US3623064A - Paging receiver having cycling eccentric mass - Google Patents
Paging receiver having cycling eccentric mass Download PDFInfo
- Publication number
- US3623064A US3623064A US766781A US3623064DA US3623064A US 3623064 A US3623064 A US 3623064A US 766781 A US766781 A US 766781A US 3623064D A US3623064D A US 3623064DA US 3623064 A US3623064 A US 3623064A
- Authority
- US
- United States
- Prior art keywords
- mass
- alerting signal
- casing
- pulse frequency
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B6/00—Tactile signalling systems, e.g. personal calling systems
Definitions
- a personal paging device has a call signal receiver which generates when activated a train of regularly spaced electrical pulses controlling an electric vibrator.
- the vibrator comprises an electric motor which receives the pulse train and periodically accelerates a cyclicly mounted mass to produce, as a result of the reaction forces developed, tactually sensible reaction vibrations in the device.
- the mass is eccentrically mounted so as to additionally produce tactually sensible variations at frequencies which are distinguishable from the said reaction vibrations.
- This invention relates to radio-operated alerting devices, and more particularly to paging receivers of the kind which can be carried on the person of a user. Customarily, such receivers are small enough to fit into a shirt pocket, or to be clipped to the belt holding up a person's trousers.
- Paging receivers are now in use employing an audible alerting signal.
- This has disadvantages when the user wants to avoid alerting or disturbing other persons.
- Substitution or addition of a visual alerting signal e.g. a flashing light
- a silent and invisible vibratory alerting device which has unique advantages not afiorded by audible or visible alerting signals.
- a rigid supporting structure which contains or supports means (e.g. radio receiver) to receive a calling signal and means (e.g. decoder and alerting signal generator) to provide an alerting signal, has affixed to it normally inactive vibrator means for vibrating the structure at a frequency in the subaudible range (e.g. c.p.s. and employs the alerting signal to activate the vibrator means.
- normally inactive vibrator means for vibrating the structure at a frequency in the subaudible range (e.g. c.p.s. and employs the alerting signal to activate the vibrator means.
- the alerting signal may be in the form of one or more pulses of energy, whereby to accelerate the vibrator means from an inactive state to an active state in a time interval which is short relative to the time required for the vibrator to return to the inactive state.
- a series of such pulses of energy, temporally spaced apart greater than the pulse duration, causes the alerting device to throb in an attention-commanding manner. If the device rests on the surface of a hard, flat body, such as a table or a desk, the device executes a walking motion across the surface while so throbbing, and simultaneously causes a corresponding throbbing noise by its vibration against the hard surface.
- the device when the device is not worn by its user, it can be employed to give a signal which is both audible and visible simply by placing it on a hard, flat surface. If placed in a confining saucer or ash tray, its vibration against the latter will cause a pronounced throbbing noise while it may or may not be free to move depending upon the nature of its confinement.
- FIG. 1 shows two external views, A and B, of a paging receiver according to the invention
- FIG. 1C shows an altemative location for the vibrator means
- FIG. 2 is a schematic illustration showing the location of parts in FIG. 1;
- FIG. 3 is a set ofgraphs for explaining pulse operation ofthe invention.
- FIGS. 4, 5 and 6 schematically illustrate three difierent forms of vibrator means
- FIG. 7 schematically illustrates another arrangement of the parts in an alerting device according to the invention.
- the alerting device is a paging receiver, comprising a rigid supporting structure 10 (FIG. 2) which supports within its framework 11 the prior an electronic and electromechanical components 12 which perform the radio receiver, filter and decoder, and alerting signal generator functions. Since these are prior art components, they will not be described. Also supported in the structure 10 are a power source (i.e. battery) 13 and an antenna 14. The top part 15 of the structure 10 is also an outer part of the housing of the receiver, and contains a phone jack 16,
- a cover 18 fits slidably over the framework 11 to enclose the parts 12, 13 supported in it, and completes the outer housing of the receiver.
- a clip 19 hinged to the cover 18 is springurged as by a spring 21 to hold the receiver in a pocket or to a belt (not shown).
- the vibrator means 17 may, as shown in FIG. 2 and FIG. 4, comprise an electric motor 22 having a rotatable shaft 23 with an eccentrically mounted mass 24 on it.
- a cover 17.1 covers the mass 24, as it is shown in FIGS. 1A and B and FIG. 2.
- a pair of wires 25 carry the alerting signal from the alerting signal generator in the parts 12 to the motor 22.
- the motor is normally at rest; that is, inactive; and it is activated, that is,
- the motor 22 is rigidly engaged with the top part 15 of the structure 10; for example the top part may be of a plastics material and the motor 22 press-fitted into a bore 15.1 in the top part. The structure 10 is thereby forced into vibration at the same low frequency.
- the same result can be achieved by affixing the vibrator means 17 to the outside of the supporting structure 10, as is shown in FIG. 1C.
- the vibrator means 17 is affixed to the top part 15, electrically connected to the alerting signal generator via the phone jack 16, and held in place by a locating and retaining collar 15.5 which is affixed to the top part 15 of the structure 10.
- the vibrator means 17 may thus be detachably attached to the structure 10.
- the alerting signal may be a continuous electrical signal, DC or AC as desired, but advantages can be obtained ifit is in the form of a train of pulses, as illustrated in FIG. 3.
- a train of pulses causes the vibrator means to produce a throbbing form of vibration which is attention-commanding and has other advantages.
- FIG. 3 is a set of three graphs on a time axis. Three alerting signal pulses 31 are shown in a train on the lower axis 32. Each pulse, when applied to the motor 22, causes it to accelerate its shaft 23 into rotation and, when the pulse terminates the shaft decelerates more slowly toward rest. Thus the rotational velocity increases rapidly and decreases slowly, as shown by curve 33 on the middle time axis 34.
- Each pulse 31 accelerates the vibrator means from an inactive state to an active state ina time interval T, which is short relative to the time T required for the vibrator means to return to the inactive state after the pulse has ceased. If the pulse duration is about T, and the time interval between pulses is about T then a characteristic throbbing vibration is produced. In addition to commanding attention by virtue of its unique character, this throbbing vibration causes the entire structure 10 to execute a walking like motion, due to the reaction forces developed on the supporting structure 10, when the paging receiver is resting on a hard flat surface.
- a paging signal will cause the receiver to produce a rattling noise in a series of pulses corresponding to the alerting signal pulses 31, and to move in a shuffling manner relative to the surface, the shuffles being stepwise at the frequency of the alerting-signal pulses. If the receiver is standing, that is upright on the surface in the attitude of FIG. 1, it may actually appear to shuffle along in a straight or nearly straight line; if it is resting on its side, it may shuffle in a curved path.
- the frequency of the pulses 31 is not to be confused with the frequency of vibration of the vibrator means 17.
- Each pulse 31 contains at least several cycles of vibration of the vibrator means 17, as will be apparent when it is realized that the motor shaft is preferably brought to rotation at its intended full speed in the time duration T, of each pulse 31, and then allowed to coast toward rest in the succeeding time interval T
- Alternative forms of the vibrator means 17 are shown in FIGS. 5 and 6.
- a mass 41 of magnetic material such as iron is suspended between two springs 42, 43 which are in turn anchored to the structure 10, and a hollow-core solenoid coil 44 surrounds the mass 41, which at rest may be located nearer to one end of the coil than to the other.
- the alerting signal (not shown) is applied to the coil 44, which may for this purpose be connected via terminals 45 to the wires 25 carrying the alerting signal.
- An appropriate alerting signal will set the mass 41 into vibration which will be coupled via the springs 42, 43 to the structure 10.
- the springs may be chosen to effect a coupling between the mass 41 and the structure such that when a pulse-form alerting signal is used the mass 41 will continue to vibrate for a period of time (T larger than the time (T,) duration of the alerting-signal pulse.
- the alerting signal whether continuous or in pulse form, may have a frequency corresponding to the resonance frequency of vibration of the mass 41 and its springs 42, 43, or it may be a DC pulse.
- FIG. 6 two coils 51 and 52 are located one on each side of a magnetic mass 53 which is mounted at one end of a spring 54, the other end of which is connected to the structure 10, An alerting signal may be connected to the coils 51, 52 to set the mass 53 into vibration and thereby cause the structure 10 to vibrate.
- each comprises a solid mass (24, 41, 53, respectively) motor means (22, 44 and 51, 52, respectively) to drive said mass cyclically in a prescribed path, and means linking the mass to the structure 10.
- Other vibrator means having these properties can be employcd, if desired.
- FIG. 7 represents an arrangement of an alerting device according to the invention in which the structure 61 can be in the shape of an elongated (e.g. tubular) body, which is convenient to carry in ones pocket, like a pencil or fountain pen.
- the structure 61 contains, along its axis, the battery, electronics and vibrator means, as the labels in FIG. 7 show, with the vibrator nearer one end of the elongated body than the other.
- the antenna 62 for receiving radiobroadcast calling signals, is affixed across one end of the structure 61, where it will be least apt to be covered by clothing material.
- a form of vibration which is transverse to the longitudinal axis of the elongated body can force the elongated body correspondingly into vibration transverse to its axis, which will be easily felt and visibly noticeable. If the vibrator means 17 shown in FIG. 4 is used with the shaft 23 parallel to the longitudinal axis of the elongated body, a nutating motion may be induced into the alerting device.
- the vibrator means 17 need not be located near a corner or side of the structure 10.
- the vibrator means may be located at or near the geometric center of the structure thereby increasing the ability to cause an entire wide side of the alerting device to vibrate against the body of a user.
- a personal paging device comprising a supporting structure, sensing means carried by said structure and responsive to space-transmitted energy for providing an alerting signal comprising a train of regularly spaced electrical pulses, normally inactive vibrator means for vibrating said structure, said vibrator means including an eccentric mass supported for cyclic movement and electric motive means responsive to said alerting signal for driving said mass through a range of vibrational frequencies toward a steady-state frequency, each of said pulses in said alerting signal being of a length to endure for a period of time longer than a cycle of said signal at said steady state frequency of vibration.
- a personal paging receiver intended to be carried on the clothing of a person, comprising a supporting structure for providing an alerting signal, a mass, means for constraining said mass to be movable cyclicly in a substantially linear path relative to said structure, electric motive means responsive to vibratory means within said casing and coupled thereto,
- said electric motive means has rotor means including said mass which is ac celerated periodically at said pulse frequency.
- a device wherein said mass is accelerated from an initial velocity in a time interval which is short relative to the time required for said mass to decelerate to the initial velocity after a pulse in said alerting signal has ceased.
