US3610247A - Surface-anesthetizing medical appliance - Google Patents
Surface-anesthetizing medical appliance Download PDFInfo
- Publication number
- US3610247A US3610247A US803717A US3610247DA US3610247A US 3610247 A US3610247 A US 3610247A US 803717 A US803717 A US 803717A US 3610247D A US3610247D A US 3610247DA US 3610247 A US3610247 A US 3610247A
- Authority
- US
- United States
- Prior art keywords
- anesthetic
- tube
- film
- solid
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003444 anaesthetic effect Effects 0.000 claims abstract description 85
- 239000007787 solid Substances 0.000 claims abstract description 37
- 239000000126 substance Substances 0.000 claims abstract description 21
- 230000002035 prolonged effect Effects 0.000 claims abstract description 6
- 210000001519 tissue Anatomy 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 21
- 239000000853 adhesive Substances 0.000 claims description 12
- 230000001070 adhesive effect Effects 0.000 claims description 12
- 230000028327 secretion Effects 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 10
- 238000009792 diffusion process Methods 0.000 claims description 10
- 229920000298 Cellophane Polymers 0.000 claims description 9
- 239000013464 silicone adhesive Substances 0.000 claims description 9
- 210000003437 trachea Anatomy 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 210000005092 tracheal tissue Anatomy 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 231100000252 nontoxic Toxicity 0.000 claims description 5
- 230000003000 nontoxic effect Effects 0.000 claims description 5
- 230000036760 body temperature Effects 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims description 4
- 230000037431 insertion Effects 0.000 claims description 4
- 210000004072 lung Anatomy 0.000 claims description 3
- 239000012858 resilient material Substances 0.000 claims description 3
- 239000000020 Nitrocellulose Substances 0.000 claims description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims description 2
- 230000006872 improvement Effects 0.000 claims description 2
- 229920001220 nitrocellulos Polymers 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 239000004627 regenerated cellulose Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 4
- 239000002313 adhesive film Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 40
- 239000010408 film Substances 0.000 description 14
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 7
- 206010011224 Cough Diseases 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 229960002372 tetracaine Drugs 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000011514 reflex Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 206010002091 Anaesthesia Diseases 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 210000000232 gallbladder Anatomy 0.000 description 2
- 239000003193 general anesthetic agent Substances 0.000 description 2
- BCQZXOMGPXTTIC-UHFFFAOYSA-N halothane Chemical compound FC(F)(F)C(Cl)Br BCQZXOMGPXTTIC-UHFFFAOYSA-N 0.000 description 2
- 229960003132 halothane Drugs 0.000 description 2
- 229960004393 lidocaine hydrochloride Drugs 0.000 description 2
- YECIFGHRMFEPJK-UHFFFAOYSA-N lidocaine hydrochloride monohydrate Chemical compound O.[Cl-].CC[NH+](CC)CC(=O)NC1=C(C)C=CC=C1C YECIFGHRMFEPJK-UHFFFAOYSA-N 0.000 description 2
- 229920002529 medical grade silicone Polymers 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229940035363 muscle relaxants Drugs 0.000 description 2
- 239000003158 myorelaxant agent Substances 0.000 description 2
- 231100000862 numbness Toxicity 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000036407 pain Effects 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 208000000044 Amnesia Diseases 0.000 description 1
- 208000031091 Amnestic disease Diseases 0.000 description 1
- 241000974482 Aricia saepiolus Species 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000006986 amnesia Effects 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002192 cholecystectomy Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229940120090 pontocaine Drugs 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229940072358 xylocaine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/04—Tracheal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0434—Cuffs
- A61M16/0445—Special cuff forms, e.g. undulated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0434—Cuffs
- A61M16/0454—Redundant cuffs
- A61M16/0459—Redundant cuffs one cuff behind another
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0475—Tracheal tubes having openings in the tube
- A61M16/0477—Tracheal tubes having openings in the tube with incorporated means for delivering or removing fluids
- A61M16/0481—Tracheal tubes having openings in the tube with incorporated means for delivering or removing fluids through the cuff wall
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M19/00—Local anaesthesia; Hypothermia
Definitions
- This invention relates generally to medical appliances and specifically to endotracheal tubes.
