US3638150A - Reed relay - Google Patents
Reed relay Download PDFInfo
- Publication number
- US3638150A US3638150A US47719A US3638150DA US3638150A US 3638150 A US3638150 A US 3638150A US 47719 A US47719 A US 47719A US 3638150D A US3638150D A US 3638150DA US 3638150 A US3638150 A US 3638150A
- Authority
- US
- United States
- Prior art keywords
- tube
- reeds
- contact
- case
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
- H01H51/28—Relays having both armature and contacts within a sealed casing outside which the operating coil is located, e.g. contact carried by a magnetic leaf spring or reed
- H01H51/281—Mounting of the relay; Encapsulating; Details of connections
Definitions
- ABSTRACT A reed relay is provided in which the sealed envelope is a tube made of magnetic material instead of glass.
- the present invention relates to relays with contacts encased in a protective tube alsoknown as sealed contact relays and more commonly known as reed relays.
- relays are basically made up of a glass cylindrical casing, in which are sealed, at both ends, reeds the outer prolongation of which serve as terminals and the inner ends of which serve as contacts.
- the reeds are elastic and magnetic and their ends are coated with a suitable metal to ensure good contact.
- the airtight casing can contain any inert gas, such as nitrogen or helium.
- One or several coils around the casing can be energized to close the contacts.
- a reed relay comprising an airtight cylindrical casing comprising a remanent magnetic tube with insulating seals at its ends through which the contact reeds are threaded and around which the energizing coils are placed is provided for.
- the tube is made of a ferromagnetic alloy with satisfactory remanent induction properties.
- the relay of the invention is smaller, for the thickness of the glass cylinder no longer exists the magnet being located closer to the contact reeds, the gap is smaller.
- the said gap can be made very small by effecting two constrictions in the magnetic tube and by placing the seals outside said constrictions so as to achieve the required electric installation.
- the magnet Since the magnet is cylindrical, the flux is more concentrated and less leakage occurs. Therefore for a given contacts attraction field and for a given holding field, the flux of the cylindrical magnet can be weaker, i.e., the number of ampereturns required can be smaller, the number of coil turns can be lower thus permitting a reduction in volume of the relay. Finally, as leakage is low, the relays can be placed close to one another.
- FIG. 1 is a side view, partly in section, showing part of the contact relay device according to the invention.
- FIG. 2 is a side view, partly in section, showing a specific embodiment example of sealed contact according to the invention.
- FIG. 3 is a side view, partly in section, showing components of another specific embodiment example of a sealed contact according to the invention.
- FIG. 4 is a drawing in perspective of specific embodiment example of the sealed contact casing.
- FIG. 5 is a side view, partly in section, of a contact relay device incorporating the sealed contact of FIG. 2 and two energized coils.
- FIG. 6 is a side view, partly in section, of a contact relay device incorporating the sealed contact of FIG. Zand four energized coils.
- FIG. 7 is a side view, partly in section, of a modification in the implementation of the sealed contact casing used in the devices in FIGS. 5 and 6.
- FIG. 8 is a side view, partly in section, of another modification of the sealed casing.
- FIG. 9 is a side view, partly in section, of a contact relay device according to the invention comprising two pairs of identical reeds placed in a single magnetic cylinder.
- the contact relay device shown in FIG. 1 comprises:
- a remanent magnetic tube 1 forming a casing and made of ferromagnetic alloy of satisfactory remanence for instance steel, with a 0.6 to 0.7 carbon content, a 0.5 to 0.8 manganese content and a 0.6 to 0.7 silicon content;
- two insulating end seals 20 and 2b made for instance of two glass beads
- the inside 5 of the casing constituted by 1, 2a and 2b can be filled with a neutral gas such as nitrogen for example.
- a neutral gas such as nitrogen for example.
- the outer ends (projecting outside the casing), 60 and 6b, of reeds 3a and 3b form terminals whereas the inner ends, (inside the casing) 7a and 7b, are coated with suitable precious metal so as to ensure the high resistance and longlife of the contact.
- the device shown in FIG. 1 operates as follows: the contact situated between ends 7a and 7b of reeds 3a and 3b being open, a current is set up in coil 4, said current being such that the magnetomotive force applied allows for adequate magnetic induction of tube 1 (saturation); said tube then acquires longitudinal magnetization creating a north-south magnet the lines of force of which close themselves, in particular through reeds 3a and 3b and their ends 7a and 7b. Saidends are mutually attracted, and the contact closes; the current, in coil 4 can then be cut, the magnet constituted by tube 1, provided the remanent induction is sufficient, holds the contact in a closed position.
- the magnetic field between ends 7a and 7b of reeds 3a and 3b must be suppressed; as soon as this field is suppressed the elasticity causes the reeds to move apart.