- a personal paging receiver comprising:
- sensing means disposed within said casing and being responsive to space-transmitted energy for developing an alerting signal in the form of a train of regularly spaced electrical pulses having a predetermined pulse frequency which is capable of being sensed tactually;
- said electric motive means is an electric motor having rotor means including said mass which is accelerated periodically at said pulse frequency.
- a device according to claim 7 wherein said mass has an eccentric center of gravity to create said state of imbalance.
- said electric motive means includes a solenoid coil for receiving said alerting signal, wherein said mass is composed of a ferromagnetic material and is disposed within said coil, and wherein said means for constraining said mass includes spring means interconnecting said mass and said supporting structure.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
A radio-operated paging receiver is fitted with an electrically driven vibrator which causes the receiver to vibrate at a subaudible frequency when a paging signal is received.
Description
United States atent [72] Inventor Sholly Kagan East Natick, Mass.
[21 Appl. No. 766,781
[22] Filed Oct. 11, 1968 [45] Patented Nov. 23, 1971 [73] Assignee Bell & Howell Company Chicago, Ill.
[54] PAGING RECEIVER HAVING CYCLING MASS 9 Claims, 7 Drawing Figs.
[52] U.S.C1 340/311, 340/399, 340/400, 340/407 [51] Int. Cl G08b 7/00 [50] Field of Search 340/311, 407, 399, 400
[56] References Cited UNITED STATES PATENTS 2,127,468 8/1938 Greibach 340/407 2,566,409 9/1951 Greene 340/407 2,582,277 1/1952 Powlison 340/407 X 2,827,621 3/1958 Reichertlm. 340/407 X 2,972,140 2/1961 Hirsch 340/407 2,191,516 2/1940 Caldwell 340/407 2,817,080 12/1957 Balduman 340/400 X 3,116,481 12/1963 Kalin et a1 340/400 X Primary ExaminerHarold 1. Pitts Anurney Alfred H. Rosen ABSTRACT: A personal paging device has a call signal receiver which generates when activated a train of regularly spaced electrical pulses controlling an electric vibrator. The vibrator comprises an electric motor which receives the pulse train and periodically accelerates a cyclicly mounted mass to produce, as a result of the reaction forces developed, tactually sensible reaction vibrations in the device. In a primary embodiment the mass is eccentrically mounted so as to additionally produce tactually sensible variations at frequencies which are distinguishable from the said reaction vibrations.
Iv I I. t I I l I I t I I I I I I I I I I I A RECEIVER CIRCUITS FILTERS DECODERS ALERTING SIGNAL GENERATOR PATENTEDuuv 23 I9?! 3.623 .064
sum 1 BF 2 25 DECODERS ALERTING SIGNAL GENERATOR SHOLLY KAGAN lnven/or y mwdwmp.
Af/ome PATENTEUuuv 23 197i SHEET 2 [IF 2 5 3 E j 35 35 35 8 g O 136 V V T2 32 TIME Q ANTENNA VIBRATOR ELECTRONICS BATTERY SHOLLY KAGAN hive/7X01".
Aflomey PAGING RECEIVER HAVING CYCLING ECCENTRIC MASS BACKGROUND OF THE INVENTION This invention relates to radio-operated alerting devices, and more particularly to paging receivers of the kind which can be carried on the person of a user. Customarily, such receivers are small enough to fit into a shirt pocket, or to be clipped to the belt holding up a person's trousers.
Paging receivers are now in use employing an audible alerting signal. This has disadvantages when the user wants to avoid alerting or disturbing other persons. Substitution or addition of a visual alerting signal (e.g. a flashing light) does not entirely solve the problem, for the attention of the user cannot always be assured, nor can the user be certain to avoid alerting other persons. The present invention solves the problem with a silent and invisible vibratory alerting device, which has unique advantages not afiorded by audible or visible alerting signals.
According to the present invention a rigid supporting structure, which contains or supports means (e.g. radio receiver) to receive a calling signal and means (e.g. decoder and alerting signal generator) to provide an alerting signal, has affixed to it normally inactive vibrator means for vibrating the structure at a frequency in the subaudible range (e.g. c.p.s. and employs the alerting signal to activate the vibrator means. When the vibrator means is activated the entire structure is set into forced .vibration at the subaudible frequency and if it is being carried on the person of a user only the user feels the vibration and, therefore, only the user is alerted to the calling signal.
A feature of the invention is that the alerting signal may be in the form of one or more pulses of energy, whereby to accelerate the vibrator means from an inactive state to an active state in a time interval which is short relative to the time required for the vibrator to return to the inactive state. A series of such pulses of energy, temporally spaced apart greater than the pulse duration, causes the alerting device to throb in an attention-commanding manner. If the device rests on the surface of a hard, flat body, such as a table or a desk, the device executes a walking motion across the surface while so throbbing, and simultaneously causes a corresponding throbbing noise by its vibration against the hard surface. Thus, when the device is not worn by its user, it can be employed to give a signal which is both audible and visible simply by placing it on a hard, flat surface. If placed in a confining saucer or ash tray, its vibration against the latter will cause a pronounced throbbing noise while it may or may not be free to move depending upon the nature of its confinement.
Several embodiments of the invention are described in this specification, illustrating a variety of preferred ways to practice the invention. The description, which follows, refers to the accompanying drawings, in which:
FIG. 1 shows two external views, A and B, of a paging receiver according to the invention; FIG. 1C shows an altemative location for the vibrator means;
FIG. 2 is a schematic illustration showing the location of parts in FIG. 1;
FIG. 3 is a set ofgraphs for explaining pulse operation ofthe invention;
FIGS. 4, 5 and 6 schematically illustrate three difierent forms of vibrator means; and
FIG. 7 schematically illustrates another arrangement of the parts in an alerting device according to the invention.
Referring now to FIGS. 1A and B and FIG. 2, the alerting device is a paging receiver, comprising a rigid supporting structure 10 (FIG. 2) which supports within its framework 11 the prior an electronic and electromechanical components 12 which perform the radio receiver, filter and decoder, and alerting signal generator functions. Since these are prior art components, they will not be described. Also supported in the structure 10 are a power source (i.e. battery) 13 and an antenna 14. The top part 15 of the structure 10 is also an outer part of the housing of the receiver, and contains a phone jack 16,
and a vibrator means 17. As is shown in FIG. 1A and B, a cover 18 fits slidably over the framework 11 to enclose the parts 12, 13 supported in it, and completes the outer housing of the receiver. A clip 19 hinged to the cover 18 is springurged as by a spring 21 to hold the receiver in a pocket or to a belt (not shown).
The vibrator means 17 may, as shown in FIG. 2 and FIG. 4, comprise an electric motor 22 having a rotatable shaft 23 with an eccentrically mounted mass 24 on it. A cover 17.1 covers the mass 24, as it is shown in FIGS. 1A and B and FIG. 2. A pair of wires 25 carry the alerting signal from the alerting signal generator in the parts 12 to the motor 22. The motor is normally at rest; that is, inactive; and it is activated, that is,
caused to spin the shaft 23, when the alerting signal is applied to it. When the motor is activated the mass 24 turns on the axis of the shaft 23 and, being eccentrically mounted on the shaft, causes the motor 22 to vibrate at a frequency determined by the speed of rotation. A low frequency, below audible, such as five cycles per second, is a preferred frequency of vibration. This can be felt quite readily. The motor 22 is rigidly engaged with the top part 15 of the structure 10; for example the top part may be of a plastics material and the motor 22 press-fitted into a bore 15.1 in the top part. The structure 10 is thereby forced into vibration at the same low frequency.
The same result can be achieved by affixing the vibrator means 17 to the outside of the supporting structure 10, as is shown in FIG. 1C. Here the vibrator means 17 is affixed to the top part 15, electrically connected to the alerting signal generator via the phone jack 16, and held in place by a locating and retaining collar 15.5 which is affixed to the top part 15 of the structure 10. The vibrator means 17 may thus be detachably attached to the structure 10.
The alerting signal may be a continuous electrical signal, DC or AC as desired, but advantages can be obtained ifit is in the form of a train of pulses, as illustrated in FIG. 3. In addition to conserving battery power, a train of pulses causes the vibrator means to produce a throbbing form of vibration which is attention-commanding and has other advantages. FIG. 3 is a set of three graphs on a time axis. Three alerting signal pulses 31 are shown in a train on the lower axis 32. Each pulse, when applied to the motor 22, causes it to accelerate its shaft 23 into rotation and, when the pulse terminates the shaft decelerates more slowly toward rest. Thus the rotational velocity increases rapidly and decreases slowly, as shown by curve 33 on the middle time axis 34. The acceleration is illustrated by curves 35 on the uppermost time axis 36. Each pulse 31 accelerates the vibrator means from an inactive state to an active state ina time interval T, which is short relative to the time T required for the vibrator means to return to the inactive state after the pulse has ceased. If the pulse duration is about T, and the time interval between pulses is about T then a characteristic throbbing vibration is produced. In addition to commanding attention by virtue of its unique character, this throbbing vibration causes the entire structure 10 to execute a walking like motion, due to the reaction forces developed on the supporting structure 10, when the paging receiver is resting on a hard flat surface. Thus, when the user removes the receiver from his or her person and sets it down on a hard flat surface, a paging signal will cause the receiver to produce a rattling noise in a series of pulses corresponding to the alerting signal pulses 31, and to move in a shuffling manner relative to the surface, the shuffles being stepwise at the frequency of the alerting-signal pulses. If the receiver is standing, that is upright on the surface in the attitude of FIG. 1, it may actually appear to shuffle along in a straight or nearly straight line; if it is resting on its side, it may shuffle in a curved path.
The frequency of the pulses 31 is not to be confused with the frequency of vibration of the vibrator means 17. Each pulse 31 contains at least several cycles of vibration of the vibrator means 17, as will be apparent when it is realized that the motor shaft is preferably brought to rotation at its intended full speed in the time duration T, of each pulse 31, and then allowed to coast toward rest in the succeeding time interval T Alternative forms of the vibrator means 17 are shown in FIGS. 5 and 6. In FIG. 5 a mass 41 of magnetic material such as iron is suspended between two springs 42, 43 which are in turn anchored to the structure 10, and a hollow-core solenoid coil 44 surrounds the mass 41, which at rest may be located nearer to one end of the coil than to the other. The alerting signal (not shown) is applied to the coil 44, which may for this purpose be connected via terminals 45 to the wires 25 carrying the alerting signal. An appropriate alerting signal will set the mass 41 into vibration which will be coupled via the springs 42, 43 to the structure 10. The springs may be chosen to effect a coupling between the mass 41 and the structure such that when a pulse-form alerting signal is used the mass 41 will continue to vibrate for a period of time (T larger than the time (T,) duration of the alerting-signal pulse. The alerting signal, whether continuous or in pulse form, may have a frequency corresponding to the resonance frequency of vibration of the mass 41 and its springs 42, 43, or it may be a DC pulse.
