US3611021A - Control circuit for providing regulated current to lamp load - Google Patents
Control circuit for providing regulated current to lamp load Download PDFInfo
- Publication number
- US3611021A US3611021A US25684A US3611021DA US3611021A US 3611021 A US3611021 A US 3611021A US 25684 A US25684 A US 25684A US 3611021D A US3611021D A US 3611021DA US 3611021 A US3611021 A US 3611021A
- Authority
- US
- United States
- Prior art keywords
- lamp
- circuit
- frequency
- current
- set forth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 26
- 239000003990 capacitor Substances 0.000 claims abstract description 47
- 238000004804 winding Methods 0.000 claims description 49
- 230000007423 decrease Effects 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 2
- 239000004020 conductor Substances 0.000 description 16
- 230000033228 biological regulation Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009738 saturating Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/538—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
- H02M7/53803—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
- H02M7/53806—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current in a push-pull configuration of the parallel type
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
- H05B41/38—Controlling the intensity of light
- H05B41/39—Controlling the intensity of light continuously
- H05B41/392—Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S315/00—Electric lamp and discharge devices: systems
- Y10S315/05—Starting and operating circuit for fluorescent lamp
Definitions
- Control circuit for gaseous discharge lamps including a variable frequency inverter for driving a highreactance transformer having a first capacitor in the transformer secondary tuned to a harmonic of the supply voltage to provide ignition voltage for the lamps, and a second capacitor in near series resonance with the fundamental frequency of the supply voltage to provide series impedance at the fundamental frequency for stable operation after ignition, and lamp Int.
- high-reactance ballast transformers are used to provide the voltages required for starting and operating one or more fluorescent lamps.
- a shunting capacitor in parallel circuit relationship with the high-reactance transformer secondary, a circuit is provided which can be made to resonate with the fundamental or harmonic of the AC input voltage, and develop a high starting voltage to ignite the lamp.
- a capacitor may be placed in series circuit relationship with the lamp to provide a net capacitive reactance in the lamp circuit during the period subsequent to lamp ignition.
- a direct current input voltage is connected to a variable frequency inverter which is operative to provide an AC voltage wavefonn containing a fundamental frequency component, plus one or more harmonics, to the primary of a tuned transformer.
- a first capacitor which is connected across the secondary of the high-reactance transformer, has a value such that the capacitor resonates with the leakage reactance of the transformer primary at some selected harmonic which is present in the inverter output waveform.
- the harmonic resonant voltage across the transformer secondary when added to the transfonner fundamental voltage, is made suflicient to ignite the lamp which is connected to the transformer secondary.
- a second capacitor connected in series with the lamp is selected to be near resonance with the leakage reactance of the transformer at the fundamental inverter frequency. Once the lamp is ignited the high harmonic voltage across the first capacitor is swamped out by the large fundamental current flowing through the second capacitor, the lamp and the secondary winding of the trandonner.
- the equivalent series impedance at the fundamental inverter frequency provides the necessary ballast for stable operation.
- Lamp current control is accomplished by taking advantage of the lamp current versus frequency characteristic of the tuned transformer configuration consisting of the transformer and the first and second capacitor. Lamp current is sensed and the sensing signal is compared to a preset reference level. If the lamp current attempts to exceed the reference level, an error signal is applied to a control input of the variable frequency inverter circuit, and the output frequency of the inverter is changed in a direction to reduce the lamp current.
- the output of the inverter frequency changes in a direction to increase the lamp current.
- FIG. 1 is a showing of one embodiment of current control circuit of the invention
- FIG. 2 is a graph of the harmonic starting voltage versus frequency characteristics of a tuned transformer configuration in such a circuit where the lamp is not ignited;
- FIGS. 3A and 3B are graphs of the lamp current versus frequency characteristics of a tuned transformer configuration in such a circuit
- FIG. 4 is an illustration of a reference and comparator circuit designed to produce the curve of FIG. 313 above.
- FIGS. 5-7 are illustrations of different tuned transformer configurations for use in the novel circuit arrangement.
- variable frequency inverter 3 has a pair of inputs 1, 2 connected to any applicable source of direct current input voltage.
- Variable frequency inverter 3 includes a saturable core oscillator 10 which drives a pair of switching transistors 4, 8 in a manner to be described, to supply a square wave output over conductors 13, 14 to a center tapped primary winding 16 woundwith the indicated polarity on core 17 of a tuned transformer 15.
- the waveform output from inverter 10 will contain a fundamental frequency component plus one or more harmonics.
- Transformer 15 includes a first, second and third secondary windings 19, 20, 21 respectively wound on core 17 with the polarities indicated by the dots adjacent the respective windings.
- the secondary windings 19, 20 of transformer 15 are connected in series with the filaments 30, 31 respectively of a gaseous device, such as illustrated fluorescent lamp 27.
- Secondary winding 21 is connected in series with capacitor 26, lamp 27, and the primary winding 35 on a current transformer 36 in lamp sensing circuit 34.
- a second capacitor 25 is connected across the secondary 21 of the high-reactance transformer 15.
- capacitor 25 is made to resonate with the leakage reactance of transformer 15 at some selected present in the inverter output waveform.
- the harmonic resonant voltage across secondary winding 21, when added to the transformer fundamental voltage, is made sufficient to ignite the lamp (see FIG. 2).
- the output frequency of inverter 3 during this start up" condition is denoted the starting" frequency.
- Capacitor 26 is selected to be near resonance with the leakage reactance of the winding of transformer 15 at the fundamental inverter frequency. Once the lamp 27 is ignited, the voltage across capacitor 25 is swamped out by a large fundamental current flowing through secondary winding 21, capacitor 26, lamp 27, and the primary winding 35 of current transformer 36. The equivalent series impedance of these components at the fundamental inverter frequency provides the necessary ballast for stable operation.
- Lamp Current Regulation In accordance with a novel concept of the invention, current to the lamp 27 is automatically regulated by utilization of the lamp current versus frequency characteristic of the tuned transformer configuration consisting of transformer 15, capacitor 25, and capacitor 26. If the current flow through lamp 27 attempts to exceed a reference level preset in reference and comparator circuit 45, the circuit 45 generates and feeds an error signal over conductor 60 to the saturable core oscillator 10 in the variable frequency inverter 3, and the inverter output frequency is changed in a direction to reduce lamp current.
- the high harmonic voltage across capacitor 25 is sufficient to ignite the lamp 27, and thereafter current at the fundamental square wave frequency begins to flow through capacitor 26, lamp 27, current transformer primary winding 35 of transformer 36 and transformer secondary winding 21.
- the lamp current through the primary winding 35 of current transformer 36 is transformed to the center tapped secondary 37 for rectification by diodes 38 and 40 and filtering by capacitor 41.
- the filtered DC voltage developed across resistor 42 is proportional to the lamp current through lamp 27, and is fed over conductor 43 to the base of comparison transistor 46 in the reference and comparator circuit 45.
- FIG. 1 shows a reference and comparator circuit 45 for a device wherein the starting frequency, (the fundamental inverter frequency) is above the peak of the lamp current versus frequency curve, as shown in FIG. 3A. If the device were designed so that the starting frequency were below the peak of the curve, as shown in FIG. 38, a reference and comparator circuit 45', such as shown in FIG. 4, would be used. The following description is of the reference and comparator circuit shown in Fig. 1.
- Comparison transistor 46 is connected to compare such signal with a preset reference voltage the value of which is determined by the setting on potentiometer 50, and to such end has an emitter connected through the adjustable arm 49 of potentiometer 50 to negative conductor 2.
- the collector of transistor 46 is connected to the base of the control transistor 47 to thereby vary the value of the control signal fed over conductor 60 to oscillator 10. More specifically, the emitter of transistor 47 is connected to a stable voltage point established at the junction of Zener diode 51 and resistance 52 which are series connected across the DC input conductors l, 2.
- the variable current output from the collector of transistor 47 (as determined by the output of transistor 46) is fed over conductor 60 to the input for oscillator 10.
- the collector of transistor 47 is also connected through resistor 48 and resistor 50 to negative potential on conductor 2.
- the starting frequency of the oscillator 10 is determined by the voltage of the reference Zener diode 51 minus the voltage drop across resistor 48.
- transistor 47 is off.
- the input signal on conductor 60 will be adjusted to vary the frequency output of inverter 3 in a related manner. More specifically, if the voltage across resistor 42 attempts to exceed the reference level established over adjustable resistor 50 at the emitter of transistor 46 by more than the emitter-base drop of transistor 46, collector current will begin to flow in transistor 46, and transistor 47 will be turned on to cause an increased voltage to appear on conductor 60 and the input for the saturating core oscillator 10.
- potentiometer 50 of different values will vary the operating frequency range of the circuit. If the current is too high, the setting on potentiometer 50 is lowered so that the reference circuit will increase the voltage to the oscillator circuit 3 to control same to operate at a higher frequency and thereby reduce the current. Raising of the setting on potentiometer 50 efiects a decrease of the voltage to the oscillator 3 and a decrease in the oscillator frequency to increase the current.
- a reference and comparator circuit 45 such as shown in H6. 4, would be used. With reference thereto, components similar to those shown in FIG. 1 are identified by a corresponding number.
- the voltage on line 60 equals the voltage established by Zener diode 511' less the voltage across resistor 101. As the voltage across resistor 101 goes up, the voltage on line 60 goes down, and vice versa. The voltage drop across resistor 101 is dependent on the amount of current going through resistor 10], and the value of current through resistor 101 is dependent on the conductivity of transistor 100, which conductivity in turn is dependent on the conductivity of transistor 46'.