- a known means consists in feeding a current of decreasing force into coil 4 thus demagnetizing tube 1.
- Other embodiment examples which make it possible to open and close the contact will be described hereafter.
- FIG. 2 provides another embodiment example of a sealed contact according to the invention in which, in the vicinity of the ends of tube 1, two constrictions, 8a and 8b, are made in the said tube. Said constrictions are designed to reduce the gaps between tube 1 and reeds 3a and 3b; the other components remaining in the same layout as in FIG. 1.
- Constrictions 8a and 8b can be made as in 8a for instance, by pinching tube 1, or as in 8b by adding a ring in the same material as tube 1 which is forcibly fitted into said tube.
- FIG. 3 shows another embodiment example of a sealed contact in which the ends of .tube 1 comprise grooves 9av and 9bv designed to facilitate the locating of beads 2a and 2b during the sealing process. Naturally the placing of reeds 3a and 3b in the cylinder can be facilitated if the reed-bead unit is prepared beforehand.
- FIG. 4 shows a tube 1 the ends of which have notches 10a and 10b opening outwards, the notches being diametrically opposite to one another so that the reed-bead unitsthe beads being round except for a small projection on one sidecan be threaded without error into the ends of 1.
- FIG. 5 shows a relay device according to 2 in which tube 1 is surrounded by two coils 4a and 4b placed on either side of the sources lla and 11b.
- the applied magnetomotive force which is the sum of the magnetomotive forces corresponding to sources 11a and 1 lb, causes the magnetic induction of tube 1; said tube becoming longitudinally magnetized thus generating an induction flux along reeds 3a and 3b which come into contact.
- the sources of energizing current 11a and 11b can be short pulses, it'suffices that their amplitude be great enough to provide the magnetization power needed to produce suitable remanent inductiom
- This induction is stored in tube 1 and the contact can therefore be closed after the disappearance of the energizing current pulses and in the same way be maintained without a holding current being required for either of coils 4a and 4b.
- the releasing of the relay i.e., the separation of ends 7a and 7b of reeds 3a and 3b, can be achieved by suppressing the magnetization of tube l-or at least by diminishing said magnetization considerably; to do this, coil 4b for example is energized from source llb by a pulse of current of opposite direction to that which caused, as described above, the closing of the contact, but of a smaller amplitude.
- Another process to achieve the resetting of the relay consists in energizing, as already indicated, coils 4a and 4b from sources 11a and 11b by short pulses of current, but in this case with pulses which act in opposition, i.e., pulses of opposite polarities.
- the magnetic charges are so distributed that the left part of said tube for instance corresponds to a South Pole and,,conversely, that the right-hand part of said tube bears opposite charges and corresponds to the North Pole; there is therefore a neutral zone in the center of tube 1 where the charges cancel one another out thus it is as if said tube comprised two coupled magnets.
- the magnetomotive force set up by source 11a is assumed to be sufficient to saturate the mag-' netization of the left part of tube 1; similarly, the magnetomotive force set up by source 11b is assumed to be sufficient to saturate the magnetization of the right part of tube 1.
- the two saturated magnetizations are in opposite directions so that when energization via sources 11a and 11b ceases, the two halves of tube 1 are characterized by remanent inductions of the same quantity but in opposite directions; in other words the ends of tube 1, bearing magnetic charges of the same sign,
- FIG. 6 shows a relay device comprising a sealed contact, which basically corresponds to the one shown in FIG. 2, in
- Coils 4a and 4d, on the one hand, and coils 4c and 4b, on the other hand, are connected in series.
- Ends 6a and 6b of reeds 3a and 3b also serve as prongs.
- the three prongs 6a, 12a and 12d, on the one hand, the three prongs 6b, 120 and 12b, on the other hand, are held in position using known methods by rigid insulating parts respectively shown in" schematic form by 13a and 13b: they can be solid with the body of tube 1.
- the assembly constituted in this way can then be plugged onto a base provided for beforehand and set out, for instance, on printed circuits; prongs 6a, and 12d are plugged onto a first printed circuit, prongs 6b, 120 and 12b onto a second printed circuit.
- the outputs of coils 4d and 4b as well as the output of reed 3b are extended and brought round the outside of the device into the proximity of coils 4a and 4c and of output prong 6a of reed 3a; the six outputs thus placed close to one another are equipped with prongs 6a and 6b corresponding to the contact reeds of prongs 12a and'l2d, cor
- prongs 12cand 12b corresponding to coils in series 4c and 4b; these six prongs are held in position by a single rigid insulating part; the arrangement of the prongs can be such that the operation of plugging onto a base, provided for prior to assembly, can be performed without any risk of error as regards connecting.
