US3640503A - Steel-converter-handling vehicle - Google Patents
Steel-converter-handling vehicle Download PDFInfo
- Publication number
- US3640503A US3640503A US60384A US3640503DA US3640503A US 3640503 A US3640503 A US 3640503A US 60384 A US60384 A US 60384A US 3640503D A US3640503D A US 3640503DA US 3640503 A US3640503 A US 3640503A
- Authority
- US
- United States
- Prior art keywords
- converter
- vehicle frame
- vehicle
- supporting plate
- bearing structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4686—Vehicles for supporting and transporting a converter vessel
Definitions
- the disclosure relates to a steel-converter-handling vehicle f0 mounting and dismounting a converter in a converter stand and for transporting a converter between two or several converter stands, comprising a bearing structure for the converter which is liftable and lowerable and rotatable around a vertical axis, and a vehicle frame carrying the bogies which is transposable at track intersections, in which the improvement resides in that the vehicle frame is provided with a sledge which is displaceable transversely to the direction of travel and connected with a vertical lifting cylinder arranged within said vehicle frame, a piston which is connected with the bearing structure for the converter being vertically movable in and rotatable relative to said lifting cylinder, and a supporting plate arranged within the vehicle frame being adapted for being pushed out in downward direction and thereby lifting the vehicle frame above the trackway.
- a single lifting device is used, affording a high simplicity of the construction and effect. It is possible to carry out adjusting movements horizontally and perpendicularly to the direction of travel and the converter is rotatable around the converter axis.
- the lifting means are adapted to absorb the lateral and tilting forces occuring when the converter is mounted or dismounted.
- the invention relates to a steel-converter-handling vehicle for mounting and dismounting a converter in a converter stand and for transporting a converter between two or several converter stands, comprising a bearing structure for the converter which is liftable and lowerable and rotatable around a vertical axis, and a vehicle frame carrying the bogies which is transposable at track intersections.
- Steel-converter-handling vehicles are used for transporting converters from the blowing stand to the lining stand when they have to be relined.
- a newly lined converter is installed in the blowing stand so as to avoid any considerable delay in the steel production.
- a steel-converter-handling vehicle has to meet several demands which cannot easily be fulfilled: its bearing capacity should be as high as possible; it should be adapted for receiving, lifting, lowering and transporting converterswith a weight of up to 1,000 metric tons. It should be possible to move the vehicle horizontally when the converter rests on the bearing structure in the highest lifted position and to change the direction of travel of the converter handling vehicle by any desired angle at track intersections without the help of complicated shifting or rotating devices, such as turning platforms.
- the construction of the lifting means should be very strong and simple; during lifting and lowering the danger of edging or jamming should be eliminated, and the lifting means should be adapted to absorb the lateral and tilting forces occuring when the converter is mounted or dismounted without subjecting the sealing and guiding elements of the hydraulic cylinders to excessive stresses. It should also be possible to carry out adjusting movements whilethe converter is being mounted or dismounted in the blowing stand, i.e., the converter has to be rotatable to a degree around the converter axis in the lifted position and movable horizontally and perpendicularly to the direction of travel. The number of lifting means should be low, and, finally, the total weight and the construction of height of the steel-converter-handling vehicle should be small.
- a hydraulic lifting apparatus capable of travelling on rails which rests on a travelling mechanism and serves for lifting and rotating a converter in its carrying frame.
- This lifting apparatus is provided with two coaxial cylinders one of which is supported on the floor and the other is pressed against the converter bottom.
- the lifting piston of the upper cylinder is rotatable around its vertical axis.
- this lifting apparatus is neither transposable at track intersection nor is it possible to carry out an adjusting movement of the converter.
- the invention is aimed at avoiding the described difficulties by creating a simple, strong and not too heavy construction with which the demands referred to above are met; in particular, it is aimed at creating a steel-converter-handling vehicle of small construction height for mounting and dismounting converters from carrying rings which are open on one side for which purpose small lifting heights are required.