- Adjustment of potentiometer 50 to a lower setting will lower the current range, and adjustment of potentiometer 50 to higher setting will raise the current range for the unit in an obvious manner. If the lamp current and the resulting current on line 43 were to be reduced to zero, then the voltage on line 60 would be at maximum and the oscillator frequency would be increased to j ⁇ , and the resulting harmonic frequency nfl, would cause the lamp to fire.
- oscillator 10 basically comprises a pair of switching transistors 61, 62, the collector outputs of which are connected to opposite ends of the primary winding 63 which is wound on a saturable core 69 of transformer 70.
- the center tap 64 of primary winding 63 is connected to negative input conductor 2.
- transistors 61, 62 are series connected through resistances 65, 67 to bases of transistors 61, 62 respectively and through their respective emitters to diode 74, and also through resistor 73 to negative conductor 2.
- the emitters of transistors 61, 62 are connected common to one another and to the input conductor 60 over which the control signals are received from the reference and comparator circuit 45.
- the saturable core oscillator 10 is operative in a conventional manner to provide square wave signals across secondary windings 71, 72 of transformer 70 through current limiting resisters 75, 76 to the base circuits of switching transistors 4, 8 to efiect alternate switching of transistors 4, 8, and the provision thereby of a square wave AC voltage at the primary winding of transformer which waveforms have a frequency identical with that of the base drive signals output from transformer 70 of oscillator 10.
- Feedback diodes 5 and 11 connected between the collector of transistors 4, 8 and the negative conductor 2 permit flowback of reactive current to the DC input.
- a typical characteristic is shown thereat for a circuit in which the components are selected so that the resonant frequency of capacitor 26 and the leakage reactance of transformer 15 falls somewhat below the starting frequency.
- the values of the tuned transformer 15 and inverter 3 are selectedso that the lamp current at the starting frequency is slightly higher than the maximum desired lamp current for the worst input case and worst lamp conditions, i.e., minimum DC input voltage across conductors 1, 2 and maximum voltage drop across lamp 27.
- the starting frequency for the lamp is at the lower end of the operating frequency range and that the lamp current is at the higher value at start. If lamp current tends to increase, the regulating system will cause the inverter frequency to increase (i.e. above the starting frequency) and the lamp current will. be reduced. As the lamp current drops, the inverter frequency is decreased, and the lamp current is regulated to the desired value.
- harmonic resonance at start occurs between the leakage reactance of transformer 15 and the series combination of capacitors 25 and 26. Also the voltage available to ignite the lamp at start is the voltage across the secondary 21 reduced by the capacitance divider formed by capacitor 25 and 26.
- Fig. 7 shows a further alternate circuit to that shown in Fig, 1.
- an auto transformer connection is used which places the primary voltage of winding 16 in series with the secondary voltage; otherwise operation is essentially the same as described previously.
- nj', 60 kHz. (the third harmonic)
- a typical operating range might be 20-25 kHz.
- j ⁇ , is minimumJn the use of the arrangement of Fig. SE
- a typical operating range might'be 15-20 kl-lz. where f is maximum.
- a control circuit for providing regulated current to a gaseous lamp comprising an input circuit over which direct current power is supplied, a variable frequency inverter circuit connected-to said input means including a control input for adjusting the frequency of the output signals from said inverter circuit, a high-reactance transformer having a primary and a secondary winding, means connecting said primary winding to the output of said variable frequency inverter.
- a further winding means on said transformer connected to energize the filaments of said lamp, a shunt capacitor connected in shunt of said secondary winding for providing harmonic resonance during start, a series capacitor connected in series with said secondary winding and said gmeous lamp to provide fundamental resonance for lamp energization subsequent to start, and lamp current regulating means for providing a control signal to said control input to adjust the frequency output of said variable frequency inverter circuit in a current regulating mode.
- said lamp current regulating means includes a sensingv circuit for providing a signal representative of the value of the -lamp current, a reference circuit for providing a-preset reference signal level, and means for providing a control signal to said variable frequency inverter circuit of a magnitude related to the differential of the sensed signal relative to said preset reference signal level.
- variable frequency inverter circuit includes an oscillator circuit and a pair of switching transistors driven by said oscillator circuit, and in which said control signal is fed to said control input to vary the output frequency of said inverter circuit to maintain a constant output current and thereby a constant light intensity from said lamp.
- control circuit as set forth in claim 6 in which said control signal to said variable frequency inverter circuit increases the inverter output frequency to reduce lamp current responsive to detection of an increase in lamp current by said lamp current regulating means.
- a control circuit as set forth in claim 8 in which said control signal to said variable frequency inverter circuit decreases the inverter output frequency to decrease the lamp current in response to the detection of an increase in lamp current by said lamp, current regulating means.
- a control circuit as set forth in claim 1 in which said shunt capacitor is connected'across only a part of said secondary winding.
- said lamp current regulating means comprises a current transformer having a primary winding connected in series with said lamp, and a center tapped secondary winding, a rectifier circuit connected to the output of said secondary winding, and a resistor connected to the output of said rectifier circuit to develop a DC signal representative of the current in said lamp circuit.
- a control circuit as set forth in claim 1 in which said frequency circuit operates at a first frequency for ignition of said lamp and a second frequency for operation of said lamp, and wherein a momentary interruption of lamp power during operation of said lamp and a resulting loss of lamp current causes said lamp current regulating means to provide a control input signal to return the variable frequency inverter circuit from said second operating frequency to said first starting frequency for reignition of said lamp.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
Abstract
Control circuit for gaseous discharge lamps including a variable frequency inverter for driving a high-reactance transformer having a first capacitor in the transformer secondary tuned to a harmonic of the supply voltage to provide ignition voltage for the lamps, and a second capacitor in near series resonance with the fundamental frequency of the supply voltage to provide series impedance at the fundamental frequency for stable operation after ignition, and lamp current sensing means for providing a feedback signal to a variable reference comparator circuit which adjusts the frequency output of the inverter to provide regulated lamp current for changes in input voltage and lamp voltage.
Description
United States Patent Inventor Appl. No.
Filed Patented Assignee I Kenneth A. Wallace CONTROL CIRCUIT FOR PROVIDING REGULATED CURRENT TO LAMP LOAD 15 Claims, 8 Drawing Figs.
US. Cl
315/239, 3 l5/307, 3l5/DIG. 5, 331/113 A Primary Examiner-Roy Lake Assistant ExaminerPalmer C. Demeo Attorney.lohnson, Dienner, Emrich, Verbeck & Wagner ABSTRACT: Control circuit for gaseous discharge lamps including a variable frequency inverter for driving a highreactance transformer having a first capacitor in the transformer secondary tuned to a harmonic of the supply voltage to provide ignition voltage for the lamps, and a second capacitor in near series resonance with the fundamental frequency of the supply voltage to provide series impedance at the fundamental frequency for stable operation after ignition, and lamp Int. Cl ..]-]03k3/281, current sensing means for providing a feedback signal to a H05b 41/ 14 variable reference comparator circuit which adjusts the Field of Search 315/DlG. 5, frequency output of the inverter to provide regulated lamp DIG. 2, 307, 239; 33 ill 13 A current for changes in input voltage and lamp voltage.
ERROR SIGNAL FEEDBACK LINE VARIABLE FREQUENCY INVEEI'ER LAMP IRCUIT SENSING 3 cnzcurr a5 aw LAMP REFERENCE AND COMPARATOR PATENTEB um 51971 3,611,021
2. Description of Prior Art The electrical characteristics of fluorescent lamps are such that a high starting voltage is required for ignition, and a ballast (or series impedance) is required for stable operation thercafier. The light intensity output from an energized fluorescent lamp is proportional to the RMS current through the lamp.
In certain prior art arrangements high-reactance ballast transformers are used to provide the voltages required for starting and operating one or more fluorescent lamps. By connecting a shunting capacitor in parallel circuit relationship with the high-reactance transformer secondary, a circuit is provided which can be made to resonate with the fundamental or harmonic of the AC input voltage, and develop a high starting voltage to ignite the lamp. In addition a capacitor may be placed in series circuit relationship with the lamp to provide a net capacitive reactance in the lamp circuit during the period subsequent to lamp ignition.
While the above system is effective in starting and operating fluorescent lamps, it does not, by itself, provide an adjustable, regulated lamp current. In certain applications, as for example in photographic or electrostatic copying machines, a regulated lamp current is required to maintain constant light intensity. While various attempts have been made to incorporate regulation in the high-reactance transformer by saturation of the magnetic core, such attempts have been generally inefficient and the arrangement in general has been difficult to adjust.
SUMMARY OF THE INVENTION It is the purpose of the present invention to provide a control circuit for gaseous discharge devices, such as fluorescent lamps, which has simple and efficient means for adjusting and regulating lamp current. In a preferred embodiment of such arrangement, a direct current input voltage is connected to a variable frequency inverter which is operative to provide an AC voltage wavefonn containing a fundamental frequency component, plus one or more harmonics, to the primary of a tuned transformer. A first capacitor, which is connected across the secondary of the high-reactance transformer, has a value such that the capacitor resonates with the leakage reactance of the transformer primary at some selected harmonic which is present in the inverter output waveform. The harmonic resonant voltage across the transformer secondary, when added to the transfonner fundamental voltage, is made suflicient to ignite the lamp which is connected to the transformer secondary.
A second capacitor connected in series with the lamp is selected to be near resonance with the leakage reactance of the transformer at the fundamental inverter frequency. Once the lamp is ignited the high harmonic voltage across the first capacitor is swamped out by the large fundamental current flowing through the second capacitor, the lamp and the secondary winding of the trandonner. The equivalent series impedance at the fundamental inverter frequency provides the necessary ballast for stable operation.