In FIG. 6 two coils 51 and 52 are located one on each side of a magnetic mass 53 which is mounted at one end of a spring 54, the other end of which is connected to the structure 10, An alerting signal may be connected to the coils 51, 52 to set the mass 53 into vibration and thereby cause the structure 10 to vibrate.
It will be apparent that the vibrator means shown in FIGS 4, 5 and 6 have in common the property that each comprises a solid mass (24, 41, 53, respectively) motor means (22, 44 and 51, 52, respectively) to drive said mass cyclically in a prescribed path, and means linking the mass to the structure 10. Other vibrator means having these properties can be employcd, if desired.
FIG. 7 represents an arrangement of an alerting device according to the invention in which the structure 61 can be in the shape of an elongated (e.g. tubular) body, which is convenient to carry in ones pocket, like a pencil or fountain pen. The structure 61 contains, along its axis, the battery, electronics and vibrator means, as the labels in FIG. 7 show, with the vibrator nearer one end of the elongated body than the other. The antenna 62 for receiving radiobroadcast calling signals, is affixed across one end of the structure 61, where it will be least apt to be covered by clothing material. With the vibrator at one end of an elongated body, a form of vibration which is transverse to the longitudinal axis of the elongated body can force the elongated body correspondingly into vibration transverse to its axis, which will be easily felt and visibly noticeable. If the vibrator means 17 shown in FIG. 4 is used with the shaft 23 parallel to the longitudinal axis of the elongated body, a nutating motion may be induced into the alerting device.
Referring again to FIG. 2, the vibrator means 17 need not be located near a corner or side of the structure 10. By rearranging the electronic parts, the vibrator means may be located at or near the geometric center of the structure thereby increasing the ability to cause an entire wide side of the alerting device to vibrate against the body of a user.
Iclaim:
I. A personal paging device comprising a supporting structure, sensing means carried by said structure and responsive to space-transmitted energy for providing an alerting signal comprising a train of regularly spaced electrical pulses, normally inactive vibrator means for vibrating said structure, said vibrator means including an eccentric mass supported for cyclic movement and electric motive means responsive to said alerting signal for driving said mass through a range of vibrational frequencies toward a steady-state frequency, each of said pulses in said alerting signal being of a length to endure for a period of time longer than a cycle of said signal at said steady state frequency of vibration.
2. A personal paging receiver intended to be carried on the clothing of a person, comprising a supporting structure for providing an alerting signal, a mass, means for constraining said mass to be movable cyclicly in a substantially linear path relative to said structure, electric motive means responsive to vibratory means within said casing and coupled thereto,
comprising:
a mass supported for cyclic movement, and
electric motive means responsive to an alerting signal developed by said sensing means for accelerating said mass periodically at said pulse frequency, the periodic acceleration of said mass by said motive means producing by reaction forces acting on said motive means tactually sensible vibration of said casing at a vibrational frequency which corresponds to said pulse frequency.
4. A device according to claim 3 wherein said electric motive means has rotor means including said mass which is ac celerated periodically at said pulse frequency.
5, A device according to claim 3 wherein said mass is accelerated from an initial velocity in a time interval which is short relative to the time required for said mass to decelerate to the initial velocity after a pulse in said alerting signal has ceased.
6. A personal paging receiver, comprising:
a casing;
sensing means disposed within said casing and being responsive to space-transmitted energy for developing an alerting signal in the form of a train of regularly spaced electrical pulses having a predetermined pulse frequency which is capable of being sensed tactually;
vibratory alerting means within said casing and coupled thereto, comprising:
a mass supported for cyclic movement,
electric motive means responsive to an alerting signal developed by said sensing means for periodically accelerating said mass at said pulse frequency, the periodic acceleration of said mass by said motive means producing by reaction forces acting on said motive means tactually sensible vibration of said casing at a vibrational frequency which corresponds to said pulse frequency, said mass being in a state of imbalance so that when it is accelerated it produces readily sensible vibrations in said casing in a range of frequencies de pending on its velocity, the frequencies in said range of frequencies being substantially above and tactually distinguishable from said vibrations at said pulse frequency.
7. A device according to claim 6 wherein said electric motive means is an electric motor having rotor means including said mass which is accelerated periodically at said pulse frequency.
8. A device according to claim 7 wherein said mass has an eccentric center of gravity to create said state of imbalance.
9. The apparatus defined by claim 2 wherein said electric motive means includes a solenoid coil for receiving said alerting signal, wherein said mass is composed of a ferromagnetic material and is disposed within said coil, and wherein said means for constraining said mass includes spring means interconnecting said mass and said supporting structure.
d and sealed this I a An
Claims (9)
1. A personal paging device comprising a supporting structure, sensing means carried by said structure and responsive to spacetransmitted energy for providing an alerting signal comprising a train of regularly spaced electrical pulses, normally inactive vibrator means for vibrating said structure, said vibrator means including an eccentric mass supported for cyclic movement and electric motive means responsive to said alerting signal for driving said mass through a range of vibrational frequencies toward a steady-state frequency, each of said pulses in said alerting signal being of a length to endure for a period of time longer than a cycle of said signal at said steady state frequency of vibration.
2. A personal paging receiver intended to be carried on the clothing of a person, comprising a supporting structure, radio receiver means carried by said supporting structure for providing an alerting signal, a mass, means for constraining said mass to be movable cyclicly in a substantially linear path relative to said structure, electric motive means responsive to an alerting signal received from said radio receiver means for driving said mass in said path, and means coupling said mass to said structure for causing said structure to vibrate when said motive means is activated.
3. A personal paging device, comprising: a casing; sensing means disposed within said casing and being responsive to space-transmitted energy for developing an alerting signal in the form of a train of regularly spaced electrical pulses having a predetermined pulse frequency which is capable of being sensed tactually; and vibratory means within said casing and coupled thereto, comprising: a mass supported for cyclic movement, and electric motive means responsive to an alerting signal developed by said sensing means for accelerating said mass periodically at said pulse frequency, the periodic acceleration of said mass by said motive means producing by reaction forces acting on said motive means tactually sensible vibration of said casing at a vibrational frequency which corresponds to said pulse frequency.
4. A device according to claim 3 wherein said electric motive means has rotor means including said mass which is accelerated periodically at said pulse frequency.
5. A device according to claim 3 wherein said mass is accelerated from an initial velocity in a time interval which is short relative to the time required for said mass to decelerate to the initial velocity after a pulse in said alerting signal has ceased.
6. A personal paging receiver, comprising: a casing; sensing means disposed within said casing and being responsive to space-transmitted energy for developing an alerting signal in the form of a train of regularly spaced electrical pulses having a predetermined pulse frequency which is capable of being sensed tactually; vibratory alerting means within said casing and coupled thereto, comprising: a mass supported for cyclic movement, electric motive means responsive to an alerting signal developed by said sensing means for periodically accelerating said mass at said pulse frequency, the periodiC acceleration of said mass by said motive means producing by reaction forces acting on said motive means tactually sensible vibration of said casing at a vibrational frequency which corresponds to said pulse frequency, said mass being in a state of imbalance so that when it is accelerated it produces readily sensible vibrations in said casing in a range of frequencies depending on its velocity, the frequencies in said range of frequencies being substantially above and tactually distinguishable from said vibrations at said pulse frequency.
7. A device according to claim 6 wherein said electric motive means is an electric motor having rotor means including said mass which is accelerated periodically at said pulse frequency.