- the invention resides in that the vehicle frame is provided with a sledge which is displaceable transversely to the direction of travel and connected with a vertical lifting cylinder arranged within said vehicle frame, a piston which is connected with the bearing structure for the converter being vertically movable in and rotatable relative to said lifting cylinder, and a supporting plate arranged within the vehicle frame and adapted for being pushed out in downward direction and thereby lifting the vehicle frame above the trackway.
- the steel-converter-handling vehicle comprises two isoaxially arranged lifting cylinders, the sledge being provided with an upper cylindrical guiding element and a lower cylindrical guiding element, the upper guiding element coacting with a Iiftable and lowerable guiding bushing which is connected with the hearing structure, and the lower guiding element coacting with an extensible and retractable guiding bushing which is connected with the supporting plate, the supporting plate being articulately connected with the vehicle frame by a displacing means so that the vehicle frame, when it is in lifted position, is rotatable around a vertical axis relative to the supporting plate.
- the lifting means for lifting and lowering the converter are preferably arranged within the upper cylindrical guiding element connected with the sledge, and the lifting means for lifting and lowering the vehicle frame are arranged within the lower cylindrical guiding element, either lifting means being adapted to be hydraulically actuated.
- the lifting means for lifting and lowering the supporting plate may comprise a hydraulic cylinder with piston, the cylinder being pivoted to the supporting plate by means of a pin, andsaid piston being connected to the lower cylindrical guiding element of the sledge by means of a fixing bushing.
- the bearing structure for receiving the converter is rotatable around a vertical axis by a displacing means which is articulately fixed to the upper guiding element.
- a single lifting cylinder in which a piston with a piston rod is guided, which piston may be charged by a pressure agent on both sides and which piston rod perforates the floor and the cover of the lifting cylinder the bearing structure for the converter being arranged at the upper end of the piston rod and the supporting plate being arranged at the lower end of the piston rod, and a displacing means being provided for rotating the cylinder and the parts connected with said cylinder relative to the piston rod and the parts connected with said piston rod and vice versa.
- the displacing means suitable comprises a gear wheel and a meshing pinion actuated by a drive, the gear wheel being connected to the bearing structure and the piston rod by entrainment means and the pinion being suitable connected with the cylinder via a console.
- FIGS. 1 to 7 illustrate one embodiment
- FIGS. 8 to 12 illustrate the other embodiment.
- FIG. 1 is a lateral view of the steel-converter-handling vehicle
- FIG. 2 is a corresponding top view
- FIG. 3 is a vertical sectional view along the line III-III of FIG. 2.
- FIGS. 4, 5 and 6 it is explained how the converter handling vehicle functions;
- FIG. 4 is a lateral view showing the bearing structure in lifted position
- FIG. 5 is a similar view, showing the supporting plate in downwardly extended position, while the vehicle frame is lifted from the floor
- FIG. 6 is a tip view of a steel-converter-handling vehicle transposed by
- FIG. 7 is a front view in direction of the arrow A of FIG. 1 of the means for turning or rotating the bearing structure.
- FIGS. 8 and 9 show the second embodiment of a steel-converter-handling vehicle with the bearing structure in the lifted position, viewed respectively from the side and from above.
- FIG. 10 is a vertical sectional view along the line XX of FIG. 9, the bearing structure and the supporting plate being in a medium position.
- FIGS. 11 and 12 illustrate how the steel-converter-handling vehicle according to FIGS. 8, 9 and 10 functions when it is transposed on track intersections
- FIG. 11 is a lateral view of the vehicle in which the supporting plate is lowered to the trackway and the vehicle frame is lifted away from it
- FIG. 12 is a top view of the steel-converter-handling vehicle transposed by l20.
- the steel-converter-handling vehicle according to FIGS. 1 to 7 has a frame 1 comprising two longitudinal carriers 2 and two crossbeams 3.