Lamp current control is accomplished by taking advantage of the lamp current versus frequency characteristic of the tuned transformer configuration consisting of the transformer and the first and second capacitor. Lamp current is sensed and the sensing signal is compared to a preset reference level. If the lamp current attempts to exceed the reference level, an error signal is applied to a control input of the variable frequency inverter circuit, and the output frequency of the inverter is changed in a direction to reduce the lamp current.
With decrease of the lamp current below the reference point, the output of the inverter frequency changes in a direction to increase the lamp current.
BRIEF DESCRIPTION OF THE DRAWINGS With reference to the drawings,
FIG. 1 is a showing of one embodiment of current control circuit of the invention;
FIG. 2 is a graph of the harmonic starting voltage versus frequency characteristics of a tuned transformer configuration in such a circuit where the lamp is not ignited;
FIGS. 3A and 3B are graphs of the lamp current versus frequency characteristics of a tuned transformer configuration in such a circuit;
FIG. 4 is an illustration of a reference and comparator circuit designed to produce the curve of FIG. 313 above; and
FIGS. 5-7 are illustrations of different tuned transformer configurations for use in the novel circuit arrangement.
the novel lamp DETAILED DESCRIPTION With reference to FIG. 1, there is shown thereat a preferred embodiment of the invention. As there shown, a variable frequency inverter 3 has a pair of inputs 1, 2 connected to any applicable source of direct current input voltage. Variable frequency inverter 3 includes a saturable core oscillator 10 which drives a pair of switching transistors 4, 8 in a manner to be described, to supply a square wave output over conductors 13, 14 to a center tapped primary winding 16 woundwith the indicated polarity on core 17 of a tuned transformer 15. The waveform output from inverter 10 will contain a fundamental frequency component plus one or more harmonics.
Transformer 15 includes a first, second and third secondary windings 19, 20, 21 respectively wound on core 17 with the polarities indicated by the dots adjacent the respective windings. The secondary windings 19, 20 of transformer 15 are connected in series with the filaments 30, 31 respectively of a gaseous device, such as illustrated fluorescent lamp 27. Secondary winding 21 is connected in series with capacitor 26, lamp 27, and the primary winding 35 on a current transformer 36 in lamp sensing circuit 34.
A second capacitor 25 is connected across the secondary 21 of the high-reactance transformer 15. During the start up" condition capacitor 25 is made to resonate with the leakage reactance of transformer 15 at some selected present in the inverter output waveform. The harmonic resonant voltage across secondary winding 21, when added to the transformer fundamental voltage, is made sufficient to ignite the lamp (see FIG. 2). The output frequency of inverter 3 during this start up" condition is denoted the starting" frequency.
Lamp Current Regulation In accordance with a novel concept of the invention, current to the lamp 27 is automatically regulated by utilization of the lamp current versus frequency characteristic of the tuned transformer configuration consisting of transformer 15, capacitor 25, and capacitor 26. If the current flow through lamp 27 attempts to exceed a reference level preset in reference and comparator circuit 45, the circuit 45 generates and feeds an error signal over conductor 60 to the saturable core oscillator 10 in the variable frequency inverter 3, and the inverter output frequency is changed in a direction to reduce lamp current.
harmonic More specifically, with capacitor 25 tuned with the leakage reactance of transformer to be resonant at the third harmonic of the starting frequency, the high harmonic voltage across capacitor 25 is sufficient to ignite the lamp 27, and thereafter current at the fundamental square wave frequency begins to flow through capacitor 26, lamp 27, current transformer primary winding 35 of transformer 36 and transformer secondary winding 21. The lamp current through the primary winding 35 of current transformer 36 is transformed to the center tapped secondary 37 for rectification by diodes 38 and 40 and filtering by capacitor 41. The filtered DC voltage developed across resistor 42 is proportional to the lamp current through lamp 27, and is fed over conductor 43 to the base of comparison transistor 46 in the reference and comparator circuit 45.
FIG. 1 shows a reference and comparator circuit 45 for a device wherein the starting frequency, (the fundamental inverter frequency) is above the peak of the lamp current versus frequency curve, as shown in FIG. 3A. If the device were designed so that the starting frequency were below the peak of the curve, as shown in FIG. 38, a reference and comparator circuit 45', such as shown in FIG. 4, would be used. The following description is of the reference and comparator circuit shown in Fig. 1.
In operation, the starting frequency of the oscillator 10 is determined by the voltage of the reference Zener diode 51 minus the voltage drop across resistor 48. During the startup condition, transistor 47 is off. After startup, with variation of the lamp current above the preselected value, the input signal on conductor 60 will be adjusted to vary the frequency output of inverter 3 in a related manner. More specifically, if the voltage across resistor 42 attempts to exceed the reference level established over adjustable resistor 50 at the emitter of transistor 46 by more than the emitter-base drop of transistor 46, collector current will begin to flow in transistor 46, and transistor 47 will be turned on to cause an increased voltage to appear on conductor 60 and the input for the saturating core oscillator 10. Consequently the frequency output of inverter 10 will increase, and in a system having the characteristics of Fig. 3A, lamp current will decrease to hold the lamp current constant at the value determined by the setting on potentiometer 50. Correspondingly, as the lamp current decreases, and the error signal provided across resistor 42 decreases, the conductivity of transistors 46 and 47 decreases to reduce the value of the control signal over conductor 60 to oscillator 10 to decrease the output frequency of inverter 3. Reduction of the frequency output of inverter 3 will result in the increase of lamp current, whereby current to the lamp tends to remain constant despite normal variations in DC input voltage and lamp voltage drop.
It is apparent that adjustment of potentiometer 50 of different values will vary the operating frequency range of the circuit. If the current is too high, the setting on potentiometer 50 is lowered so that the reference circuit will increase the voltage to the oscillator circuit 3 to control same to operate at a higher frequency and thereby reduce the current. Raising of the setting on potentiometer 50 efiects a decrease of the voltage to the oscillator 3 and a decrease in the oscillator frequency to increase the current.
If the lamp were to extinguish, the current at input 43 to transistor 46 would go zero and transistor 46 will turn off to in turn effect turnoff of transistor 47. The voltage on output path 60 will go to minimum value, and at minimum voltage the frequency of the oscillator drops back to f,,, the harmonic frequency drops to nf, and the lamp will retire.
The position of the peak of the lamp current versus frequency curve (FIG. 3A) on the frequency axis is detennined by the value of the leakage reactance 21 and capacitor 26. Thus by changing the value of capacitor 26 it is possible to shift the peak of the curve along the frequency axes.
If the circuit components (i.e., capacitor 26 and reactance 21) are selected so that the starting frequency is below the peak of the lamp current versus frequency curve (FIG. 38), a reference and comparator circuit 45, such as shown in H6. 4, would be used. With reference thereto, components similar to those shown in FIG. 1 are identified by a corresponding number. In such arrangement, the voltage on line 60 equals the voltage established by Zener diode 511' less the voltage across resistor 101. As the voltage across resistor 101 goes up, the voltage on line 60 goes down, and vice versa. The voltage drop across resistor 101 is dependent on the amount of current going through resistor 10], and the value of current through resistor 101 is dependent on the conductivity of transistor 100, which conductivity in turn is dependent on the conductivity of transistor 46'.
Current on line 43 to the base of comparison transistor 46', and the related base voltage when compared to the present reference voltage determined by the setting on potentiometer 50', will determine the conductivity of transistor 46. An increase in current, and a corresponding increase in voltage on line 43 will cause transistor 46' to become more conductive. causing transistor to become more conductive, and an increased current flow through resistor 101. With the greater voltage drop across resistor 101 as the result of the increased current flow, there is a decreasing voltage on line 60 to the oscillator, causing a decrease in frequency and, as seen in Fig. 38, a corresponding decrease in lamp current.
By the same analogy, a decrease in current on line 43 will cause an increased voltage on line 60 delivered to the oscillator causing an increased frequency and a corresponding increase in lamp current.
Adjustment of potentiometer 50 to a lower setting will lower the current range, and adjustment of potentiometer 50 to higher setting will raise the current range for the unit in an obvious manner. If the lamp current and the resulting current on line 43 were to be reduced to zero, then the voltage on line 60 would be at maximum and the oscillator frequency would be increased to j}, and the resulting harmonic frequency nfl, would cause the lamp to fire.
With specific reference now to the variable frequency inverter 3 as shown in Fig. 1, it will be recalled that switching transistors 4, 8 are alternately switched on by the output signals from the saturating core oscillator 10 to provide a square wave AC voltage output to transformer 15 for energizing the lamp load. As shown in Fig. l, oscillator 10 basically comprises a pair of switching transistors 61, 62, the collector outputs of which are connected to opposite ends of the primary winding 63 which is wound on a saturable core 69 of transformer 70. The center tap 64 of primary winding 63 is connected to negative input conductor 2. Feedback windings 66, 68 wound on saturable core 69, with the indicated polarities. are series connected through resistances 65, 67 to bases of transistors 61, 62 respectively and through their respective emitters to diode 74, and also through resistor 73 to negative conductor 2. The emitters of transistors 61, 62 are connected common to one another and to the input conductor 60 over which the control signals are received from the reference and comparator circuit 45.
The saturable core oscillator 10 is operative in a conventional manner to provide square wave signals across secondary windings 71, 72 of transformer 70 through current limiting resisters 75, 76 to the base circuits of switching transistors 4, 8 to efiect alternate switching of transistors 4, 8, and the provision thereby of a square wave AC voltage at the primary winding of transformer which waveforms have a frequency identical with that of the base drive signals output from transformer 70 of oscillator 10. Feedback diodes 5 and 11 connected between the collector of transistors 4, 8 and the negative conductor 2 permit flowback of reactive current to the DC input.