8. A device according to claim 7 wherein said mass has an eccentric center of gravity to create said state of imbalance.
9. The apparatus defined by claim 2 wherein said electric motive means includes a solenoid coil for receiving said alerting signal, wherein said mass is composed of a ferromagnetic material and is disposed within said coil, and wherein said means for constraining said mass includes spring means interconnecting said mass and said supporting structure.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76678168A | 1968-10-11 | 1968-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3623064A true US3623064A (en) | 1971-11-23 |
Family
ID=25077517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US766781A Expired - Lifetime US3623064A (en) | 1968-10-11 | 1968-10-11 | Paging receiver having cycling eccentric mass |
Country Status (1)
Country | Link |
---|---|
US (1) | US3623064A (en) |
Cited By (129)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911416A (en) * | 1974-08-05 | 1975-10-07 | Motorola Inc | Silent call pager |
US4057794A (en) * | 1974-04-04 | 1977-11-08 | National Research Development Corporation | Calling aids |
US4368459A (en) * | 1980-12-16 | 1983-01-11 | Robert Sapora | Educational apparatus and method for control of deaf individuals in a mixed teaching environment |
US4421953A (en) * | 1981-12-07 | 1983-12-20 | Northern Telecom Limited | Telephone tactile alert system |
GB2167222A (en) * | 1982-11-13 | 1986-05-21 | Draegerwerk Ag | Apparatus for monitoring medical instruments |
GB2179775A (en) * | 1985-08-30 | 1987-03-11 | Burroughs Corp | Tactile alarm system for gaining the attention of an individual |
US4794392A (en) * | 1987-02-20 | 1988-12-27 | Motorola, Inc. | Vibrator alert device for a communication receiver |
US4864276A (en) * | 1988-06-03 | 1989-09-05 | Motorola, Inc. | Very low-profile motor arrangement for radio pager silent alerting |
US4918438A (en) * | 1986-05-30 | 1990-04-17 | Nec Corporation | Paging receiver having audible and vibrator annunciating means |
US4931765A (en) * | 1989-02-09 | 1990-06-05 | Motorola, Inc. | Unitized housing for silent and tone pager alerting system |
WO1991006932A1 (en) * | 1989-11-06 | 1991-05-16 | Motorola, Inc. | Selective call receiver |
WO1991020136A1 (en) * | 1990-06-18 | 1991-12-26 | Motorola, Inc. | Selective call receiver having a variable frequency vibrator |
GB2248709A (en) * | 1990-09-28 | 1992-04-15 | Matsushita Electric Ind Co Ltd | Portable telephone |
US5243659A (en) * | 1992-02-19 | 1993-09-07 | John J. Lazzeroni | Motorcycle stereo audio system with vox intercom |
US5619181A (en) * | 1994-11-21 | 1997-04-08 | Motorola, Inc. | Vibratory alerting device with audible sound generator |
US5898364A (en) * | 1996-08-09 | 1999-04-27 | Nec Corporation | Electronic equipment having vibration motor |
US6057753A (en) * | 1997-07-03 | 2000-05-02 | Projects Unlimited, Inc. | Vibrational transducer |
WO2000065805A1 (en) * | 1999-04-28 | 2000-11-02 | Ericsson, Inc. | Miniature piezo-ceramic vibrators for wireless communication devices and cellular telephones |
US6236306B1 (en) | 1997-05-05 | 2001-05-22 | Lyndon L. Liebelt | Tactual annunciating device for notifying vehicle or machinery status or condition |
US20010026266A1 (en) * | 1995-11-17 | 2001-10-04 | Immersion Corporation | Force feeback interface device with touchpad sensor |
US20010028361A1 (en) * | 1997-12-03 | 2001-10-11 | Immersion Corporation | Tactile feedback interface device including display screen |
US20020003528A1 (en) * | 1997-08-23 | 2002-01-10 | Immersion Corporation | Cursor control using a tactile feedback device |
US20020021277A1 (en) * | 2000-04-17 | 2002-02-21 | Kramer James F. | Interface for controlling a graphical image |
US20020030663A1 (en) * | 1999-09-28 | 2002-03-14 | Immersion Corporation | Providing enhanced haptic feedback effects |
US20030057934A1 (en) * | 2001-07-17 | 2003-03-27 | Immersion Corporation | Envelope modulator for haptic feedback devices |
US20030058216A1 (en) * | 2001-09-24 | 2003-03-27 | Immersion Corporation | Data filter for haptic feedback devices having low-bandwidth communication links |
US20030058845A1 (en) * | 2001-09-19 | 2003-03-27 | Kollin Tierling | Circuit and method for a switch matrix and switch sensing |
US20030067440A1 (en) * | 2001-10-09 | 2003-04-10 | Rank Stephen D. | Haptic feedback sensations based on audio output from computer devices |
US20030068607A1 (en) * | 2001-07-16 | 2003-04-10 | Immersion Corporation | Interface apparatus with cable-driven force feedback and four grounded actuators |
US20030080987A1 (en) * | 2001-10-30 | 2003-05-01 | Rosenberg Louis B. | Methods and apparatus for providing haptic feedback in interacting with virtual pets |
US20030176770A1 (en) * | 2000-03-16 | 2003-09-18 | Merril Gregory L. | System and method for controlling force applied to and manipulation of medical instruments |
US6636161B2 (en) | 1996-11-26 | 2003-10-21 | Immersion Corporation | Isometric haptic feedback interface |
US6639581B1 (en) | 1995-11-17 | 2003-10-28 | Immersion Corporation | Flexure mechanism for interface device |
US20030221238A1 (en) * | 2002-05-30 | 2003-12-04 | Duboff Caryn K. | Glove massager |
US6661403B1 (en) | 1995-09-27 | 2003-12-09 | Immersion Corporation | Method and apparatus for streaming force values to a force feedback device |
US6680729B1 (en) | 1999-09-30 | 2004-01-20 | Immersion Corporation | Increasing force transmissibility for tactile feedback interface devices |
US6683437B2 (en) | 2001-10-31 | 2004-01-27 | Immersion Corporation | Current controlled motor amplifier system |
US6686901B2 (en) | 1998-06-23 | 2004-02-03 | Immersion Corporation | Enhancing inertial tactile feedback in computer interface devices having increased mass |
US6697748B1 (en) | 1995-08-07 | 2004-02-24 | Immersion Corporation | Digitizing system and rotary table for determining 3-D geometry of an object |
US6697048B2 (en) | 1995-01-18 | 2004-02-24 | Immersion Corporation | Computer interface apparatus including linkage having flex |
US6697044B2 (en) | 1998-09-17 | 2004-02-24 | Immersion Corporation | Haptic feedback device with button forces |
US6697086B2 (en) | 1995-12-01 | 2004-02-24 | Immersion Corporation | Designing force sensations for force feedback computer applications |
US6697043B1 (en) | 1999-12-21 | 2004-02-24 | Immersion Corporation | Haptic interface device and actuator assembly providing linear haptic sensations |
US6701296B1 (en) | 1988-10-14 | 2004-03-02 | James F. Kramer | Strain-sensing goniometers, systems, and recognition algorithms |
US6704683B1 (en) | 1998-04-28 | 2004-03-09 | Immersion Corporation | Direct velocity estimation for encoders using nonlinear period measurement |
US6704001B1 (en) | 1995-11-17 | 2004-03-09 | Immersion Corporation | Force feedback device including actuator with moving magnet |
US6703550B2 (en) | 2001-10-10 | 2004-03-09 | Immersion Corporation | Sound data output and manipulation using haptic feedback |
US6707443B2 (en) | 1998-06-23 | 2004-03-16 | Immersion Corporation | Haptic trackball device |
US6705871B1 (en) | 1996-09-06 | 2004-03-16 | Immersion Corporation | Method and apparatus for providing an interface mechanism for a computer simulation |
US6717573B1 (en) | 1998-06-23 | 2004-04-06 | Immersion Corporation | Low-cost haptic mouse implementations |
US20040095310A1 (en) * | 2002-11-19 | 2004-05-20 | Pedro Gregorio | Haptic feedback devices and methods for simulating an orifice |
US20040110527A1 (en) * | 2002-12-08 | 2004-06-10 | Kollin Tierling | Method and apparatus for providing haptic feedback to off-activating area |
US20040130526A1 (en) * | 1999-12-07 | 2004-07-08 | Rosenberg Louis B. | Haptic feedback using a keyboard device |
US20040164971A1 (en) * | 2003-02-20 | 2004-08-26 | Vincent Hayward | Haptic pads for use with user-interface devices |
US20040217942A1 (en) * | 2003-04-30 | 2004-11-04 | Danny Grant | Hierarchical methods for generating force feedback effects |
US20040236541A1 (en) * | 1997-05-12 | 2004-11-25 | Kramer James F. | System and method for constraining a graphical hand from penetrating simulated graphical objects |
US20040233161A1 (en) * | 1999-07-01 | 2004-11-25 | Shahoian Erik J. | Vibrotactile haptic feedback devices |
US6850222B1 (en) | 1995-01-18 | 2005-02-01 | Immersion Corporation | Passive force feedback for computer interface devices |
US6859819B1 (en) | 1995-12-13 | 2005-02-22 | Immersion Corporation | Force feedback enabled over a computer network |
US6866643B2 (en) | 1992-07-06 | 2005-03-15 | Immersion Corporation | Determination of finger position |
US6906697B2 (en) | 2000-08-11 | 2005-06-14 | Immersion Corporation | Haptic sensations for tactile feedback interface devices |
US20050154815A1 (en) * | 2004-01-14 | 2005-07-14 | International Business Machines Corporation | Seamless user interactions for portable storage devices |
US6929481B1 (en) | 1996-09-04 | 2005-08-16 | Immersion Medical, Inc. | Interface device and method for interfacing instruments to medical procedure simulation systems |
US6937033B2 (en) | 2001-06-27 | 2005-08-30 | Immersion Corporation | Position sensor with resistive element |
US6946812B1 (en) | 1996-10-25 | 2005-09-20 | Immersion Corporation | Method and apparatus for providing force feedback using multiple grounded actuators |
US20050209741A1 (en) * | 2004-03-18 | 2005-09-22 | Cunningham Richard L | Method and apparatus for providing resistive haptic feedback using a vacuum source |
US20050223327A1 (en) * | 2004-03-18 | 2005-10-06 | Cunningham Richard L | Medical device and procedure simulation |
US6956558B1 (en) | 1998-03-26 | 2005-10-18 | Immersion Corporation | Rotary force feedback wheels for remote control devices |
US6979164B2 (en) | 1990-02-02 | 2005-12-27 | Immersion Corporation | Force feedback and texture simulating interface device |
US6982696B1 (en) | 1999-07-01 | 2006-01-03 | Immersion Corporation | Moving magnet actuator for providing haptic feedback |
US6987504B2 (en) | 1993-07-16 | 2006-01-17 | Immersion Corporation | Interface device for sensing position and orientation and outputting force to a user |
US6995744B1 (en) | 2000-09-28 | 2006-02-07 | Immersion Corporation | Device and assembly for providing linear tactile sensations |