- the bogies 4 with their drives 5 are arranged on the longitudinal carriers 2.
- Numeral 6 denotes the rails.
- a sledge 7 is arranged on the two crossbeams 3 which is displaceable in horizontal direction and transversely to the direction of travel (FIG. 3), sliding plates 8, 9 being built in between the sledge 7 and the crossbeams 3.
- the sledge 7 is connected to the crossbeams 3 by connecting means (not shown), such as by lateral, angularly shaped rails in which the sledge is guided (see FIG. 10).
- Numeral l0 denotes a hydraulic displacing means for the sledge 7 which is linked to one of the longitudinal carriers 2 and connected with the sledge 7; this displacing means 10 serves for carrying out adjusting movements transversely to the direction of motion.
- An upper cylindrical guiding element 11 for engaging an upper guiding bushing or sleeve 12 is fixed to the sledge 7.
- This upper guiding bushing 12 is attached to a pressure plate 13 which is fixed to the bottom side of the bearing structure 14 for receiving the converter.
- a converter lifting cylinder 15 which is supported against the sledge and provided with a converter lifting piston 16 acting upon the pressure plate 13 is arranged in the upper guiding bushing 12.
- Numeral 17 denotes slide packings.
- a lower cylindrical guiding element 18 is arranged below the sledge 7; this guiding element is surrounded by a lower guiding bushing or sleeve 19 and coacts with it; the guiding sleeve 19 is attached to a large and strong supporting plate 20.
- a vehicle lifting cylinder 21 with vehicle lifting piston 22 is arranged within the lower guiding element 18.
- the vehicle lifting cylinder 21 is rotatably connected with the supporting plate by means of a pin 23.
- the vehicle lifting piston 22 is provided with an annular groove for engaging a fixing bushing 24 which is fixed to the lower guiding element 18 by means of screws; the vehicle lifting piston 22 is thus pressed against the sledge and fixed in its position.
- Numeral 25 denotes slide packings built into the lower guiding sleeve 19.
- the supporting plate 20 is articulately connected with a turning cylinder 26, which is linked to one of the crossbeams 3 via its turning cylinder piston 27.
- FIGS. 5 and 6 illustrate in detail how this turning cylinder 26 functions when the vehicle is transposed at intersections.
- the supporting plate 20 is pushed downwardly by actuating the vehicle lifting cylinder 21, until the vehicle 1 gets into the position shown in FIG. 5 in which the bogies 4 to longer engage the rails.
- the turning cylinder piston 27 By actuating the tuming cylinder 26 the turning cylinder piston 27 is driven in so that the vehicle frame 1 is rotated by 90 into the position retracting the supporting plate 20 the bogies 4 may then engage the rails 6' and the steel-converter-handling vehicle may continue its travel.
- the supporting plate 20 When the vehicle moves, the supporting plate 20 is in retracted position at a distance from the floor as illustrated in FIGS. 1 and 4, respectively.
- the converter lifting cylinder 15 When the converter is mounted or dismounted in the blowing stand, the converter lifting cylinder 15 is actuated so that the converter bearing structure 14 is lifted from the initial position shown in FIG. 1 into the final position shown in FIG. 4. Adjusting movements which may be necessary transversely to the direction of travel may be carried out by the displacing shown in FIG. 6 as compared to the position in FIG. 2.
- the essential advantage of the steel converter handling vehicle according to FIGS. 1 t0 7 resides in that the coaxially arranged converter lifting cylinder and vehicle lifting cylinder are situated within the upper and lower guiding elements l1, 18, respectively, so that lateral and tilting forces cannot damage the pistons and sealings; these lifting devices may therefore have smaller dimensions than directly acting lifting devices without guiding sleeves.
- FIGS. 8 to 12 the embodiment of the steel-converter-handling vehicle illustrated in FIGS. 8 to 12 is provided with a frame 1 with two longitudinal carriers 2 and two cross beams 3 (FIG. 9).