With reference once more to Fig. 3A, a typical characteristic is shown thereat for a circuit in which the components are selected so that the resonant frequency of capacitor 26 and the leakage reactance of transformer 15 falls somewhat below the starting frequency. The values of the tuned transformer 15 and inverter 3 are selectedso that the lamp current at the starting frequency is slightly higher than the maximum desired lamp current for the worst input case and worst lamp conditions, i.e., minimum DC input voltage across conductors 1, 2 and maximum voltage drop across lamp 27.
It will be apparent that in the circuit shown in Fig. 3A, the starting frequency for the lamp is at the lower end of the operating frequency range and that the lamp current is at the higher value at start. If lamp current tends to increase, the regulating system will cause the inverter frequency to increase (i.e. above the starting frequency) and the lamp current will. be reduced. As the lamp current drops, the inverter frequency is decreased, and the lamp current is regulated to the desired value.
It should be'obvious that be selecting the components so that the lamp current resonant peak afier start falls above the starting frequency as shown in FIG. 3B, the operating frequency range could be made to occur below the starting frequency, and lamp current would decrease as inverter frequency was made less than the starting frequency. ln either case the end result is the same, the lamp current tends to remain constant at the reference level despite normal variations in' DC input voltage and lamp voltage drop. The value of current is of course readily adjusted by movement of potentiometer arm-49 to change the reference level. Should the lamp become extinguished for any reason the inverter frequency drops back to r same starting and control characteristics. if the tuned transformer/lamp circuit shown in Fig. l is replaced by the circuit shown in Fig. 5 the operation is essentially the same as that described previously except that harmonic resonance at start" occurs between the leakage reactance of transformer 15 and the series combination of capacitors 25 and 26. Also the voltage available to ignite the lamp at start is the voltage across the secondary 21 reduced by the capacitance divider formed by capacitor 25 and 26.
The operation of the circuit shown in'Fig. 6is identical to that of the corresponding parts shown in Fig. 1 except that the, shunting capacitor has been connected to a tap on the transformer secondary 21 instead of across the entire winding.
Fig. 7 shows a further alternate circuit to that shown in Fig, 1. In this case an auto transformer connection is used which places the primary voltage of winding 16 in series with the secondary voltage; otherwise operation is essentially the same as described previously.
Numerous advantages in the use of theforegoing arrangement include the fact that no electrical or mechanical switch is required to start the lamp while yet achieving wide current control with relatively small frequency change. A nearly sinusoidal current is provided by the series resonant circuit during stable operation and by starting the lamp with harmonic resonance (ratherthan fundamental resonance) the circulating energy and current supplied by the source is greatly reduced, whereby less stringent requirements are placed on the inverter which providesthe voltage for the lamp.
Representative values,-which are not to'be considered limiting, could be as follows:
nj',=60 kHz. (the third harmonic) In the use of the arrangement of Fig. 3A, a typical operating range might be 20-25 kHz. where j}, is minimumJn the use of the arrangement of Fig. SE, a typical operating range might'be 15-20 kl-lz. where f is maximum.
While what is described is regarded to be a preferred embodiment of the invention, it will be apparent thatvariations, rearrangements, modifications and changes may be made therein without departing from the scope of the-present invention as defined by the appended claims.
1. A control circuit for providing regulated current to a gaseous lamp comprising an input circuit over which direct current power is supplied, a variable frequency inverter circuit connected-to said input means including a control input for adjusting the frequency of the output signals from said inverter circuit, a high-reactance transformer having a primary and a secondary winding, means connecting said primary winding to the output of said variable frequency inverter. a further winding means on said transformer connected to energize the filaments of said lamp, a shunt capacitor connected in shunt of said secondary winding for providing harmonic resonance during start, a series capacitor connected in series with said secondary winding and said gmeous lamp to provide fundamental resonance for lamp energization subsequent to start, and lamp current regulating means for providing a control signal to said control input to adjust the frequency output of said variable frequency inverter circuit in a current regulating mode.
2. A circuit as set forth in claim 1 in which said lamp current regulating means'includes a sensingv circuit for providing a signal representative of the value of the -lamp current, a reference circuit for providing a-preset reference signal level, and means for providing a control signal to said variable frequency inverter circuit of a magnitude related to the differential of the sensed signal relative to said preset reference signal level.
3. A circuit as set forth in claim 2 in which said reference circuit includes means'for adjusting said preset reference to different values.
4. A circuit as set forth inclaim 1 in which said variable frequency inverter circuit includes an oscillator circuit and a pair of switching transistors driven by said oscillator circuit, and in which said control signal is fed to said control input to vary the output frequency of said inverter circuit to maintain a constant output current and thereby a constant light intensity from said lamp.
5. A control circuit as set forth inclaim 4 in which said oscillator circuit is a saturable core oscillator.
6.. A control circuit as set forth in claim 1 in which said series capacitor and said secondary winding of said transformer have a value which establishes the operating frequency of the variable frequency-inverter circuit to be above the starting frequency of the inverter circuit.
7. A control circuit as set forth in claim 6 in which said control signal to said variable frequency inverter circuit increases the inverter output frequency to reduce lamp current responsive to detection of an increase in lamp current by said lamp current regulating means. i
8. A control circuit as set forth in claim 1 in which said series capacitor and said secondary winding of said transformer has a value which establishes the operating frequency to occur below the starting frequency of the variable frequency inverter circuit.
9. A control circuit as set forth in claim 8 in which said control signal to said variable frequency inverter circuit decreases the inverter output frequency to decrease the lamp current in response to the detection of an increase in lamp current by said lamp, current regulating means.
10. A control circuit as set forth in claim 1 in which said shunt capacitor is connected'across only a part of said secondary winding.
l l. A control circuit as set forth in claim 1 in which said primary and secondary transformer windings are connected in an autotransformer configuration with the primary voltage in series with the secondary voltage, and said shunt capacitor is connected across the secondary winding and said series capacitor is connected in series with the parallel connected secondary winding and shunt capacitor.
12. A control circuit as set forth in claim 1 in which said traniormer and frequency inverter circuit have components which provide a lamp current at the starting frequency which is slightly higher than the maximum desired lamp current for the minimum input voltage over said input circuit and the maximum drop across said lamp.
[3. A control circuit as set forth in claim 1 in which the signal output of said adjustable frequency inverter current comprises an AC square wave having a fundamental'frequency component plus one or more harmonics.
14. A control circuit as set forth in claim 1 in which said lamp current regulating means comprises a current transformer having a primary winding connected in series with said lamp, and a center tapped secondary winding, a rectifier circuit connected to the output of said secondary winding, and a resistor connected to the output of said rectifier circuit to develop a DC signal representative of the current in said lamp circuit.
15. A control circuit as set forth in claim 1 in which said frequency circuit operates at a first frequency for ignition of said lamp and a second frequency for operation of said lamp, and wherein a momentary interruption of lamp power during operation of said lamp and a resulting loss of lamp current causes said lamp current regulating means to provide a control input signal to return the variable frequency inverter circuit from said second operating frequency to said first starting frequency for reignition of said lamp.
Claims (15)
1. A control circuit for providing regulated current to a gaseous lamp comprising an input circuit over which direct current power is supplied, a variable frequency inverter circuit connected to said input means including a control input for adjusting the frequency of the output signals from said inverter circuit, a high-reactance transformer having a primary and a secondary winding, means connecting said primary winding to the output of said variable frequency inverter, a further winding means on said transformer connected to energize the filaments of said lamp, a shunt capacitor connected in shunt of said secondary winding for providing harmonic resonance during start, a series capacitor connected in series with said secondary winding and said gaseous lamp to provide fundamental resonance for lamp energization subsequent to start, and lamp current regulating means for providing a control signal to said control input to adjust the frequency output of said variable frequency inverter circuit in a current regulating mode.
2. A circuit as set forth in claim 1 in which said lamp current regulating means includes a sensing circuit for providing a signal representative of the value of the lamp current, a rEference circuit for providing a preset reference signal level, and means for providing a control signal to said variable frequency inverter circuit of a magnitude related to the differential of the sensed signal relative to said preset reference signal level.
3. A circuit as set forth in claim 2 in which said reference circuit includes means for adjusting said preset reference to different values.
4. A circuit as set forth in claim 1 in which said variable frequency inverter circuit includes an oscillator circuit and a pair of switching transistors driven by said oscillator circuit, and in which said control signal is fed to said control input to vary the output frequency of said inverter circuit to maintain a constant output current and thereby a constant light intensity from said lamp.
5. A control circuit as set forth in claim 4 in which said oscillator circuit is a saturable core oscillator.
6. A control circuit as set forth in claim 1 in which said series capacitor and said secondary winding of said transformer have a value which establishes the operating frequency of the variable frequency inverter circuit to be above the starting frequency of the inverter circuit.
7. A control circuit as set forth in claim 6 in which said control signal to said variable frequency inverter circuit increases the inverter output frequency to reduce lamp current responsive to detection of an increase in lamp current by said lamp current regulating means.
8. A control circuit as set forth in claim 1 in which said series capacitor and said secondary winding of said transformer has a value which establishes the operating frequency to occur below the starting frequency of the variable frequency inverter circuit.
9. A control circuit as set forth in claim 8 in which said control signal to said variable frequency inverter circuit decreases the inverter output frequency to decrease the lamp current in response to the detection of an increase in lamp current by said lamp current regulating means.
10. A control circuit as set forth in claim 1 in which said shunt capacitor is connected across only a part of said secondary winding.