US7023423B2 (en) | 1995-01-18 | 2006-04-04 | Immersion Corporation | Laparoscopic simulation interface |
US7024625B2 (en) | 1996-02-23 | 2006-04-04 | Immersion Corporation | Mouse device with tactile feedback applied to housing |
US7027032B2 (en) | 1995-12-01 | 2006-04-11 | Immersion Corporation | Designing force sensations for force feedback computer applications |
US7039866B1 (en) | 1995-12-01 | 2006-05-02 | Immersion Corporation | Method and apparatus for providing dynamic force sensations for force feedback computer applications |
US7038657B2 (en) | 1995-09-27 | 2006-05-02 | Immersion Corporation | Power management for interface devices applying forces |
US7050955B1 (en) | 1999-10-01 | 2006-05-23 | Immersion Corporation | System, method and data structure for simulated interaction with graphical objects |
US7061467B2 (en) | 1993-07-16 | 2006-06-13 | Immersion Corporation | Force feedback device with microprocessor receiving low level commands |
US7061466B1 (en) | 1999-05-07 | 2006-06-13 | Immersion Corporation | Force feedback device including single-phase, fixed-coil actuators |
US7070571B2 (en) | 1997-04-21 | 2006-07-04 | Immersion Corporation | Goniometer-based body-tracking device |
US7084854B1 (en) | 2000-09-28 | 2006-08-01 | Immersion Corporation | Actuator for providing tactile sensations and device for directional tactile sensations |
US7084884B1 (en) | 1998-11-03 | 2006-08-01 | Immersion Corporation | Graphical object interactions |
US7091950B2 (en) | 1993-07-16 | 2006-08-15 | Immersion Corporation | Force feedback device including non-rigid coupling |
US7106313B2 (en) | 1995-11-17 | 2006-09-12 | Immersion Corporation | Force feedback interface device with force functionality button |
US7113166B1 (en) | 1995-06-09 | 2006-09-26 | Immersion Corporation | Force feedback devices using fluid braking |
US7131073B2 (en) | 1995-12-13 | 2006-10-31 | Immersion Corporation | Force feedback applications based on cursor engagement with graphical targets |
US7136045B2 (en) | 1998-06-23 | 2006-11-14 | Immersion Corporation | Tactile mouse |
US7148875B2 (en) | 1998-06-23 | 2006-12-12 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US7158112B2 (en) | 1995-12-01 | 2007-01-02 | Immersion Corporation | Interactions between simulated objects with force feedback |
US7161580B2 (en) | 2002-04-25 | 2007-01-09 | Immersion Corporation | Haptic feedback using rotary harmonic moving mass |
US7168042B2 (en) | 1997-11-14 | 2007-01-23 | Immersion Corporation | Force effects for object types in a graphical user interface |
US7182691B1 (en) | 2000-09-28 | 2007-02-27 | Immersion Corporation | Directional inertial tactile feedback using rotating masses |
US7196688B2 (en) | 2000-05-24 | 2007-03-27 | Immersion Corporation | Haptic devices using electroactive polymers |
US7199790B2 (en) | 1995-12-01 | 2007-04-03 | Immersion Corporation | Providing force feedback to a user of an interface device based on interactions of a user-controlled cursor in a graphical user interface |
US7202851B2 (en) | 2001-05-04 | 2007-04-10 | Immersion Medical Inc. | Haptic interface for palpation simulation |
US7215326B2 (en) | 1994-07-14 | 2007-05-08 | Immersion Corporation | Physically realistic computer simulation of medical procedures |
US7233476B2 (en) | 2000-08-11 | 2007-06-19 | Immersion Corporation | Actuator thermal protection in haptic feedback devices |
US7236157B2 (en) | 1995-06-05 | 2007-06-26 | Immersion Corporation | Method for providing high bandwidth force feedback with improved actuator feel |
US7265750B2 (en) | 1998-06-23 | 2007-09-04 | Immersion Corporation | Haptic feedback stylus and other devices |
US7283120B2 (en) | 2004-01-16 | 2007-10-16 | Immersion Corporation | Method and apparatus for providing haptic feedback having a position-based component and a predetermined time-based component |
US7289106B2 (en) | 2004-04-01 | 2007-10-30 | Immersion Medical, Inc. | Methods and apparatus for palpation simulation |
USRE39906E1 (en) | 1995-10-26 | 2007-11-06 | Immersion Corporation | Gyro-stabilized platforms for force-feedback applications |
US7336260B2 (en) | 2001-11-01 | 2008-02-26 | Immersion Corporation | Method and apparatus for providing tactile sensations |
US7369115B2 (en) | 2002-04-25 | 2008-05-06 | Immersion Corporation | Haptic devices having multiple operational modes including at least one resonant mode |
USRE40341E1 (en) | 1992-10-23 | 2008-05-27 | Immersion Corporation | Controller |
US20080156277A1 (en) * | 2007-01-03 | 2008-07-03 | Radio Systems Corporation | Animal Training Device Using a Vibration Probe to Deliver a Vibration Stimulus to an Animal |
US7450110B2 (en) | 2000-01-19 | 2008-11-11 | Immersion Corporation | Haptic input devices |
US7535454B2 (en) | 2001-11-01 | 2009-05-19 | Immersion Corporation | Method and apparatus for providing haptic feedback |
US7557794B2 (en) | 1997-04-14 | 2009-07-07 | Immersion Corporation | Filtering sensor data to reduce disturbances from force feedback |
US7656388B2 (en) | 1999-07-01 | 2010-02-02 | Immersion Corporation | Controlling vibrotactile sensations for haptic feedback devices |
US7742036B2 (en) | 2003-12-22 | 2010-06-22 | Immersion Corporation | System and method for controlling haptic devices having multiple operational modes |
US7806696B2 (en) | 1998-01-28 | 2010-10-05 | Immersion Corporation | Interface device and method for interfacing instruments to medical procedure simulation systems |
US7812820B2 (en) | 1991-10-24 | 2010-10-12 | Immersion Corporation | Interface device with tactile responsiveness |
US7815436B2 (en) | 1996-09-04 | 2010-10-19 | Immersion Corporation | Surgical simulation interface device and method |
US7936251B1 (en) * | 1998-01-08 | 2011-05-03 | Kyocera Corporation | Alerting device and radio communication device having the alerting device |
US8059088B2 (en) | 2002-12-08 | 2011-11-15 | Immersion Corporation | Methods and systems for providing haptic messaging to handheld communication devices |
US8125453B2 (en) | 2002-10-20 | 2012-02-28 | Immersion Corporation | System and method for providing rotational haptic feedback |
US8164573B2 (en) | 2003-11-26 | 2012-04-24 | Immersion Corporation | Systems and methods for adaptive interpretation of input from a touch-sensitive input device |
US8169402B2 (en) | 1999-07-01 | 2012-05-01 | Immersion Corporation | Vibrotactile haptic feedback devices |
US8316166B2 (en) | 2002-12-08 | 2012-11-20 | Immersion Corporation | Haptic messaging in handheld communication devices |
US8364342B2 (en) | 2001-07-31 | 2013-01-29 | Immersion Corporation | Control wheel with haptic feedback |
US8368641B2 (en) | 1995-11-30 | 2013-02-05 | Immersion Corporation | Tactile feedback man-machine interface device |
US8508469B1 (en) | 1995-12-01 | 2013-08-13 | Immersion Corporation | Networked applications including haptic feedback |
US20140005820A1 (en) * | 2012-06-29 | 2014-01-02 | Robert Bosch Gmbh | Controlling a battery-operated handheld power tool |
US8830161B2 (en) | 2002-12-08 | 2014-09-09 | Immersion Corporation | Methods and systems for providing a virtual touch haptic effect to handheld communication devices |
US8917234B2 (en) | 2002-10-15 | 2014-12-23 | Immersion Corporation | Products and processes for providing force sensations in a user interface |
US9582178B2 (en) | 2011-11-07 | 2017-02-28 | Immersion Corporation | Systems and methods for multi-pressure interaction on touch-sensitive surfaces |
US9904394B2 (en) | 2013-03-13 | 2018-02-27 | Immerson Corporation | Method and devices for displaying graphical user interfaces based on user contact |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2127468A (en) * | 1933-11-11 | 1938-08-16 | Emil Henry Greibach | Bone conduction hearing device |
US2191516A (en) * | 1937-05-24 | 1940-02-27 | Kelch Heater Company | Tactual signal |
US2566409A (en) * | 1949-10-21 | 1951-09-04 | Safe Flight Instrument | Vibratory aircraft alarm of the rotary eccentric weight type |
US2582277A (en) * | 1946-02-12 | 1952-01-15 | Neil C Powlison | Person alerting device |
US2817080A (en) * | 1955-06-16 | 1957-12-17 | Agapito P Balduman | Impulse motored sounding ornaments |
US2827621A (en) * | 1955-05-23 | 1958-03-18 | James B Reichert | Air speed alerting apparatus for aircraft |
US2972140A (en) * | 1958-09-23 | 1961-02-14 | Hirsch Joseph | Apparatus and method for communication through the sense of touch |
US3116481A (en) * | 1960-12-27 | 1963-12-31 | Bell Telephone Labor Inc | Electromagnetically operated polarized bell ringer |
-
1968
- 1968-10-11 US US766781A patent/US3623064A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2127468A (en) * | 1933-11-11 | 1938-08-16 | Emil Henry Greibach | Bone conduction hearing device |
US2191516A (en) * | 1937-05-24 | 1940-02-27 | Kelch Heater Company | Tactual signal |
US2582277A (en) * | 1946-02-12 | 1952-01-15 | Neil C Powlison | Person alerting device |
US2566409A (en) * | 1949-10-21 | 1951-09-04 | Safe Flight Instrument | Vibratory aircraft alarm of the rotary eccentric weight type |
US2827621A (en) * | 1955-05-23 | 1958-03-18 | James B Reichert | Air speed alerting apparatus for aircraft |
US2817080A (en) * | 1955-06-16 | 1957-12-17 | Agapito P Balduman | Impulse motored sounding ornaments |
US2972140A (en) * | 1958-09-23 | 1961-02-14 | Hirsch Joseph | Apparatus and method for communication through the sense of touch |
US3116481A (en) * | 1960-12-27 | 1963-12-31 | Bell Telephone Labor Inc | Electromagnetically operated polarized bell ringer |
Cited By (227)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057794A (en) * | 1974-04-04 | 1977-11-08 | National Research Development Corporation | Calling aids |
US3911416A (en) * | 1974-08-05 | 1975-10-07 | Motorola Inc | Silent call pager |
US4368459A (en) * | 1980-12-16 | 1983-01-11 | Robert Sapora | Educational apparatus and method for control of deaf individuals in a mixed teaching environment |
US4421953A (en) * | 1981-12-07 | 1983-12-20 | Northern Telecom Limited | Telephone tactile alert system |
GB2167222A (en) * | 1982-11-13 | 1986-05-21 | Draegerwerk Ag | Apparatus for monitoring medical instruments |