- the bogies 4 with their drives 5 are fixed to the longitudinal carriers.
- the rails again are denoted with numeral 6.
- a sledge 34 is arranged on the two crossbeams 3 which is displaceable in horizontal direction, transversely to the direction of motion and comprises a lifting cylinder 35 and two flange-shaped shoulders 36 (FIG. 10).
- the flange-shaped shoulders 36 are guided in a guiding means situated in the crossbeams 3 and formed by the lower sliding plates 37 and upper sliding plates 38.
- Numeral l0 denotes a hydraulic displacing means for the sledge 34 (FIG. 9) which means is linked to one of the longitudinal carriers 2 and connected with the sledge 34; this displacing means 10 serves for adjusting the sledge transversely to the direction of travel.
- the piston rod 40 perforates the floor 41 and the cover 42 of the cylinder 35; the supporting plate 43 for supporting the steel-converter handling vehicle on the trackway is secured to its bottom end, and the bearing structure 44 is fixed to its upper end.
- a pressure agent for charging the piston 39 is introduced into the upper and lower pressure chambers 45 and 46, respectively, of the lifting cylinder 35 through supply and draining conduits not shown in the drawing.
- a gear wheel 47 is arranged to be rotatable around a vertical axis; the axial bearings are denoted with numeral 48 and the radial bearings with 49.
- Numeral 50 denotes a bore in the gear wheel 47 for engaging an entrainment pin 51 which is fixed to the bearing structure 44; this pin 51 is axially displaceable relative to the gear wheel 47.
- a console 52 with an electromotor drive or a hydraulic drive 53 and a pinion 54 are arranged (FIGS. 8, 1 l), which pinion 54 drives the gear wheel 47.
- the pinion 54 turns the cog gear 47 and, via the entrainment pin 51, the bearing structure 44 or the piston rod 40, respectively, so that it is possible to carry out the necessary adjustment movements in any lifted position when the converter is being mounted or dismounted (FIG. 8).
- the actuated drive 53 causes the pinion 54 to rotate around the gear wheel 47 fixed in position by the pin 51, so that the vehicle frame 1 may be turned by any desired angle around the stationary system comprising supporting plate 43, piston 39, piston rod 40, and bearing structure 44; in FIG.
- a steel-converter-handling vehicle which has been transposed by 120 from the rails 6 to the rails 6' is shown.
- the bogies 4 get into engagement with the rails 6' and the steel-converter-handling vehicle may continue its travel.
- the supporting plate 43 and the bearing structure 44 are in medium position shown in FIG. 10, i.e., the supporting plate 43 is at a distance above the trackway.
- the essential advantage of the steel-converter-handling vehicle shown in FIGS. 8 to 12 resides in the simplicity of the construction and operation; only one lifting device is present; the supporting plate, which enters into function when the vehicle frame is transposed at track intersections, is connected by the common lifting device with the bearing structure, which receives the converter, to form an integral, rotatable constructional unit; furthermore, only a single displacing means for turning this lifting means and the vehicle frame is necessary; with this displacing means it is possible to carry out adjusting movements of the converter on the one hand and to transpose the vehicle frame in lifted position on the other hand.
- a further feature is the extremely low construction height.
- a steel-converter-handling vehicle for mounting and dismounting a converter in a converter stand and for transporting a converter between stands, comprising a converterbearing structure adapted to be vertically displaceable and rotatable around a vertical axis, and a vehicle frame carrying a number of rail engageable bogies and adapted to be transposed at track intersections, said vehicle frame being provided with a sledge displaceable transversely to the direction of travel of said vehicle and supporting at least one vertical lifting cylinder arranged within said vehicle frame, said lifting cylinder having piston arranged therein for vertical movement and rotation relative to said cylinder and connected at one end to said converter-bearing structure, and a supporting plate arranged within said vehicleframe and adapted to be pushed out in downward direction to lift said bogies off said rails.