11. A control circuit as set forth in claim 1 in which said primary and secondary transformer windings are connected in an autotransformer configuration with the primary voltage in series with the secondary voltage, and said shunt capacitor is connected across the secondary winding and said series capacitor is connected in series with the parallel connected secondary winding and shunt capacitor.
12. A control circuit as set forth in claim 1 in which said transformer and frequency inverter circuit have components which provide a lamp current at the starting frequency which is slightly higher than the maximum desired lamp current for the minimum input voltage over said input circuit and the maximum drop across said lamp.
13. A control circuit as set forth in claim 1 in which the signal output of said adjustable frequency inverter current comprises an AC square wave having a fundamental frequency component plus one or more harmonics.
14. A control circuit as set forth in claim 1 in which said lamp current regulating means comprises a current transformer having a primary winding connected in series with said lamp, and a center tapped secondary winding, a rectifier circuit connected to the output of said secondary winding, and a resistor connected to the output of said rectifier circuit to develop a DC signal representative of the current in said lamp circuit.
15. A control circuit as set forth in claim 1 in which said frequency circuit operates at a first frequency for ignition of said lamp and a second frequency for operation of said lamp, and wherein a momentary interruption of lamp power during operation of said lamp and a resulting loss of lamp current causes said lamp current regulating means to provide a control input signal to return the variable frequency inverter circuit from said second operating frequency to said fIrst starting frequency for reignition of said lamp.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2568470A | 1970-04-06 | 1970-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3611021A true US3611021A (en) | 1971-10-05 |
Family
ID=21827487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US25684A Expired - Lifetime US3611021A (en) | 1970-04-06 | 1970-04-06 | Control circuit for providing regulated current to lamp load |
Country Status (1)
Country | Link |
---|---|
US (1) | US3611021A (en) |
Cited By (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4045711A (en) * | 1976-03-19 | 1977-08-30 | Gte Sylvania Incorporated | Tuned oscillator ballast circuit |
DE2705984A1 (en) * | 1976-03-01 | 1977-09-08 | Gen Electric | INVERTER WITH CONSTANT OUTPUT POWER |
US4053813A (en) * | 1976-03-01 | 1977-10-11 | General Electric Company | Discharge lamp ballast with resonant starting |
US4060751A (en) * | 1976-03-01 | 1977-11-29 | General Electric Company | Dual mode solid state inverter circuit for starting and ballasting gas discharge lamps |
US4066930A (en) * | 1975-04-02 | 1978-01-03 | Electrides Corporation | Energizing circuits for fluorescent lamps |
US4127795A (en) * | 1977-08-19 | 1978-11-28 | Gte Sylvania Incorporated | Lamp ballast circuit |
US4127893A (en) * | 1977-08-17 | 1978-11-28 | Gte Sylvania Incorporated | Tuned oscillator ballast circuit with transient compensating means |
US4220896A (en) * | 1978-08-16 | 1980-09-02 | The United States Of America As Represented By The Secretary Of The Interior | High frequency lighting inverter with constant power ballast |
US4277726A (en) * | 1978-08-28 | 1981-07-07 | Litton Systems, Inc. | Solid-state ballast for rapid-start type fluorescent lamps |
DE3101568A1 (en) * | 1981-01-20 | 1982-08-05 | Wollank, Gerhard, Prof. Dipl.-Phys., 5040 Brühl | CIRCUIT ARRANGEMENT OF A DC CONTROLLED BALLAST FOR ONE OR MORE LOW-PRESSURE DISCHARGE LAMPS FOR IGNITING, SETTING AND HEATING THE LAMPS |
EP0057616A1 (en) * | 1981-02-04 | 1982-08-11 | North American Philips Lighting Corporation | Starting and operating apparatus for fluorescent lamps |
DE3221701A1 (en) * | 1981-06-10 | 1982-12-30 | General Electric Co., Schenectady, N.Y. | CIRCUIT ARRANGEMENT FOR STARTING AND OPERATING FLUORESCENT LAMPS |
US4498031A (en) * | 1983-01-03 | 1985-02-05 | North American Philips Corporation | Variable frequency current control device for discharge lamps |
US4524305A (en) * | 1983-08-08 | 1985-06-18 | Indicator Controls Corp. | Solid state regulated power supply system for cold cathode luminescent tube |
US4535271A (en) * | 1976-07-26 | 1985-08-13 | Wide-Lite International | High frequency circuit for operating a high-intensity, gaseous discharge lamp |
US4538093A (en) * | 1981-05-14 | 1985-08-27 | U.S. Philips Corporation | Variable frequency start circuit for discharge lamp with preheatable electrodes |
US4562383A (en) * | 1981-07-31 | 1985-12-31 | Siemens Aktiengesellschaft | Converter |
GB2163015A (en) * | 1983-09-22 | 1986-02-12 | Isco Inc | Method of operating an absorbance monitor |
US4585974A (en) * | 1983-01-03 | 1986-04-29 | North American Philips Corporation | Varible frequency current control device for discharge lamps |
US4616159A (en) * | 1983-08-22 | 1986-10-07 | The North American Manufacturing Company | Driving circuit for pulsating radiation detector |
US4634932A (en) * | 1983-01-18 | 1987-01-06 | Nilssen Ole K | Lighting system |
US4656395A (en) * | 1984-10-12 | 1987-04-07 | Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh | Accessory circuit structure for a low-pressure discharge lamp, typically fluorescent lamp |
US4698554A (en) * | 1983-01-03 | 1987-10-06 | North American Philips Corporation | Variable frequency current control device for discharge lamps |
US4716343A (en) * | 1985-11-15 | 1987-12-29 | Universal Manufacturing Corporation | Constant illumination, remotely dimmable electronic ballast |
US4717863A (en) * | 1986-02-18 | 1988-01-05 | Zeiler Kenneth T | Frequency modulation ballast circuit |
US4723098A (en) * | 1980-10-07 | 1988-02-02 | Thomas Industries, Inc. | Electronic ballast circuit for fluorescent lamps |
US4873471A (en) * | 1986-03-28 | 1989-10-10 | Thomas Industries Inc. | High frequency ballast for gaseous discharge lamps |
US4937470A (en) * | 1988-05-23 | 1990-06-26 | Zeiler Kenneth T | Driver circuit for power transistors |
US4952849A (en) * | 1988-07-15 | 1990-08-28 | North American Philips Corporation | Fluorescent lamp controllers |
DE4005776A1 (en) * | 1989-02-24 | 1990-09-13 | Zenit Energietechnik Gmbh | Start and operating circuit for fluorescent lamp - uses digital circuit to control voltage and firing point |
US5003230A (en) * | 1989-05-26 | 1991-03-26 | North American Philips Corporation | Fluorescent lamp controllers with dimming control |
US5021714A (en) * | 1990-05-10 | 1991-06-04 | Valmont Industries, Inc. | Circuit for starting and operating fluorescent lamps |
GB2244608A (en) * | 1990-04-23 | 1991-12-04 | P I Electronics Pte Ltd | High frequency drive circuit for a fluorescent lamp |
US5099407A (en) * | 1990-09-24 | 1992-03-24 | Thorne Richard L | Inverter with power factor correction circuit |
US5099176A (en) * | 1990-04-06 | 1992-03-24 | North American Philips Corporation | Fluorescent lamp ballast operable from two different power supplies |
US5187414A (en) * | 1988-07-15 | 1993-02-16 | North American Philips Corporation | Fluorescent lamp controllers |
US5233273A (en) * | 1990-09-07 | 1993-08-03 | Matsushita Electric Industrial Co., Ltd. | Discharge lamp starting circuit |
US5239239A (en) * | 1992-03-26 | 1993-08-24 | Stocker & Yale, Inc. | Surrounding a portion of a lamp with light regulation apparatus |
AU642862B2 (en) * | 1989-02-10 | 1993-11-04 | Etta Industries, Inc. | Circuit and method for driving and controlling gas discharge lamps |
US5289083A (en) * | 1989-04-03 | 1994-02-22 | Etta Industries, Inc. | Resonant inverter circuitry for effecting fundamental or harmonic resonance mode starting of a gas discharge lamp |
US5345150A (en) * | 1992-03-26 | 1994-09-06 | Stocker & Yale, Inc. | Regulating light intensity by means of magnetic core with multiple windings |
US5404082A (en) * | 1993-04-23 | 1995-04-04 | North American Philips Corporation | High frequency inverter with power-line-controlled frequency modulation |
US5410221A (en) * | 1993-04-23 | 1995-04-25 | Philips Electronics North America Corporation | Lamp ballast with frequency modulated lamp frequency |
US5444336A (en) * | 1990-05-10 | 1995-08-22 | Matsushita Electric Industrial Co., Ltd. | An inverter driven lamp arrangement having a current detection circuitry coupled to a resonant output circuit |
US5596247A (en) * | 1994-10-03 | 1997-01-21 | Pacific Scientific Company | Compact dimmable fluorescent lamps with central dimming ring |
US5652479A (en) * | 1995-01-25 | 1997-07-29 | Micro Linear Corporation | Lamp out detection for miniature cold cathode fluorescent lamp system |