GB2179775A (en) * | 1985-08-30 | 1987-03-11 | Burroughs Corp | Tactile alarm system for gaining the attention of an individual |
US4731603A (en) * | 1985-08-30 | 1988-03-15 | Unisys Corporation | Tactile alarm system for gaining the attention of an individual |
US4918438A (en) * | 1986-05-30 | 1990-04-17 | Nec Corporation | Paging receiver having audible and vibrator annunciating means |
US4794392A (en) * | 1987-02-20 | 1988-12-27 | Motorola, Inc. | Vibrator alert device for a communication receiver |
US4864276A (en) * | 1988-06-03 | 1989-09-05 | Motorola, Inc. | Very low-profile motor arrangement for radio pager silent alerting |
US6701296B1 (en) | 1988-10-14 | 2004-03-02 | James F. Kramer | Strain-sensing goniometers, systems, and recognition algorithms |
US4931765A (en) * | 1989-02-09 | 1990-06-05 | Motorola, Inc. | Unitized housing for silent and tone pager alerting system |
WO1991006932A1 (en) * | 1989-11-06 | 1991-05-16 | Motorola, Inc. | Selective call receiver |
US6979164B2 (en) | 1990-02-02 | 2005-12-27 | Immersion Corporation | Force feedback and texture simulating interface device |
WO1991020136A1 (en) * | 1990-06-18 | 1991-12-26 | Motorola, Inc. | Selective call receiver having a variable frequency vibrator |
US5293161A (en) * | 1990-06-18 | 1994-03-08 | Motorola, Inc. | Selective call receiver having a variable frequency vibrator |
GB2248709A (en) * | 1990-09-28 | 1992-04-15 | Matsushita Electric Ind Co Ltd | Portable telephone |
US7812820B2 (en) | 1991-10-24 | 2010-10-12 | Immersion Corporation | Interface device with tactile responsiveness |
US5243659A (en) * | 1992-02-19 | 1993-09-07 | John J. Lazzeroni | Motorcycle stereo audio system with vox intercom |
US6866643B2 (en) | 1992-07-06 | 2005-03-15 | Immersion Corporation | Determination of finger position |
USRE40341E1 (en) | 1992-10-23 | 2008-05-27 | Immersion Corporation | Controller |
US6987504B2 (en) | 1993-07-16 | 2006-01-17 | Immersion Corporation | Interface device for sensing position and orientation and outputting force to a user |
US7605800B2 (en) | 1993-07-16 | 2009-10-20 | Immersion Corporation | Method and apparatus for controlling human-computer interface systems providing force feedback |
US7061467B2 (en) | 1993-07-16 | 2006-06-13 | Immersion Corporation | Force feedback device with microprocessor receiving low level commands |
US7091950B2 (en) | 1993-07-16 | 2006-08-15 | Immersion Corporation | Force feedback device including non-rigid coupling |
US7215326B2 (en) | 1994-07-14 | 2007-05-08 | Immersion Corporation | Physically realistic computer simulation of medical procedures |
US8184094B2 (en) | 1994-07-14 | 2012-05-22 | Immersion Corporation | Physically realistic computer simulation of medical procedures |
US5619181A (en) * | 1994-11-21 | 1997-04-08 | Motorola, Inc. | Vibratory alerting device with audible sound generator |
US6697048B2 (en) | 1995-01-18 | 2004-02-24 | Immersion Corporation | Computer interface apparatus including linkage having flex |
US7023423B2 (en) | 1995-01-18 | 2006-04-04 | Immersion Corporation | Laparoscopic simulation interface |
US6850222B1 (en) | 1995-01-18 | 2005-02-01 | Immersion Corporation | Passive force feedback for computer interface devices |
US7821496B2 (en) | 1995-01-18 | 2010-10-26 | Immersion Corporation | Computer interface apparatus including linkage having flex |
US7236157B2 (en) | 1995-06-05 | 2007-06-26 | Immersion Corporation | Method for providing high bandwidth force feedback with improved actuator feel |
US7113166B1 (en) | 1995-06-09 | 2006-09-26 | Immersion Corporation | Force feedback devices using fluid braking |
US7054775B2 (en) | 1995-08-07 | 2006-05-30 | Immersion Corporation | Digitizing system and rotary table for determining 3-D geometry of an object |
US6697748B1 (en) | 1995-08-07 | 2004-02-24 | Immersion Corporation | Digitizing system and rotary table for determining 3-D geometry of an object |
US6661403B1 (en) | 1995-09-27 | 2003-12-09 | Immersion Corporation | Method and apparatus for streaming force values to a force feedback device |
US7038657B2 (en) | 1995-09-27 | 2006-05-02 | Immersion Corporation | Power management for interface devices applying forces |
USRE39906E1 (en) | 1995-10-26 | 2007-11-06 | Immersion Corporation | Gyro-stabilized platforms for force-feedback applications |
US7106313B2 (en) | 1995-11-17 | 2006-09-12 | Immersion Corporation | Force feedback interface device with force functionality button |
US6639581B1 (en) | 1995-11-17 | 2003-10-28 | Immersion Corporation | Flexure mechanism for interface device |
US7944433B2 (en) | 1995-11-17 | 2011-05-17 | Immersion Corporation | Force feedback device including actuator with moving magnet |
US7253803B2 (en) | 1995-11-17 | 2007-08-07 | Immersion Corporation | Force feedback interface device with sensor |
US6704001B1 (en) | 1995-11-17 | 2004-03-09 | Immersion Corporation | Force feedback device including actuator with moving magnet |
US20010026266A1 (en) * | 1995-11-17 | 2001-10-04 | Immersion Corporation | Force feeback interface device with touchpad sensor |
US9690379B2 (en) | 1995-11-30 | 2017-06-27 | Immersion Corporation | Tactile feedback interface device |
US8368641B2 (en) | 1995-11-30 | 2013-02-05 | Immersion Corporation | Tactile feedback man-machine interface device |
US8072422B2 (en) | 1995-12-01 | 2011-12-06 | Immersion Corporation | Networked applications including haptic feedback |
US7027032B2 (en) | 1995-12-01 | 2006-04-11 | Immersion Corporation | Designing force sensations for force feedback computer applications |
US7636080B2 (en) | 1995-12-01 | 2009-12-22 | Immersion Corporation | Networked applications including haptic feedback |
US7039866B1 (en) | 1995-12-01 | 2006-05-02 | Immersion Corporation | Method and apparatus for providing dynamic force sensations for force feedback computer applications |
US8508469B1 (en) | 1995-12-01 | 2013-08-13 | Immersion Corporation | Networked applications including haptic feedback |
US20100148943A1 (en) * | 1995-12-01 | 2010-06-17 | Immersion Corporation | Networked Applications Including Haptic Feedback |
US20040113932A1 (en) * | 1995-12-01 | 2004-06-17 | Rosenberg Louis B. | Method and apparatus for streaming force values to a force feedback device |
US7158112B2 (en) | 1995-12-01 | 2007-01-02 | Immersion Corporation | Interactions between simulated objects with force feedback |
US6697086B2 (en) | 1995-12-01 | 2004-02-24 | Immersion Corporation | Designing force sensations for force feedback computer applications |
US7199790B2 (en) | 1995-12-01 | 2007-04-03 | Immersion Corporation | Providing force feedback to a user of an interface device based on interactions of a user-controlled cursor in a graphical user interface |
US7209117B2 (en) | 1995-12-01 | 2007-04-24 | Immersion Corporation | Method and apparatus for streaming force values to a force feedback device |
US7131073B2 (en) | 1995-12-13 | 2006-10-31 | Immersion Corporation | Force feedback applications based on cursor engagement with graphical targets |
US6859819B1 (en) | 1995-12-13 | 2005-02-22 | Immersion Corporation | Force feedback enabled over a computer network |
US7024625B2 (en) | 1996-02-23 | 2006-04-04 | Immersion Corporation | Mouse device with tactile feedback applied to housing |
US5898364A (en) * | 1996-08-09 | 1999-04-27 | Nec Corporation | Electronic equipment having vibration motor |
US7815436B2 (en) | 1996-09-04 | 2010-10-19 | Immersion Corporation | Surgical simulation interface device and method |
US7833018B2 (en) | 1996-09-04 | 2010-11-16 | Immersion Corporation | Interface device and method for interfacing instruments to medical procedure simulation systems |
US7931470B2 (en) | 1996-09-04 | 2011-04-26 | Immersion Medical, Inc. | Interface device and method for interfacing instruments to medical procedure simulation systems |
US6929481B1 (en) | 1996-09-04 | 2005-08-16 | Immersion Medical, Inc. | Interface device and method for interfacing instruments to medical procedure simulation systems |
US8480406B2 (en) | 1996-09-04 | 2013-07-09 | Immersion Medical, Inc. | Interface device and method for interfacing instruments to medical procedure simulation systems |
US6705871B1 (en) | 1996-09-06 | 2004-03-16 | Immersion Corporation | Method and apparatus for providing an interface mechanism for a computer simulation |
US7249951B2 (en) | 1996-09-06 | 2007-07-31 | Immersion Corporation | Method and apparatus for providing an interface mechanism for a computer simulation |
US6946812B1 (en) | 1996-10-25 | 2005-09-20 | Immersion Corporation | Method and apparatus for providing force feedback using multiple grounded actuators |
US20040108992A1 (en) * | 1996-11-26 | 2004-06-10 | Rosenberg Louis B. | Isotonic-isometric haptic feedback interface |
US7102541B2 (en) | 1996-11-26 | 2006-09-05 | Immersion Corporation | Isotonic-isometric haptic feedback interface |
US6636161B2 (en) | 1996-11-26 | 2003-10-21 | Immersion Corporation | Isometric haptic feedback interface |
US7557794B2 (en) | 1997-04-14 | 2009-07-07 | Immersion Corporation | Filtering sensor data to reduce disturbances from force feedback |
US7070571B2 (en) | 1997-04-21 | 2006-07-04 | Immersion Corporation | Goniometer-based body-tracking device |
US6236306B1 (en) | 1997-05-05 | 2001-05-22 | Lyndon L. Liebelt | Tactual annunciating device for notifying vehicle or machinery status or condition |
US20040236541A1 (en) * | 1997-05-12 | 2004-11-25 | Kramer James F. | System and method for constraining a graphical hand from penetrating simulated graphical objects |
US7472047B2 (en) | 1997-05-12 | 2008-12-30 | Immersion Corporation | System and method for constraining a graphical hand from penetrating simulated graphical objects |
US6057753A (en) * | 1997-07-03 | 2000-05-02 | Projects Unlimited, Inc. | Vibrational transducer |
US20020003528A1 (en) * | 1997-08-23 | 2002-01-10 | Immersion Corporation | Cursor control using a tactile feedback device |
US7168042B2 (en) | 1997-11-14 | 2007-01-23 | Immersion Corporation | Force effects for object types in a graphical user interface |
US9778745B2 (en) | 1997-11-14 | 2017-10-03 | Immersion Corporation | Force feedback system including multi-tasking graphical host environment and interface device |