- a converterhandling vehicle comprising a vehicle frame supporting a number of rail engageable b0- gres,
- a sledge mounted on said vehicle frame to be displaceable by a shifting device transversely to the direction of travel of said vehicle, a converter bearing structure arranged atop said vehicle frame, a ground engageable supporting plate extending below said vehicle frame, an upper and a lower lifting cylinder respectively operable for vertical displacement of said converter-bearing structure and of said supporting plate relative to said vehicle frame, said cylinders being isoaxially arranged within upper and lower telescope-type socket-and-sleeve assemblies extending vertically from said sledge and connected respectively to said converter-bearing structure and to said supporting plate, displacing means articulately connecting said supporting plate and said vehicle frame and operable for rotation of said frame around a vertical axis relative to said supporting plate,
- said lower lifting cylinder is rotatably connected to said supporting plate by means of a pin and comprises a hydraulically operable piston connected, in turn, by a fixing bushing-to the socket of said lower telescope-type assembly extending downwardly from said sledge.
- said means for rotation of said converter-bearing structure comprises a shifting device articulated to the sleeve of said upper telescopetype assembly extending upwardly from said sledge.
- a converter-handling vehicle comprising a vehicle frame supporting a number of rail engageable bogies
- a sledge mounted on said vehicle frame to be displaceable by a shifting device transversely to the direction of travel of said vehicle
- a fluid-operated lifting cylinder closed on its ends by a bottom and a cover and integral with said sledge to extend substantially vertically within said vehicle frame
- said displacing means comprises a gear wheel and a meshing pinion actuated by a drive, the gear wheel being connected to the bearing structure and the piston rod by entrainment means and the pinion being connected with the cylinder via a console.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Handcart (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT752269A AT294157B (de) | 1969-08-05 | 1969-08-05 | Tiegelwechselwagen |
AT453870A AT308157B (de) | 1970-05-21 | 1970-05-21 | Tiegelwechselwagen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3640503A true US3640503A (en) | 1972-02-08 |
Family
ID=25601278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US60384A Expired - Lifetime US3640503A (en) | 1969-08-05 | 1970-08-03 | Steel-converter-handling vehicle |
Country Status (9)
Country | Link |
---|---|
US (1) | US3640503A (de) |
JP (1) | JPS4923725B1 (de) |
BE (1) | BE754217A (de) |
CA (1) | CA921438A (de) |
DE (1) | DE2035247C3 (de) |
FR (1) | FR2056583A5 (de) |
GB (1) | GB1317810A (de) |
LU (1) | LU61383A1 (de) |
SE (1) | SE381676B (de) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3779399A (en) * | 1971-12-30 | 1973-12-18 | Kayaba Industry Co Ltd | Adjusting mechanism of removing heavy article |
US4090453A (en) * | 1976-08-16 | 1978-05-23 | Templeton, Kenly & Company | Rerailing system |
US4102463A (en) * | 1975-12-17 | 1978-07-25 | Hans Heinrich Schmidt | Transporter for slab casting tables |