US5686799A (en) * | 1994-03-25 | 1997-11-11 | Pacific Scientific Company | Ballast circuit for compact fluorescent lamp |
US5691606A (en) * | 1994-09-30 | 1997-11-25 | Pacific Scientific Company | Ballast circuit for fluorescent lamp |
US5694007A (en) * | 1995-04-19 | 1997-12-02 | Systems And Services International, Inc. | Discharge lamp lighting system for avoiding high in-rush current |
US5754012A (en) * | 1995-01-25 | 1998-05-19 | Micro Linear Corporation | Primary side lamp current sensing for minature cold cathode fluorescent lamp system |
US5796216A (en) * | 1993-07-16 | 1998-08-18 | Delta Power Supply, Inc. | Electronic ignition enhancing circuit having both fundamental and harmonic resonant circuits as well as a DC offset |
US5798617A (en) * | 1996-12-18 | 1998-08-25 | Pacific Scientific Company | Magnetic feedback ballast circuit for fluorescent lamp |
US5801492A (en) * | 1996-05-30 | 1998-09-01 | Bobel; Andrzej | Electronic ballast for gas discharge lamp having primary and auxiliary resonant circuits |
US5818669A (en) * | 1996-07-30 | 1998-10-06 | Micro Linear Corporation | Zener diode power dissipation limiting circuit |
US5821699A (en) * | 1994-09-30 | 1998-10-13 | Pacific Scientific | Ballast circuit for fluorescent lamps |
US5844378A (en) * | 1995-01-25 | 1998-12-01 | Micro Linear Corp | High side driver technique for miniature cold cathode fluorescent lamp system |
USRE35994E (en) * | 1992-07-06 | 1998-12-15 | Icecap, Inc. | Variable control, current sensing ballast |
US5866993A (en) * | 1996-11-14 | 1999-02-02 | Pacific Scientific Company | Three-way dimming ballast circuit with passive power factor correction |
US5896015A (en) * | 1996-07-30 | 1999-04-20 | Micro Linear Corporation | Method and circuit for forming pulses centered about zero crossings of a sinusoid |
US5925986A (en) * | 1996-05-09 | 1999-07-20 | Pacific Scientific Company | Method and apparatus for controlling power delivered to a fluorescent lamp |
US5939838A (en) * | 1997-05-30 | 1999-08-17 | Shape Electronics, Inc. | Ferroresonant transformer ballast for maintaining the current of gas discharge lamps at a predetermined value |
US5965989A (en) * | 1996-07-30 | 1999-10-12 | Micro Linear Corporation | Transformer primary side lamp current sense circuit |
US6002210A (en) * | 1978-03-20 | 1999-12-14 | Nilssen; Ole K. | Electronic ballast with controlled-magnitude output voltage |
US6037722A (en) * | 1994-09-30 | 2000-03-14 | Pacific Scientific | Dimmable ballast apparatus and method for controlling power delivered to a fluorescent lamp |
US6232727B1 (en) * | 1998-10-07 | 2001-05-15 | Micro Linear Corporation | Controlling gas discharge lamp intensity with power regulation and end of life protection |
US6344980B1 (en) | 1999-01-14 | 2002-02-05 | Fairchild Semiconductor Corporation | Universal pulse width modulating power converter |
US6459218B2 (en) * | 1994-07-13 | 2002-10-01 | Auckland Uniservices Limited | Inductively powered lamp unit |
WO2003039211A1 (en) * | 2001-10-31 | 2003-05-08 | Koninklijke Philips Electronics N.V. | Circuit arrangement |
NL1020276C2 (en) * | 2002-03-28 | 2003-09-30 | Nedap Nv | Electronic ballast for gas discharge lamps. |
US20050093483A1 (en) * | 2003-10-21 | 2005-05-05 | Ball Newton E. | Systems and methods for a transformer configuration for driving multiple gas discharge tubes in parallel |
WO2005062683A2 (en) * | 2003-12-24 | 2005-07-07 | David John Powell | Apparatus and method for controlling discharge lights |
US7061183B1 (en) | 2005-03-31 | 2006-06-13 | Microsemi Corporation | Zigzag topology for balancing current among paralleled gas discharge lamps |
US7173382B2 (en) | 2005-03-31 | 2007-02-06 | Microsemi Corporation | Nested balancing topology for balancing current among multiple lamps |
US7183724B2 (en) | 2003-12-16 | 2007-02-27 | Microsemi Corporation | Inverter with two switching stages for driving lamp |
US7187139B2 (en) | 2003-09-09 | 2007-03-06 | Microsemi Corporation | Split phase inverters for CCFL backlight system |
US7242147B2 (en) | 2003-10-06 | 2007-07-10 | Microsemi Corporation | Current sharing scheme for multiple CCF lamp operation |
US7250731B2 (en) | 2004-04-07 | 2007-07-31 | Microsemi Corporation | Primary side current balancing scheme for multiple CCF lamp operation |
US20080012507A1 (en) * | 2006-07-07 | 2008-01-17 | Mehmet Nalbant | High Current Fast Rise And Fall Time LED Driver |
US7391172B2 (en) | 2003-09-23 | 2008-06-24 | Microsemi Corporation | Optical and temperature feedbacks to control display brightness |
US7411360B2 (en) | 2002-12-13 | 2008-08-12 | Microsemi Corporation | Apparatus and method for striking a fluorescent lamp |
US7414371B1 (en) | 2005-11-21 | 2008-08-19 | Microsemi Corporation | Voltage regulation loop with variable gain control for inverter circuit |
US7468722B2 (en) | 2004-02-09 | 2008-12-23 | Microsemi Corporation | Method and apparatus to control display brightness with ambient light correction |
US7569998B2 (en) | 2006-07-06 | 2009-08-04 | Microsemi Corporation | Striking and open lamp regulation for CCFL controller |
US7646152B2 (en) | 2004-04-01 | 2010-01-12 | Microsemi Corporation | Full-bridge and half-bridge compatible driver timing schedule for direct drive backlight system |
US20100123400A1 (en) * | 2008-11-20 | 2010-05-20 | Microsemi Corporation | Method and apparatus for driving ccfl at low burst duty cycle rates |
US7755595B2 (en) | 2004-06-07 | 2010-07-13 | Microsemi Corporation | Dual-slope brightness control for transflective displays |
US7977888B2 (en) | 2003-10-06 | 2011-07-12 | Microsemi Corporation | Direct coupled balancer drive for floating lamp structure |
US8598795B2 (en) | 2011-05-03 | 2013-12-03 | Microsemi Corporation | High efficiency LED driving method |
US8754581B2 (en) | 2011-05-03 | 2014-06-17 | Microsemi Corporation | High efficiency LED driving method for odd number of LED strings |
US9030119B2 (en) | 2010-07-19 | 2015-05-12 | Microsemi Corporation | LED string driver arrangement with non-dissipative current balancer |
US11206722B2 (en) | 2017-09-01 | 2021-12-21 | Trestoto Pty Limited | Lighting control circuit, lighting installation and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3196340A (en) * | 1963-05-01 | 1965-07-20 | Gen Electric | Current limiting inverters for operating electric discharge devices and other loads |
US3389299A (en) * | 1966-11-07 | 1968-06-18 | Kegan Kegan & Berkman | Fluorescent lighting system |
US3486069A (en) * | 1967-12-15 | 1969-12-23 | Holophane Co Inc | Semiconductor ballast circuit for gas discharge lamps |
-
1970
- 1970-04-06 US US25684A patent/US3611021A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3196340A (en) * | 1963-05-01 | 1965-07-20 | Gen Electric | Current limiting inverters for operating electric discharge devices and other loads |
US3389299A (en) * | 1966-11-07 | 1968-06-18 | Kegan Kegan & Berkman | Fluorescent lighting system |
US3486069A (en) * | 1967-12-15 | 1969-12-23 | Holophane Co Inc | Semiconductor ballast circuit for gas discharge lamps |
Cited By (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4066930A (en) * | 1975-04-02 | 1978-01-03 | Electrides Corporation | Energizing circuits for fluorescent lamps |
US4053813A (en) * | 1976-03-01 | 1977-10-11 | General Electric Company | Discharge lamp ballast with resonant starting |
FR2343287A1 (en) * | 1976-03-01 | 1977-09-30 | Gen Electric | CONSTANT POWER ELECTRICAL SOURCE |
US4060751A (en) * | 1976-03-01 | 1977-11-29 | General Electric Company | Dual mode solid state inverter circuit for starting and ballasting gas discharge lamps |
FR2353200A1 (en) * | 1976-03-01 | 1977-12-23 | Gen Electric | STARTING AND REGULATION CIRCUIT FOR DISCHARGE LAMP |
DE2705984A1 (en) * | 1976-03-01 | 1977-09-08 | Gen Electric | INVERTER WITH CONSTANT OUTPUT POWER |
US4045711A (en) * | 1976-03-19 | 1977-08-30 | Gte Sylvania Incorporated | Tuned oscillator ballast circuit |
US4535271A (en) * | 1976-07-26 | 1985-08-13 | Wide-Lite International | High frequency circuit for operating a high-intensity, gaseous discharge lamp |
US4127893A (en) * | 1977-08-17 | 1978-11-28 | Gte Sylvania Incorporated | Tuned oscillator ballast circuit with transient compensating means |
US4127795A (en) * | 1977-08-19 | 1978-11-28 | Gte Sylvania Incorporated | Lamp ballast circuit |
US6002210A (en) * | 1978-03-20 | 1999-12-14 | Nilssen; Ole K. | Electronic ballast with controlled-magnitude output voltage |
US4220896A (en) * | 1978-08-16 | 1980-09-02 | The United States Of America As Represented By The Secretary Of The Interior | High frequency lighting inverter with constant power ballast |
US4277726A (en) * | 1978-08-28 | 1981-07-07 | Litton Systems, Inc. | Solid-state ballast for rapid-start type fluorescent lamps |