- the device shown in FIG. 6 operates as follows: when the coils assembled in series 4a and 4d (or 40 and 4b) are energized from sources 11a (or 11b) each coil 4d (or 4c) develops a magnetomotive force E proportional to N sufficient to saturate tube 1 in a given direction, whereas the coil associated with an inverted winding-i.e., respectively 4a or 4bdevelops a magnetomotive force E proportional to N ,,in the opposite directiomE is greater than E for approximately:
- the relay device shown in FIG. 6 can be used to advantages in the matrices of cross-points in centralized control switching systems.
- one of the pairs of coils in series 4a-4d for instance, is assembled in series with corresponding coils or the relay constituting one of the rows of the matrix; the other pair of coils in series 4c-4b, is assembled in series with the corresponding coils of the relays constituting one of the columns of the matrix.
- This magnetic shunt can be advantageously implemented by modifying as shown in FIG. 7 the outside shape of remanent magnetic tube 1; this modification entails fitting a fairly thin disk 14 of suitable diameter in the middle of the tube. Disk 14 can possibly be equipped with notches to accommodate the wires of the windings.
- this magnetic shunt-can be implemented without modifying the shape of the remanent magnetic tube 1, by slipping on the said tube around its middle, as shown in FIG. 8, a ring component 15 bearing a highly permeable disk in magnetic material 16.
- cross-point matrices In some applications of cross-point matrices, several contacts enclosed in a single protective tube are associated and used for a single cross-point.
- FIG. 9 is a schematic diagram of a device according to the invention which, enclosed in a single cylindrical casing l' in remanent magnetic material groups two pairs of contact reeds respectively 3'a, 3'b and 3"a, 3"b in highly permeable elastic magnetic material which is also a good conductor of electricity.
- Reeds 3'0 and 3"a are sealed in insulating member 2a; reeds 3b and 3"b are sealed in insulating member 2b.
- the ends outside the casing, 6'a and 6"a, of reeds 3'a and 3"a operate as terminals whereas their inner ends (i.e., inside the casing), Ta and 7 "a are coated with suitable precious metals; similarly, the ends outside the casing, 6'! and 6"b, of reeds 3'b and 3"b operate as terminals whereas the ends inside the easing, 7b and 7"b are coated with suitable precious metals.
- the section of the cylindrical casing 1 can be circular, elliptical or any other shape according to the specific use to which it is to be put.
- Said cylindrical casing can obviously be modified as in the layouts shown in FIGS. 2, 3, 4, 7 or 8.
- a contact relay device encased in a protective tube comprising an impervious cylindrical case, a plurality of contact reeds, means sealing said contact reeds through opposite ends of the case to provide extensions outside the case and ends inside the case which operate as contacts, said reeds being elastic and magnetic, the inner ends of said reeds including coatings of suitable contact metal, at least one energizing coil for said reeds wound around said case, said case being formed by a tube made of remanent magnetic material, said tube being closed at its ends by insulating seals through-which said reeds are extended, and said tube including in the vicinity of each of its ends an airgap formed by a constriction along a certain length of the inner diameter of said tube.
- a device in which the remanent magnetic material used for said tube is a ferromagnetic alloy.
- said insulating seals through which said reeds are extended to close the ends of said tube, are formed by beads of insulating material such as glass, each one of said beads being accommodated at an end of said tube in a volume defined by the inner wall and the constriction in the inner diameter of said tube.
- a device in which said tube has, at each end, a notch on the outside, the notch at one end being diametrically opposite to the notch at the other end, said notches being used to accommodate small projections on corresgaonding insulating sealing parts.
- a device m WhlCIl said tube IS equipped in its middle with a magnetic shunt directed towards the outside and formed of a projection of said tube shaped like a flat ring.