US9740287B2 (en) | 1997-11-14 | 2017-08-22 | Immersion Corporation | Force feedback system including multi-tasking graphical host environment and interface device |
US8527873B2 (en) | 1997-11-14 | 2013-09-03 | Immersion Corporation | Force feedback system including multi-tasking graphical host environment and interface device |
US7151527B2 (en) | 1997-12-03 | 2006-12-19 | Immersion Corporation | Tactile feedback interface device including display screen |
US20010028361A1 (en) * | 1997-12-03 | 2001-10-11 | Immersion Corporation | Tactile feedback interface device including display screen |
US7936251B1 (en) * | 1998-01-08 | 2011-05-03 | Kyocera Corporation | Alerting device and radio communication device having the alerting device |
US7806696B2 (en) | 1998-01-28 | 2010-10-05 | Immersion Corporation | Interface device and method for interfacing instruments to medical procedure simulation systems |
US6956558B1 (en) | 1998-03-26 | 2005-10-18 | Immersion Corporation | Rotary force feedback wheels for remote control devices |
US6704683B1 (en) | 1998-04-28 | 2004-03-09 | Immersion Corporation | Direct velocity estimation for encoders using nonlinear period measurement |
US7148875B2 (en) | 1998-06-23 | 2006-12-12 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US20040174340A1 (en) * | 1998-06-23 | 2004-09-09 | Bruneau Ryan D. | Haptic trackball device |
US6707443B2 (en) | 1998-06-23 | 2004-03-16 | Immersion Corporation | Haptic trackball device |
US7728820B2 (en) | 1998-06-23 | 2010-06-01 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
USRE40808E1 (en) | 1998-06-23 | 2009-06-30 | Immersion Corporation | Low-cost haptic mouse implementations |
US7265750B2 (en) | 1998-06-23 | 2007-09-04 | Immersion Corporation | Haptic feedback stylus and other devices |
US7944435B2 (en) | 1998-06-23 | 2011-05-17 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US6686901B2 (en) | 1998-06-23 | 2004-02-03 | Immersion Corporation | Enhancing inertial tactile feedback in computer interface devices having increased mass |
US8063893B2 (en) | 1998-06-23 | 2011-11-22 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US8049734B2 (en) | 1998-06-23 | 2011-11-01 | Immersion Corporation | Haptic feedback for touchpads and other touch control |
US7978183B2 (en) | 1998-06-23 | 2011-07-12 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US20040183782A1 (en) * | 1998-06-23 | 2004-09-23 | Shahoian Eric J. | Low-cost haptic mouse implementations |
US7710399B2 (en) | 1998-06-23 | 2010-05-04 | Immersion Corporation | Haptic trackball device |
US20080068348A1 (en) * | 1998-06-23 | 2008-03-20 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US7982720B2 (en) | 1998-06-23 | 2011-07-19 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US7432910B2 (en) | 1998-06-23 | 2008-10-07 | Immersion Corporation | Haptic interface device and actuator assembly providing linear haptic sensations |
US7136045B2 (en) | 1998-06-23 | 2006-11-14 | Immersion Corporation | Tactile mouse |
US7423631B2 (en) | 1998-06-23 | 2008-09-09 | Immersion Corporation | Low-cost haptic mouse implementations |
US8462116B2 (en) | 1998-06-23 | 2013-06-11 | Immersion Corporation | Haptic trackball device |
US6717573B1 (en) | 1998-06-23 | 2004-04-06 | Immersion Corporation | Low-cost haptic mouse implementations |
US8031181B2 (en) | 1998-06-23 | 2011-10-04 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US8059105B2 (en) | 1998-06-23 | 2011-11-15 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US7561141B2 (en) | 1998-09-17 | 2009-07-14 | Immersion Corporation | Haptic feedback device with button forces |
US6697044B2 (en) | 1998-09-17 | 2004-02-24 | Immersion Corporation | Haptic feedback device with button forces |
US7084884B1 (en) | 1998-11-03 | 2006-08-01 | Immersion Corporation | Graphical object interactions |
WO2000065805A1 (en) * | 1999-04-28 | 2000-11-02 | Ericsson, Inc. | Miniature piezo-ceramic vibrators for wireless communication devices and cellular telephones |
US6389302B1 (en) | 1999-04-28 | 2002-05-14 | Ericsson Inc. | Methods and apparatus for causing wireless communication devices to vibrate via piezo-ceramic vibrators |
US7061466B1 (en) | 1999-05-07 | 2006-06-13 | Immersion Corporation | Force feedback device including single-phase, fixed-coil actuators |
US7656388B2 (en) | 1999-07-01 | 2010-02-02 | Immersion Corporation | Controlling vibrotactile sensations for haptic feedback devices |
US7561142B2 (en) | 1999-07-01 | 2009-07-14 | Immersion Corporation | Vibrotactile haptic feedback devices |
US20040233161A1 (en) * | 1999-07-01 | 2004-11-25 | Shahoian Erik J. | Vibrotactile haptic feedback devices |
US6982696B1 (en) | 1999-07-01 | 2006-01-03 | Immersion Corporation | Moving magnet actuator for providing haptic feedback |
US8169402B2 (en) | 1999-07-01 | 2012-05-01 | Immersion Corporation | Vibrotactile haptic feedback devices |
US7446752B2 (en) | 1999-09-28 | 2008-11-04 | Immersion Corporation | Controlling haptic sensations for vibrotactile feedback interface devices |
US9492847B2 (en) | 1999-09-28 | 2016-11-15 | Immersion Corporation | Controlling haptic sensations for vibrotactile feedback interface devices |
US7218310B2 (en) | 1999-09-28 | 2007-05-15 | Immersion Corporation | Providing enhanced haptic feedback effects |
US20020030663A1 (en) * | 1999-09-28 | 2002-03-14 | Immersion Corporation | Providing enhanced haptic feedback effects |
US9411420B2 (en) | 1999-09-30 | 2016-08-09 | Immersion Corporation | Increasing force transmissibility for tactile feedback interface devices |
US20070195059A1 (en) * | 1999-09-30 | 2007-08-23 | Immersion Corporation, A Delaware Corporation | Increasing force transmissibility for tactile feedback interface devices |
US7209118B2 (en) | 1999-09-30 | 2007-04-24 | Immersion Corporation | Increasing force transmissibility for tactile feedback interface devices |
US6680729B1 (en) | 1999-09-30 | 2004-01-20 | Immersion Corporation | Increasing force transmissibility for tactile feedback interface devices |
US20040147318A1 (en) * | 1999-09-30 | 2004-07-29 | Shahoian Erik J. | Increasing force transmissibility for tactile feedback interface devices |
US20060122819A1 (en) * | 1999-10-01 | 2006-06-08 | Ron Carmel | System, method and data structure for simulated interaction with graphical objects |
US7676356B2 (en) | 1999-10-01 | 2010-03-09 | Immersion Corporation | System, method and data structure for simulated interaction with graphical objects |
US7050955B1 (en) | 1999-10-01 | 2006-05-23 | Immersion Corporation | System, method and data structure for simulated interaction with graphical objects |
US7106305B2 (en) | 1999-12-07 | 2006-09-12 | Immersion Corporation | Haptic feedback using a keyboard device |
US20040130526A1 (en) * | 1999-12-07 | 2004-07-08 | Rosenberg Louis B. | Haptic feedback using a keyboard device |
US9280205B2 (en) | 1999-12-17 | 2016-03-08 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US6697043B1 (en) | 1999-12-21 | 2004-02-24 | Immersion Corporation | Haptic interface device and actuator assembly providing linear haptic sensations |
US8212772B2 (en) | 1999-12-21 | 2012-07-03 | Immersion Corporation | Haptic interface device and actuator assembly providing linear haptic sensations |
US8063892B2 (en) | 2000-01-19 | 2011-11-22 | Immersion Corporation | Haptic interface for touch screen embodiments |
US8188981B2 (en) | 2000-01-19 | 2012-05-29 | Immersion Corporation | Haptic interface for touch screen embodiments |
US8059104B2 (en) | 2000-01-19 | 2011-11-15 | Immersion Corporation | Haptic interface for touch screen embodiments |
US7548232B2 (en) | 2000-01-19 | 2009-06-16 | Immersion Corporation | Haptic interface for laptop computers and other portable devices |
US7450110B2 (en) | 2000-01-19 | 2008-11-11 | Immersion Corporation | Haptic input devices |
US6817973B2 (en) | 2000-03-16 | 2004-11-16 | Immersion Medical, Inc. | Apparatus for controlling force for manipulation of medical instruments |
US20030176770A1 (en) * | 2000-03-16 | 2003-09-18 | Merril Gregory L. | System and method for controlling force applied to and manipulation of medical instruments |
US20020021277A1 (en) * | 2000-04-17 | 2002-02-21 | Kramer James F. | Interface for controlling a graphical image |
US6924787B2 (en) | 2000-04-17 | 2005-08-02 | Immersion Corporation | Interface for controlling a graphical image |
US7196688B2 (en) | 2000-05-24 | 2007-03-27 | Immersion Corporation | Haptic devices using electroactive polymers |
US6906697B2 (en) | 2000-08-11 | 2005-06-14 | Immersion Corporation | Haptic sensations for tactile feedback interface devices |
US7233476B2 (en) | 2000-08-11 | 2007-06-19 | Immersion Corporation | Actuator thermal protection in haptic feedback devices |
US8441444B2 (en) | 2000-09-28 | 2013-05-14 | Immersion Corporation | System and method for providing directional tactile sensations |
US6995744B1 (en) | 2000-09-28 | 2006-02-07 | Immersion Corporation | Device and assembly for providing linear tactile sensations |
US7084854B1 (en) | 2000-09-28 | 2006-08-01 | Immersion Corporation | Actuator for providing tactile sensations and device for directional tactile sensations |
US7182691B1 (en) | 2000-09-28 | 2007-02-27 | Immersion Corporation | Directional inertial tactile feedback using rotating masses |
US7202851B2 (en) | 2001-05-04 | 2007-04-10 | Immersion Medical Inc. | Haptic interface for palpation simulation |
US6937033B2 (en) | 2001-06-27 | 2005-08-30 | Immersion Corporation | Position sensor with resistive element |
US8007282B2 (en) | 2001-07-16 | 2011-08-30 | Immersion Corporation | Medical simulation interface apparatus and method |
US7056123B2 (en) | 2001-07-16 | 2006-06-06 | Immersion Corporation | Interface apparatus with cable-driven force feedback and grounded actuators |
US20030068607A1 (en) * | 2001-07-16 | 2003-04-10 | Immersion Corporation | Interface apparatus with cable-driven force feedback and four grounded actuators |
US7154470B2 (en) | 2001-07-17 | 2006-12-26 | Immersion Corporation | Envelope modulator for haptic feedback devices |
US20030057934A1 (en) * | 2001-07-17 | 2003-03-27 | Immersion Corporation | Envelope modulator for haptic feedback devices |
US8554408B2 (en) | 2001-07-31 | 2013-10-08 | Immersion Corporation | Control wheel with haptic feedback |