US4723098A (en) * | 1980-10-07 | 1988-02-02 | Thomas Industries, Inc. | Electronic ballast circuit for fluorescent lamps |
DE3101568A1 (en) * | 1981-01-20 | 1982-08-05 | Wollank, Gerhard, Prof. Dipl.-Phys., 5040 Brühl | CIRCUIT ARRANGEMENT OF A DC CONTROLLED BALLAST FOR ONE OR MORE LOW-PRESSURE DISCHARGE LAMPS FOR IGNITING, SETTING AND HEATING THE LAMPS |
EP0057616A1 (en) * | 1981-02-04 | 1982-08-11 | North American Philips Lighting Corporation | Starting and operating apparatus for fluorescent lamps |
US4538093A (en) * | 1981-05-14 | 1985-08-27 | U.S. Philips Corporation | Variable frequency start circuit for discharge lamp with preheatable electrodes |
US4399391A (en) * | 1981-06-10 | 1983-08-16 | General Electric Company | Circuit for starting and operating fluorescent lamps |
DE3221701A1 (en) * | 1981-06-10 | 1982-12-30 | General Electric Co., Schenectady, N.Y. | CIRCUIT ARRANGEMENT FOR STARTING AND OPERATING FLUORESCENT LAMPS |
US4562383A (en) * | 1981-07-31 | 1985-12-31 | Siemens Aktiengesellschaft | Converter |
US4498031A (en) * | 1983-01-03 | 1985-02-05 | North American Philips Corporation | Variable frequency current control device for discharge lamps |
US4585974A (en) * | 1983-01-03 | 1986-04-29 | North American Philips Corporation | Varible frequency current control device for discharge lamps |
US4698554A (en) * | 1983-01-03 | 1987-10-06 | North American Philips Corporation | Variable frequency current control device for discharge lamps |
US4634932A (en) * | 1983-01-18 | 1987-01-06 | Nilssen Ole K | Lighting system |
US4524305A (en) * | 1983-08-08 | 1985-06-18 | Indicator Controls Corp. | Solid state regulated power supply system for cold cathode luminescent tube |
US4616159A (en) * | 1983-08-22 | 1986-10-07 | The North American Manufacturing Company | Driving circuit for pulsating radiation detector |
GB2163015A (en) * | 1983-09-22 | 1986-02-12 | Isco Inc | Method of operating an absorbance monitor |
US4656395A (en) * | 1984-10-12 | 1987-04-07 | Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh | Accessory circuit structure for a low-pressure discharge lamp, typically fluorescent lamp |
US4716343A (en) * | 1985-11-15 | 1987-12-29 | Universal Manufacturing Corporation | Constant illumination, remotely dimmable electronic ballast |
US4717863A (en) * | 1986-02-18 | 1988-01-05 | Zeiler Kenneth T | Frequency modulation ballast circuit |
US4873471A (en) * | 1986-03-28 | 1989-10-10 | Thomas Industries Inc. | High frequency ballast for gaseous discharge lamps |
US4937470A (en) * | 1988-05-23 | 1990-06-26 | Zeiler Kenneth T | Driver circuit for power transistors |
US4952849A (en) * | 1988-07-15 | 1990-08-28 | North American Philips Corporation | Fluorescent lamp controllers |
US5187414A (en) * | 1988-07-15 | 1993-02-16 | North American Philips Corporation | Fluorescent lamp controllers |
AU642862B2 (en) * | 1989-02-10 | 1993-11-04 | Etta Industries, Inc. | Circuit and method for driving and controlling gas discharge lamps |
DE4005776A1 (en) * | 1989-02-24 | 1990-09-13 | Zenit Energietechnik Gmbh | Start and operating circuit for fluorescent lamp - uses digital circuit to control voltage and firing point |
DE4005776C2 (en) * | 1989-02-24 | 1999-08-05 | Zenit Energietechnik Gmbh | Circuit arrangement for starting and operating a gas discharge lamp |
US5289083A (en) * | 1989-04-03 | 1994-02-22 | Etta Industries, Inc. | Resonant inverter circuitry for effecting fundamental or harmonic resonance mode starting of a gas discharge lamp |
US5003230A (en) * | 1989-05-26 | 1991-03-26 | North American Philips Corporation | Fluorescent lamp controllers with dimming control |
US5099176A (en) * | 1990-04-06 | 1992-03-24 | North American Philips Corporation | Fluorescent lamp ballast operable from two different power supplies |
US5235254A (en) * | 1990-04-23 | 1993-08-10 | Pi Electronics Pte. Ltd. | Fluorescent lamp supply circuit |
GB2244608A (en) * | 1990-04-23 | 1991-12-04 | P I Electronics Pte Ltd | High frequency drive circuit for a fluorescent lamp |
US5021714A (en) * | 1990-05-10 | 1991-06-04 | Valmont Industries, Inc. | Circuit for starting and operating fluorescent lamps |
US5444336A (en) * | 1990-05-10 | 1995-08-22 | Matsushita Electric Industrial Co., Ltd. | An inverter driven lamp arrangement having a current detection circuitry coupled to a resonant output circuit |
US5233273A (en) * | 1990-09-07 | 1993-08-03 | Matsushita Electric Industrial Co., Ltd. | Discharge lamp starting circuit |
US5099407A (en) * | 1990-09-24 | 1992-03-24 | Thorne Richard L | Inverter with power factor correction circuit |
US5239239A (en) * | 1992-03-26 | 1993-08-24 | Stocker & Yale, Inc. | Surrounding a portion of a lamp with light regulation apparatus |
US5345150A (en) * | 1992-03-26 | 1994-09-06 | Stocker & Yale, Inc. | Regulating light intensity by means of magnetic core with multiple windings |
USRE35994E (en) * | 1992-07-06 | 1998-12-15 | Icecap, Inc. | Variable control, current sensing ballast |
US5404082A (en) * | 1993-04-23 | 1995-04-04 | North American Philips Corporation | High frequency inverter with power-line-controlled frequency modulation |
US5410221A (en) * | 1993-04-23 | 1995-04-25 | Philips Electronics North America Corporation | Lamp ballast with frequency modulated lamp frequency |
US5796216A (en) * | 1993-07-16 | 1998-08-18 | Delta Power Supply, Inc. | Electronic ignition enhancing circuit having both fundamental and harmonic resonant circuits as well as a DC offset |
US5686799A (en) * | 1994-03-25 | 1997-11-11 | Pacific Scientific Company | Ballast circuit for compact fluorescent lamp |
US6459218B2 (en) * | 1994-07-13 | 2002-10-01 | Auckland Uniservices Limited | Inductively powered lamp unit |
US5691606A (en) * | 1994-09-30 | 1997-11-25 | Pacific Scientific Company | Ballast circuit for fluorescent lamp |
US5982111A (en) * | 1994-09-30 | 1999-11-09 | Pacific Scientific Company | Fluorescent lamp ballast having a resonant output stage using a split resonating inductor |
US6037722A (en) * | 1994-09-30 | 2000-03-14 | Pacific Scientific | Dimmable ballast apparatus and method for controlling power delivered to a fluorescent lamp |
US5821699A (en) * | 1994-09-30 | 1998-10-13 | Pacific Scientific | Ballast circuit for fluorescent lamps |
US5955841A (en) * | 1994-09-30 | 1999-09-21 | Pacific Scientific Company | Ballast circuit for fluorescent lamp |
US5596247A (en) * | 1994-10-03 | 1997-01-21 | Pacific Scientific Company | Compact dimmable fluorescent lamps with central dimming ring |
US5844378A (en) * | 1995-01-25 | 1998-12-01 | Micro Linear Corp | High side driver technique for miniature cold cathode fluorescent lamp system |
US5652479A (en) * | 1995-01-25 | 1997-07-29 | Micro Linear Corporation | Lamp out detection for miniature cold cathode fluorescent lamp system |
US5754012A (en) * | 1995-01-25 | 1998-05-19 | Micro Linear Corporation | Primary side lamp current sensing for minature cold cathode fluorescent lamp system |
US5694007A (en) * | 1995-04-19 | 1997-12-02 | Systems And Services International, Inc. | Discharge lamp lighting system for avoiding high in-rush current |
US5925986A (en) * | 1996-05-09 | 1999-07-20 | Pacific Scientific Company | Method and apparatus for controlling power delivered to a fluorescent lamp |
US5801492A (en) * | 1996-05-30 | 1998-09-01 | Bobel; Andrzej | Electronic ballast for gas discharge lamp having primary and auxiliary resonant circuits |
US5896015A (en) * | 1996-07-30 | 1999-04-20 | Micro Linear Corporation | Method and circuit for forming pulses centered about zero crossings of a sinusoid |
US5965989A (en) * | 1996-07-30 | 1999-10-12 | Micro Linear Corporation | Transformer primary side lamp current sense circuit |
US5818669A (en) * | 1996-07-30 | 1998-10-06 | Micro Linear Corporation | Zener diode power dissipation limiting circuit |
US5866993A (en) * | 1996-11-14 | 1999-02-02 | Pacific Scientific Company | Three-way dimming ballast circuit with passive power factor correction |
US5798617A (en) * | 1996-12-18 | 1998-08-25 | Pacific Scientific Company | Magnetic feedback ballast circuit for fluorescent lamp |
US5939838A (en) * | 1997-05-30 | 1999-08-17 | Shape Electronics, Inc. | Ferroresonant transformer ballast for maintaining the current of gas discharge lamps at a predetermined value |
US6232727B1 (en) * | 1998-10-07 | 2001-05-15 | Micro Linear Corporation | Controlling gas discharge lamp intensity with power regulation and end of life protection |
US6344980B1 (en) | 1999-01-14 | 2002-02-05 | Fairchild Semiconductor Corporation | Universal pulse width modulating power converter |
US6469914B1 (en) | 1999-01-14 | 2002-10-22 | Fairchild Semiconductor Corporation | Universal pulse width modulating power converter |