- a device in which said tube has in its middle a magnetic shunt formed by a flat ring of highly permeable magnetic material, said ring being adapted to be slid along said tube.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electromagnets (AREA)
- Switches That Are Operated By Magnetic Or Electric Fields (AREA)
- Contacts (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR6921308A FR2045232A5 (fr) | 1969-06-25 | 1969-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3638150A true US3638150A (en) | 1972-01-25 |
Family
ID=9036357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US47719A Expired - Lifetime US3638150A (en) | 1969-06-25 | 1970-06-19 | Reed relay |
Country Status (9)
Country | Link |
---|---|
US (1) | US3638150A (fr) |
AT (1) | AT300047B (fr) |
BE (1) | BE751366A (fr) |
BR (1) | BR7019996D0 (fr) |
CH (1) | CH528144A (fr) |
DE (1) | DE2030768A1 (fr) |
ES (1) | ES381120A1 (fr) |
FR (1) | FR2045232A5 (fr) |
NL (1) | NL7009407A (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6724288B1 (en) * | 1997-07-21 | 2004-04-20 | Clarence W Mc Queen | Transformers tube type |
US20140049346A1 (en) * | 2011-03-16 | 2014-02-20 | Kabushiki Kaisha Yaskawa Denki | Reed switch |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB870906A (en) * | 1959-07-01 | 1961-06-21 | Western Electric Co | Improvements in or relating to electrical switching devices |
US3075059A (en) * | 1961-07-17 | 1963-01-22 | Bell Telephone Labor Inc | Switching device |
GB1049081A (en) * | 1964-03-21 | 1966-11-23 | Standard Telephones Cables Ltd | Electromagnetic relay with reed contacts |
-
1969
- 1969-06-25 FR FR6921308A patent/FR2045232A5/fr not_active Expired
-
1970
- 1970-06-03 BE BE751366D patent/BE751366A/fr unknown
- 1970-06-19 CH CH932270A patent/CH528144A/fr not_active IP Right Cessation
- 1970-06-19 US US47719A patent/US3638150A/en not_active Expired - Lifetime
- 1970-06-23 AT AT566470A patent/AT300047B/de not_active IP Right Cessation
- 1970-06-23 DE DE19702030768 patent/DE2030768A1/de active Pending
- 1970-06-24 ES ES381120A patent/ES381120A1/es not_active Expired
- 1970-06-25 NL NL7009407A patent/NL7009407A/xx unknown
- 1970-06-25 BR BR219996/70A patent/BR7019996D0/pt unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB870906A (en) * | 1959-07-01 | 1961-06-21 | Western Electric Co | Improvements in or relating to electrical switching devices |
US3075059A (en) * | 1961-07-17 | 1963-01-22 | Bell Telephone Labor Inc | Switching device |
GB1049081A (en) * | 1964-03-21 | 1966-11-23 | Standard Telephones Cables Ltd | Electromagnetic relay with reed contacts |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6724288B1 (en) * | 1997-07-21 | 2004-04-20 | Clarence W Mc Queen | Transformers tube type |
US20140049346A1 (en) * | 2011-03-16 | 2014-02-20 | Kabushiki Kaisha Yaskawa Denki | Reed switch |
US8760246B2 (en) * | 2011-03-16 | 2014-06-24 | Kabushiki Kaisha Yaskawa Denki | Reed switch |
Also Published As
Publication number | Publication date |
---|---|
DE2030768A1 (de) | 1971-02-04 |
BR7019996D0 (pt) | 1973-01-04 |
CH528144A (fr) | 1972-09-15 |
FR2045232A5 (fr) | 1971-02-26 |
BE751366A (fr) | 1970-12-03 |
ES381120A1 (es) | 1972-11-16 |
NL7009407A (fr) | 1970-12-29 |
AT300047B (de) | 1972-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2992306A (en) | Magnetically controlled switching device | |
US2289830A (en) | Circuit closing device | |
US3059075A (en) | Electrical switching device | |
US2264022A (en) | Relay | |
GB1182313A (en) | An Electromagnetic Operating Device | |
US3534307A (en) | Electromagnetically or mechanically controlled magnetically-latched relay | |
GB883430A (en) | Improvements in or relating to electrical switching devices | |
GB853607A (en) | Improvements in or relating to relay assemblies employing magnetic spring contacts in sealed protective tubes | |
US3184563A (en) | Magnetically controlled reed switching device | |
US3597712A (en) | Switch element | |
US3638150A (en) | Reed relay | |
US2877316A (en) | Electromagnetic relay | |
US3631366A (en) | Polarized electromagnetic relays having a floating armature | |
US3178532A (en) | Electromagnetic relay with contact supported armature | |
US3196232A (en) | Reed relay | |
US3070677A (en) | Switching device | |
US3075059A (en) | Switching device | |
US3008021A (en) | Electrically controlled switching device | |
US3928828A (en) | Crosspoint elements and electromagnetic coordinate selection devices utilizing the same | |
US3486138A (en) | Electromagnetic switches utilizing remanent magnetic material | |
US3643186A (en) | Electromagnetic pulse counter | |
US3182226A (en) | Reed relay | |
US3919676A (en) | Permanent-magnet type relay | |
US3768051A (en) | Magneto-motive bistable switching devices | |
GB1219556A (en) | Improvements in or relating to magnetic contact units |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALCATEL N.V., DE LAIRESSESTRAAT 153, 1075 HK AMSTE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:INTERNATIONAL STANDARD ELECTRIC CORPORATION, A CORP OF DE;REEL/FRAME:004718/0023 Effective date: 19870311 |