Magnetic z-directional clutch |
US9099148B2 (en) * | 2012-03-30 | 2015-08-04 | Oracle International Corporation | Magnetic Z-directional clutch |
US20160083228A1 (en) * | 2013-04-18 | 2016-03-24 | Maersk Drilling A/S | An offshore floating vessel and a method of operating the same |
US9630813B2 (en) * | 2013-04-18 | 2017-04-25 | Maersk Drilling A/S | Offshore floating vessel and a method of operating the same |
US10301152B2 (en) | 2013-04-18 | 2019-05-28 | Maersk Drilling A/S | Offshore floating vessel and a method of operating the same |
US20180065714A1 (en) * | 2015-05-12 | 2018-03-08 | Fredrik VON HELAND | System for transporting objects to ocean structures |
US20210254601A1 (en) * | 2020-02-19 | 2021-08-19 | Siemens Gamesa Renewable Energy A/S | System and method for assembling or disassembling of a wind turbine |
Also Published As
Publication number | Publication date |
---|---|
FR2088408A1 (en) | 1972-01-07 |
FR2088408B1 (en) | 1974-04-05 |
NL7106170A (en) | 1971-11-09 |
AT310994B (en) | 1973-10-25 |
DE2120766A1 (en) | 1971-11-25 |
RO58468A (en) | 1975-10-15 |
CA937923A (en) | 1973-12-04 |
GB1335413A (en) | 1973-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3648858A (en) | Stabilized load hoist apparatus | |
US4132387A (en) | Winding mechanism | |
US3804268A (en) | Marine platform structure | |
DK1433922T3 (en) | Lifting device with compensator | |
US4446807A (en) | Mooring apparatus for floating vessels | |
US4025055A (en) | Apparatus for use in raising or lowering a load in a condition of relative motion | |
US3865256A (en) | Casing and drill pipe handling device | |
EP0021934B1 (en) | A motion compensating system for use with a crane hoist | |
US4448396A (en) | Heave motion compensation apparatus | |
US2984455A (en) | Multiple-cable tensioning device | |
US3532324A (en) | Antisway mechanism | |
US3901478A (en) | Crane incorporating vertical motion apparatus | |
US4002321A (en) | Tiltable drums for winding hoist lines | |
US3675900A (en) | Motion compensating hoist | |
US4180362A (en) | System to transfer cargo or passengers between platforms while undergoing relative motion | |
US2293936A (en) | Hoisting and mooring device | |
US4632622A (en) | Marine cargo transfer device | |
US4544137A (en) | Offshore crane wave motion compensation apparatus | |
US4641596A (en) | Boat dock and lift | |
EP0312336B1 (en) | Improvements in hoisting devices | |
US3606257A (en) | Traction drum winch which exerts a predetermined constant tension on a cable | |
US4180171A (en) | Cranes | |
US2914080A (en) | Hose handling structure for transferring fluid material between ship and shore | |
US2792930A (en) | Device for paying out a submarine cable from a ship | |
EP0041345B1 (en) | Marine crane hoist control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HUGHES TOOL COMPANY, P.O. BOX 2539, HOUSTON, TX. 7 Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BJ-HUGHES INC.,;REEL/FRAME:004098/0273 Effective date: 19821231 |
|
AS | Assignment |
Owner name: BAKER HUGHES INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HUGHES TOOL COMPANY;REEL/FRAME:005050/0861 Effective date: 19880609 |
|
AS | Assignment |
Owner name: HUGHES TOOL COMPANY-USA, A DE CORP.,TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAKER HUGHES INCORPORATED;REEL/FRAME:004944/0763 Effective date: 19880718 Owner name: HUGHES TOOL COMPANY-USA, 5425 POLK AVE., HOUSTON, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BAKER HUGHES INCORPORATED;REEL/FRAME:004944/0763 Effective date: 19880718 |
|
AS | Assignment |
Owner name: VARCO INTERNATIONAL, INC., A CA. CORP., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HUGHES TOOL CONPANY-USA;REEL/FRAME:005013/0843 Effective date: 19880929 |