WO2003039211A1 (en) * | 2001-10-31 | 2003-05-08 | Koninklijke Philips Electronics N.V. | Circuit arrangement |
US7180251B2 (en) | 2002-03-28 | 2007-02-20 | N.V. Nederlandsche Apparatenfabriek Nedap | Electronic power circuit for gas discharge lamps |
NL1020276C2 (en) * | 2002-03-28 | 2003-09-30 | Nedap Nv | Electronic ballast for gas discharge lamps. |
US20050057183A1 (en) * | 2002-03-28 | 2005-03-17 | Van Eerden Gerrit Hendrik | Electronic power circuit for gas discharge lamps |
WO2003084293A1 (en) * | 2002-03-28 | 2003-10-09 | N.V. Nederlandsche Apparatenfabriek Nedap | Electronic power circuit for gas discharge lamps |
US7411360B2 (en) | 2002-12-13 | 2008-08-12 | Microsemi Corporation | Apparatus and method for striking a fluorescent lamp |
US7952298B2 (en) | 2003-09-09 | 2011-05-31 | Microsemi Corporation | Split phase inverters for CCFL backlight system |
US7187139B2 (en) | 2003-09-09 | 2007-03-06 | Microsemi Corporation | Split phase inverters for CCFL backlight system |
US7525255B2 (en) | 2003-09-09 | 2009-04-28 | Microsemi Corporation | Split phase inverters for CCFL backlight system |
US7391172B2 (en) | 2003-09-23 | 2008-06-24 | Microsemi Corporation | Optical and temperature feedbacks to control display brightness |
US7990072B2 (en) | 2003-10-06 | 2011-08-02 | Microsemi Corporation | Balancing arrangement with reduced amount of balancing transformers |
US7977888B2 (en) | 2003-10-06 | 2011-07-12 | Microsemi Corporation | Direct coupled balancer drive for floating lamp structure |
US7932683B2 (en) | 2003-10-06 | 2011-04-26 | Microsemi Corporation | Balancing transformers for multi-lamp operation |
US8008867B2 (en) | 2003-10-06 | 2011-08-30 | Microsemi Corporation | Arrangement suitable for driving floating CCFL based backlight |
US7560875B2 (en) | 2003-10-06 | 2009-07-14 | Microsemi Corporation | Balancing transformers for multi-lamp operation |
US8222836B2 (en) | 2003-10-06 | 2012-07-17 | Microsemi Corporation | Balancing transformers for multi-lamp operation |
US7242147B2 (en) | 2003-10-06 | 2007-07-10 | Microsemi Corporation | Current sharing scheme for multiple CCF lamp operation |
US7294971B2 (en) | 2003-10-06 | 2007-11-13 | Microsemi Corporation | Balancing transformers for ring balancer |
US7279851B2 (en) | 2003-10-21 | 2007-10-09 | Microsemi Corporation | Systems and methods for fault protection in a balancing transformer |
US7250726B2 (en) | 2003-10-21 | 2007-07-31 | Microsemi Corporation | Systems and methods for a transformer configuration with a tree topology for current balancing in gas discharge lamps |
US7141933B2 (en) | 2003-10-21 | 2006-11-28 | Microsemi Corporation | Systems and methods for a transformer configuration for driving multiple gas discharge tubes in parallel |
US20050093483A1 (en) * | 2003-10-21 | 2005-05-05 | Ball Newton E. | Systems and methods for a transformer configuration for driving multiple gas discharge tubes in parallel |
US7187140B2 (en) | 2003-12-16 | 2007-03-06 | Microsemi Corporation | Lamp current control using profile synthesizer |
US7265499B2 (en) | 2003-12-16 | 2007-09-04 | Microsemi Corporation | Current-mode direct-drive inverter |
US7183724B2 (en) | 2003-12-16 | 2007-02-27 | Microsemi Corporation | Inverter with two switching stages for driving lamp |
US7239087B2 (en) | 2003-12-16 | 2007-07-03 | Microsemi Corporation | Method and apparatus to drive LED arrays using time sharing technique |
US20070159107A1 (en) * | 2003-12-24 | 2007-07-12 | Powell David J | Apparatus and method for controlling discharge lights |
WO2005062683A2 (en) * | 2003-12-24 | 2005-07-07 | David John Powell | Apparatus and method for controlling discharge lights |
WO2005062683A3 (en) * | 2003-12-24 | 2005-08-18 | David John Powell | Apparatus and method for controlling discharge lights |
US7468722B2 (en) | 2004-02-09 | 2008-12-23 | Microsemi Corporation | Method and apparatus to control display brightness with ambient light correction |
US8223117B2 (en) | 2004-02-09 | 2012-07-17 | Microsemi Corporation | Method and apparatus to control display brightness with ambient light correction |
US7646152B2 (en) | 2004-04-01 | 2010-01-12 | Microsemi Corporation | Full-bridge and half-bridge compatible driver timing schedule for direct drive backlight system |
US7965046B2 (en) | 2004-04-01 | 2011-06-21 | Microsemi Corporation | Full-bridge and half-bridge compatible driver timing schedule for direct drive backlight system |
US7557517B2 (en) | 2004-04-07 | 2009-07-07 | Microsemi Corporation | Primary side current balancing scheme for multiple CCF lamp operation |
US7250731B2 (en) | 2004-04-07 | 2007-07-31 | Microsemi Corporation | Primary side current balancing scheme for multiple CCF lamp operation |
US7755595B2 (en) | 2004-06-07 | 2010-07-13 | Microsemi Corporation | Dual-slope brightness control for transflective displays |
US7173382B2 (en) | 2005-03-31 | 2007-02-06 | Microsemi Corporation | Nested balancing topology for balancing current among multiple lamps |
US7061183B1 (en) | 2005-03-31 | 2006-06-13 | Microsemi Corporation | Zigzag topology for balancing current among paralleled gas discharge lamps |
US7414371B1 (en) | 2005-11-21 | 2008-08-19 | Microsemi Corporation | Voltage regulation loop with variable gain control for inverter circuit |
US7569998B2 (en) | 2006-07-06 | 2009-08-04 | Microsemi Corporation | Striking and open lamp regulation for CCFL controller |
US8358082B2 (en) | 2006-07-06 | 2013-01-22 | Microsemi Corporation | Striking and open lamp regulation for CCFL controller |
US8188682B2 (en) | 2006-07-07 | 2012-05-29 | Maxim Integrated Products, Inc. | High current fast rise and fall time LED driver |
US20080012507A1 (en) * | 2006-07-07 | 2008-01-17 | Mehmet Nalbant | High Current Fast Rise And Fall Time LED Driver |
US8093839B2 (en) | 2008-11-20 | 2012-01-10 | Microsemi Corporation | Method and apparatus for driving CCFL at low burst duty cycle rates |
US20100123400A1 (en) * | 2008-11-20 | 2010-05-20 | Microsemi Corporation | Method and apparatus for driving ccfl at low burst duty cycle rates |
US9030119B2 (en) | 2010-07-19 | 2015-05-12 | Microsemi Corporation | LED string driver arrangement with non-dissipative current balancer |
US8598795B2 (en) | 2011-05-03 | 2013-12-03 | Microsemi Corporation | High efficiency LED driving method |
US8754581B2 (en) | 2011-05-03 | 2014-06-17 | Microsemi Corporation | High efficiency LED driving method for odd number of LED strings |
USRE46502E1 (en) | 2011-05-03 | 2017-08-01 | Microsemi Corporation | High efficiency LED driving method |
US11206722B2 (en) | 2017-09-01 | 2021-12-21 | Trestoto Pty Limited | Lighting control circuit, lighting installation and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3611021A (en) | Control circuit for providing regulated current to lamp load | |
CA1042500A (en) | Solid state chopper ballast for gaseous discharge lamps | |
US4677345A (en) | Inverter circuits | |
US4237403A (en) | Power supply for fluorescent lamp | |
US5539281A (en) | Externally dimmable electronic ballast | |
US4005335A (en) | High frequency power source for fluorescent lamps and the like | |
US4277728A (en) | Power supply for a high intensity discharge or fluorescent lamp | |
US6362575B1 (en) | Voltage regulated electronic ballast for multiple discharge lamps | |
US4700113A (en) | Variable high frequency ballast circuit | |
US4053813A (en) | Discharge lamp ballast with resonant starting | |
US6072282A (en) | Frequency controlled quick and soft start gas discharge lamp ballast and method therefor | |
US6002210A (en) | Electronic ballast with controlled-magnitude output voltage | |
US5744915A (en) | Electronic ballast for instant-start lamps | |
US5396155A (en) | Self-dimming electronic ballast | |
US5512801A (en) | Ballast for instant-start parallel-connected lamps | |
US5446347A (en) | Electronic ballast with special DC supply | |
US3471747A (en) | Starting circuit and solid state running circuit for high pressure arc lamp | |
JPH0831357B2 (en) | Circuit for adjusting luminous intensity of discharge lamp | |
US4230971A (en) | Variable intensity control apparatus for operating a gas discharge lamp | |
US4259616A (en) | Multiple gaseous lamp electronic ballast circuit | |
KR830002758B1 (en) | Electronic fluorescent ballast | |
US3170085A (en) | Ballast circuit and system for dimming gaseous discharge lamps | |
US4719390A (en) | Electronic mains connection device for a gas discharge lamp | |
US4238710A (en) | Symmetry regulated high frequency ballast | |
US5341067A (en) | Electronic ballast with trapezoidal voltage waveform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ITT CORPORATION 320 PARK AVE. NEW YORK, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:NORTH ELECTRIC COMPANY;REEL/FRAME:004627/0492 Effective date: 19771013 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES) |