US4488709A (en) * | 1982-07-06 | 1984-12-18 | Urban Transportation Development Corporation Ltd. | Jacking device for articulated streetcar |
US4875415A (en) * | 1985-10-28 | 1989-10-24 | Mitsubishi Jukogyo Kabushiki Kaisha | Rotary jack assembly for a crane |
DE4436439A1 (de) * | 1994-10-12 | 1995-09-21 | Georg Kramp Fa | Rolleinrichtung zum Transport schwerer Lasten |
US20080083688A1 (en) * | 2006-10-09 | 2008-04-10 | Hans Kuenz Gesellschaft M.B.H. | Crane |
US20110128887A1 (en) * | 1996-10-31 | 2011-06-02 | Nagaraj Arunkumar | Method and apparatus for supporting network communications |
US20110180506A1 (en) * | 2008-10-09 | 2011-07-28 | Hans Kunz Gesellschaft M.B.H. | Gantry cane |
CN105667533A (zh) * | 2016-03-26 | 2016-06-15 | 中车青岛四方机车车辆股份有限公司 | 一种转向架二系悬挂装置及转向架 |
WO2019104344A1 (en) * | 2017-11-27 | 2019-05-31 | Robert Taylor | Systems, apparatus, and methods for transporting vessels |
CN110029825A (zh) * | 2019-03-28 | 2019-07-19 | 中建路桥集团有限公司 | 一种轨道移动式预制梁钢用施工装置 |
US11383804B2 (en) | 2019-09-09 | 2022-07-12 | Bardex Corporation | Shiplift platform elevation |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2725123C2 (de) * | 1977-06-03 | 1987-02-12 | Mannesmann AG, 4000 Düsseldorf | Gefäß-Wechselwagen für metallurgische Gefäße, insbesondere für Stahlwerkskonverter |
DE2760390C2 (de) * | 1977-06-03 | 1988-09-08 | Mannesmann AG, 4000 Düsseldorf | Gefäß-Wechselwagen für metallurgische Gefäße, insbesondere Stahlwerkskonverter |
CN104443089B (zh) * | 2014-11-25 | 2016-05-25 | 中国铁建重工集团有限公司 | 一种用于安装配套部件的辅助设备 |
US10197364B1 (en) * | 2015-03-27 | 2019-02-05 | Gary W Christ | Demining device |
CN108705074B (zh) * | 2018-05-31 | 2020-09-04 | 青海盐湖工业股份有限公司 | 一种抬包转运装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1404479A (en) * | 1920-05-03 | 1922-01-24 | Oscar M Prince | Turntable for motor vehicles |
US1800379A (en) * | 1926-08-05 | 1931-04-14 | Goodman Mfg Co | Mobile machine |
US1865805A (en) * | 1931-01-29 | 1932-07-05 | Umberto Onorati | Apparatus for lifting and turning vehicles |
-
0
- BE BE754217D patent/BE754217A/xx not_active IP Right Cessation
-
1970
- 1970-07-16 DE DE2035247A patent/DE2035247C3/de not_active Expired
- 1970-07-21 LU LU61383D patent/LU61383A1/xx unknown
- 1970-07-22 CA CA088821A patent/CA921438A/en not_active Expired
- 1970-08-03 GB GB3734170A patent/GB1317810A/en not_active Expired
- 1970-08-03 US US60384A patent/US3640503A/en not_active Expired - Lifetime
- 1970-08-04 SE SE7010673A patent/SE381676B/xx unknown
- 1970-08-04 FR FR7028776A patent/FR2056583A5/fr not_active Expired
- 1970-08-05 JP JP45068046A patent/JPS4923725B1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1404479A (en) * | 1920-05-03 | 1922-01-24 | Oscar M Prince | Turntable for motor vehicles |
US1800379A (en) * | 1926-08-05 | 1931-04-14 | Goodman Mfg Co | Mobile machine |
US1865805A (en) * | 1931-01-29 | 1932-07-05 | Umberto Onorati | Apparatus for lifting and turning vehicles |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3779399A (en) * | 1971-12-30 | 1973-12-18 | Kayaba Industry Co Ltd | Adjusting mechanism of removing heavy article |
US4102463A (en) * | 1975-12-17 | 1978-07-25 | Hans Heinrich Schmidt | Transporter for slab casting tables |