US8660748B2 (en) | 2001-07-31 | 2014-02-25 | Immersion Corporation | Control wheel with haptic feedback |
US8364342B2 (en) | 2001-07-31 | 2013-01-29 | Immersion Corporation | Control wheel with haptic feedback |
US7151432B2 (en) | 2001-09-19 | 2006-12-19 | Immersion Corporation | Circuit and method for a switch matrix and switch sensing |
US20030058845A1 (en) * | 2001-09-19 | 2003-03-27 | Kollin Tierling | Circuit and method for a switch matrix and switch sensing |
US6933920B2 (en) | 2001-09-24 | 2005-08-23 | Immersion Corporation | Data filter for haptic feedback devices having low-bandwidth communication links |
US20030058216A1 (en) * | 2001-09-24 | 2003-03-27 | Immersion Corporation | Data filter for haptic feedback devices having low-bandwidth communication links |
US20100066512A1 (en) * | 2001-10-09 | 2010-03-18 | Immersion Corporation | Haptic Feedback Sensations Based on Audio Output From Computer Devices |
US20030067440A1 (en) * | 2001-10-09 | 2003-04-10 | Rank Stephen D. | Haptic feedback sensations based on audio output from computer devices |
US8441437B2 (en) | 2001-10-09 | 2013-05-14 | Immersion Corporation | Haptic feedback sensations based on audio output from computer devices |
US8686941B2 (en) | 2001-10-09 | 2014-04-01 | Immersion Corporation | Haptic feedback sensations based on audio output from computer devices |
US7623114B2 (en) | 2001-10-09 | 2009-11-24 | Immersion Corporation | Haptic feedback sensations based on audio output from computer devices |
US20040161118A1 (en) * | 2001-10-10 | 2004-08-19 | Chu Lonny L. | Sound data output and manipulation using haptic feedback |
US6703550B2 (en) | 2001-10-10 | 2004-03-09 | Immersion Corporation | Sound data output and manipulation using haptic feedback |
US7208671B2 (en) | 2001-10-10 | 2007-04-24 | Immersion Corporation | Sound data output and manipulation using haptic feedback |
US20030080987A1 (en) * | 2001-10-30 | 2003-05-01 | Rosenberg Louis B. | Methods and apparatus for providing haptic feedback in interacting with virtual pets |
US8788253B2 (en) | 2001-10-30 | 2014-07-22 | Immersion Corporation | Methods and apparatus for providing haptic feedback in interacting with virtual pets |
US6683437B2 (en) | 2001-10-31 | 2004-01-27 | Immersion Corporation | Current controlled motor amplifier system |
US8773356B2 (en) | 2001-11-01 | 2014-07-08 | Immersion Corporation | Method and apparatus for providing tactile sensations |
US7336260B2 (en) | 2001-11-01 | 2008-02-26 | Immersion Corporation | Method and apparatus for providing tactile sensations |
US7535454B2 (en) | 2001-11-01 | 2009-05-19 | Immersion Corporation | Method and apparatus for providing haptic feedback |
US7808488B2 (en) | 2001-11-01 | 2010-10-05 | Immersion Corporation | Method and apparatus for providing tactile sensations |
US8159461B2 (en) | 2001-11-01 | 2012-04-17 | Immersion Corporation | Method and apparatus for providing tactile sensations |
US7369115B2 (en) | 2002-04-25 | 2008-05-06 | Immersion Corporation | Haptic devices having multiple operational modes including at least one resonant mode |
US7161580B2 (en) | 2002-04-25 | 2007-01-09 | Immersion Corporation | Haptic feedback using rotary harmonic moving mass |
US8576174B2 (en) | 2002-04-25 | 2013-11-05 | Immersion Corporation | Haptic devices having multiple operational modes including at least one resonant mode |
US6748604B2 (en) | 2002-05-30 | 2004-06-15 | Finger Fitting Products, Inc. | Glove massager |
US20030221238A1 (en) * | 2002-05-30 | 2003-12-04 | Duboff Caryn K. | Glove massager |
US8917234B2 (en) | 2002-10-15 | 2014-12-23 | Immersion Corporation | Products and processes for providing force sensations in a user interface |
US8125453B2 (en) | 2002-10-20 | 2012-02-28 | Immersion Corporation | System and method for providing rotational haptic feedback |
US8648829B2 (en) | 2002-10-20 | 2014-02-11 | Immersion Corporation | System and method for providing rotational haptic feedback |
US20040095310A1 (en) * | 2002-11-19 | 2004-05-20 | Pedro Gregorio | Haptic feedback devices and methods for simulating an orifice |
US6965370B2 (en) | 2002-11-19 | 2005-11-15 | Immersion Corporation | Haptic feedback devices for simulating an orifice |
US7233315B2 (en) | 2002-11-19 | 2007-06-19 | Immersion Corporation | Haptic feedback devices and methods for simulating an orifice |
US8316166B2 (en) | 2002-12-08 | 2012-11-20 | Immersion Corporation | Haptic messaging in handheld communication devices |
US8803795B2 (en) | 2002-12-08 | 2014-08-12 | Immersion Corporation | Haptic communication devices |
US8830161B2 (en) | 2002-12-08 | 2014-09-09 | Immersion Corporation | Methods and systems for providing a virtual touch haptic effect to handheld communication devices |
US7769417B2 (en) | 2002-12-08 | 2010-08-03 | Immersion Corporation | Method and apparatus for providing haptic feedback to off-activating area |
US8059088B2 (en) | 2002-12-08 | 2011-11-15 | Immersion Corporation | Methods and systems for providing haptic messaging to handheld communication devices |
US20040110527A1 (en) * | 2002-12-08 | 2004-06-10 | Kollin Tierling | Method and apparatus for providing haptic feedback to off-activating area |
US8073501B2 (en) | 2002-12-08 | 2011-12-06 | Immersion Corporation | Method and apparatus for providing haptic feedback to non-input locations |
US7336266B2 (en) | 2003-02-20 | 2008-02-26 | Immersion Corproation | Haptic pads for use with user-interface devices |
US20040164971A1 (en) * | 2003-02-20 | 2004-08-26 | Vincent Hayward | Haptic pads for use with user-interface devices |
US20040217942A1 (en) * | 2003-04-30 | 2004-11-04 | Danny Grant | Hierarchical methods for generating force feedback effects |
US7280095B2 (en) | 2003-04-30 | 2007-10-09 | Immersion Corporation | Hierarchical methods for generating force feedback effects |
US8164573B2 (en) | 2003-11-26 | 2012-04-24 | Immersion Corporation | Systems and methods for adaptive interpretation of input from a touch-sensitive input device |
US8749507B2 (en) | 2003-11-26 | 2014-06-10 | Immersion Corporation | Systems and methods for adaptive interpretation of input from a touch-sensitive input device |
US7742036B2 (en) | 2003-12-22 | 2010-06-22 | Immersion Corporation | System and method for controlling haptic devices having multiple operational modes |
US7234014B2 (en) * | 2004-01-14 | 2007-06-19 | International Business Machines Corporation | Seamless user interactions for portable storage devices |
US20050154815A1 (en) * | 2004-01-14 | 2005-07-14 | International Business Machines Corporation | Seamless user interactions for portable storage devices |
US7283120B2 (en) | 2004-01-16 | 2007-10-16 | Immersion Corporation | Method and apparatus for providing haptic feedback having a position-based component and a predetermined time-based component |
US7505030B2 (en) | 2004-03-18 | 2009-03-17 | Immersion Medical, Inc. | Medical device and procedure simulation |
US7205981B2 (en) | 2004-03-18 | 2007-04-17 | Immersion Corporation | Method and apparatus for providing resistive haptic feedback using a vacuum source |
US9336691B2 (en) | 2004-03-18 | 2016-05-10 | Immersion Corporation | Medical device and procedure simulation |
US20090181350A1 (en) * | 2004-03-18 | 2009-07-16 | Immersion Medical, Inc. | Medical Device And Procedure Simulation |
US20050209741A1 (en) * | 2004-03-18 | 2005-09-22 | Cunningham Richard L | Method and apparatus for providing resistive haptic feedback using a vacuum source |
US20050223327A1 (en) * | 2004-03-18 | 2005-10-06 | Cunningham Richard L | Medical device and procedure simulation |
US7289106B2 (en) | 2004-04-01 | 2007-10-30 | Immersion Medical, Inc. | Methods and apparatus for palpation simulation |
US20080156277A1 (en) * | 2007-01-03 | 2008-07-03 | Radio Systems Corporation | Animal Training Device Using a Vibration Probe to Deliver a Vibration Stimulus to an Animal |
US9582178B2 (en) | 2011-11-07 | 2017-02-28 | Immersion Corporation | Systems and methods for multi-pressure interaction on touch-sensitive surfaces |
US10152131B2 (en) | 2011-11-07 | 2018-12-11 | Immersion Corporation | Systems and methods for multi-pressure interaction on touch-sensitive surfaces |
US10775895B2 (en) | 2011-11-07 | 2020-09-15 | Immersion Corporation | Systems and methods for multi-pressure interaction on touch-sensitive surfaces |
US20140005820A1 (en) * | 2012-06-29 | 2014-01-02 | Robert Bosch Gmbh | Controlling a battery-operated handheld power tool |
US9904394B2 (en) | 2013-03-13 | 2018-02-27 | Immerson Corporation | Method and devices for displaying graphical user interfaces based on user contact |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3623064A (en) | Paging receiver having cycling eccentric mass | |
US3618070A (en) | Vibratory alerting devices | |
US5023504A (en) | Piezo-electric resonant vibrator for selective call receiver | |
CA2258762C (en) | Notifying vibration generator and portable communications device wherein the generator is used | |
JP3366507B2 (en) | Vibration generator | |
JPH1014195A (en) | Vibration generator for notification | |
GR3000448T3 (en) | Electromagnetic vibrator for seismic and civil-engineering applications | |
JPH11197601A (en) | Portable electronic apparatus | |
USRE28213E (en) | Paging receiver having cycling mass | |
US5379032A (en) | Impulse transducer enunciator | |
JP2877758B2 (en) | Vibration generator for information | |
GB1320891A (en) | Vibrator | |
US2561481A (en) | Alarm for deaf persons | |
US7135968B2 (en) | Digital alerting security unit | |
CH636494GA3 (en) | ||
US3349305A (en) | Electromechanical oscillators | |
WO1992019018A1 (en) | Piezo-electric resonant vibrator for a selective call receiver | |
JPS5210603A (en) | Signal transmitting system by means of the sense of touch | |
US3218533A (en) | Oscillator controlled electromagnetic drive | |
SU1137502A1 (en) | Physics teaching instrument | |
WO1991016694A1 (en) | Vibrating wrist band alert for a wrist worn device | |
GB2121567A (en) | A metronomic signalling device and a method of metronomic and tempo signalling | |
RU2063065C1 (en) | Aid in mechanics | |
US3562747A (en) | Audible signal device having enclosed electrical vibrator | |
JPH0633997Y2 (en) | Power generation toys |