US4090453A (en) * | 1976-08-16 | 1978-05-23 | Templeton, Kenly & Company | Rerailing system |
US4488709A (en) * | 1982-07-06 | 1984-12-18 | Urban Transportation Development Corporation Ltd. | Jacking device for articulated streetcar |
US4875415A (en) * | 1985-10-28 | 1989-10-24 | Mitsubishi Jukogyo Kabushiki Kaisha | Rotary jack assembly for a crane |
DE4436439A1 (de) * | 1994-10-12 | 1995-09-21 | Georg Kramp Fa | Rolleinrichtung zum Transport schwerer Lasten |
US20110128887A1 (en) * | 1996-10-31 | 2011-06-02 | Nagaraj Arunkumar | Method and apparatus for supporting network communications |
US20080083688A1 (en) * | 2006-10-09 | 2008-04-10 | Hans Kuenz Gesellschaft M.B.H. | Crane |
US7793594B2 (en) * | 2006-10-09 | 2010-09-14 | Hans Kuenz Gesellschaft M.B.H. | Crane |
US20110180506A1 (en) * | 2008-10-09 | 2011-07-28 | Hans Kunz Gesellschaft M.B.H. | Gantry cane |
CN105667533A (zh) * | 2016-03-26 | 2016-06-15 | 中车青岛四方机车车辆股份有限公司 | 一种转向架二系悬挂装置及转向架 |
WO2019104344A1 (en) * | 2017-11-27 | 2019-05-31 | Robert Taylor | Systems, apparatus, and methods for transporting vessels |
US11390364B2 (en) | 2017-11-27 | 2022-07-19 | Bardex Corporation | Systems, apparatus, and methods for transporting vessels |
CN110029825A (zh) * | 2019-03-28 | 2019-07-19 | 中建路桥集团有限公司 | 一种轨道移动式预制梁钢用施工装置 |
US11383804B2 (en) | 2019-09-09 | 2022-07-12 | Bardex Corporation | Shiplift platform elevation |
Also Published As
Publication number | Publication date |
---|---|
DE2035247C3 (de) | 1978-11-30 |
JPS4923725B1 (de) | 1974-06-18 |
CA921438A (en) | 1973-02-20 |
LU61383A1 (de) | 1970-09-21 |
DE2035247B2 (de) | 1978-04-13 |
GB1317810A (en) | 1973-05-23 |
SE381676B (sv) | 1975-12-15 |
FR2056583A5 (de) | 1971-05-14 |
DE2035247A1 (de) | 1971-02-18 |
BE754217A (fr) | 1971-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3640503A (en) | Steel-converter-handling vehicle | |
US4014399A (en) | Mount for heavy servo mechanisms | |
US3312544A (en) | Method and apparatus for making steel | |
ATE134978T1 (de) | Kranfahrzeug | |
CN106564767A (zh) | 火车车厢煤炭平整碾压装置 | |
EP0396578B1 (de) | Vorrichtung und verfahren zum auswechseln von radsätzen an schienenfahrzeugen | |
US3715101A (en) | Converter handling vehicle | |
US4678167A (en) | Tundish car in a continuous casting assembly | |
CN207483299U (zh) | 一种平衡性强的高空作业车 | |
US3918682A (en) | Transporting and lifting vehicle for heavy loads | |
US3949884A (en) | Transporting and lifting vehicle for heavy loads | |
EP0206169A2 (de) | Verfahren und Vorrichtung zum Be-und Entladen eines Pfannendrehturmes in einer Stranggiessanlage | |
US4436051A (en) | Hoisting and lowering mechanism for a rotatable mast | |
GB2092097A (en) | Inspection machine | |
US5562400A (en) | Self-propelled lifting apparatus | |
US3434606A (en) | Apparatus for carrying a converter or a container similar thereto | |
CN216541655U (zh) | 一种大型偏心梁柔性变位装置 | |
CN212024705U (zh) | 一种高度可单独调节的双操作平台 | |
WO1985002580A1 (en) | Retractable wheel assembly for movable bolsters | |
US4254711A (en) | Metallurgical vessel handling vehicle | |
US3469832A (en) | Apparatus for making steel by the basic oxygen process | |
US3664518A (en) | Powered turnaround for a coil lift and transfer car and the like | |
CN113941819B (zh) | 一种大型偏心梁柔性变位装置 | |
CN221479454U (zh) | 一种双层平台的升降机构 | |
CN112678076B (zh) | 一种用于开关柜检测的可扩容车辆结构 |