- the depth of general anesthetization is often determined by the need to block the response of the patient to the endotracheal tube that is present in his trachea.
- the tendency for the patient to buck (tightening of the stomach muscles and tendency of the unconscious patient to sit up) in response to the endotracheal tube is greater that the patients response to the pain at the site of the incision or the need for maintaining a state of amnesia. This particularly so is cases where administration of muscle relaxants is inadvisable.
- the gag and coughing reflexes caused by the presence of the endotracheal tube This permits the tube to be tolerated and remain in place in the awake patient, enabling continued support of respiration by means of the endotracheal tube and respirator. Likewise it permits respiratory support to be administered immediately should this suddenly become necessary.
- the endotracheal tube also gives better assurance against blockage of the airway by tongue or tissues than do other airway devices.
- the objects of the present invention are to meet these various needs in a simple and practical way.
- the invention employs an endotracheal or other medical tube which may be of conventional construction in being comprised of a flexible material such as latex rubber or polyvinyl chloride of a thickness sufficient to ensure that the fluid passage will not be closed by the flexing action attendant to the entubation and use of the tube.
- the tube may include one or more cuffs in the form of extensible balloons or in the form of large, highly flexible floppy cuffs formed of thin film material.
- Featured therewith is a solid layer or coating having a relatively thin effective thickness and comprised of surface effective anesthetic and solid substance physically securing the anesthetic.
- the outer surface of this layer has a nontoxic (i.e. within nonharmful dosage limits) surface anesthetizing characteristic extending over a period of at least 1 hour, preferably over periods of or hours.
- the initial level of anesthetic availability is relatively high to achieve quick onset of surface anesthetization.
- the invention also features a semipermeable membrane or securing material disposed between the surface effective anesthetic in the solid state and the body tissue, the anesthetic being progressively transported thereacross.
- the invention also features as the effective layer a matrix formed by an adhesive substance containing a dispersion of solid aggregates or crystals of surface-effective anesthetic, the substance having a diffusion characteristic for body fluids and for body fluids in which are dissolved minor quantities of the anesthetic from the matrix.
- the invention also features such a matrix layer and layers of other makeups as integral with tubes and their flexible cuffs, and also as part of flexible and distensible sleeves applied to preexisting tube and cuff assemblies.
- FIG. 1 is a side view partly in cross section and partly diagrammatic, of an endotracheal tube engaging tissue of a patient;
- FIG. 2 is a diagrammatic representation of the availability curve of a typical device according to the invention.
- FIGS. 3 and 4 are magnified cross sections taken on lines 33 and 4-4 of FIG. 1, respectively;
- FIG. 4a is a greatly magnified view, partly diagrammatic, of a portion of FIG. 4;
- FIG. 5 is a perspective view, partly cut away of a sleeve member according to the invention.
- FIG. 6 and 7 are views of an endotracheal tube with which the sleeve of FIG. 5 is combined;
- FIG. 8 is a cross-sectioned view of a tube having a wrapping of a diffusion membrane, securing in the inside a deposit of solid anesthetic.
- an endotracheal tube 10 has'a conventional air passage 12, an angular-cut distal end 14, a proximal end provided with a connector for the anesthetic machine, respirator or oxygen line, and an inflatable cuff 20 together with an inflating lumen.
- the particular tube shown is made of plastic such as polyvinyl chloride of a wall thickness 1, of approximately one sixteenth inch.
- the cuff is constructed of any suitable flexible film such as extremely thin latex e.g. of less than 0.002 inch thickness and is of a diameter substantially larger than the trachea, e.g. being 1% inch diameter in comparison with a trachea of inch diameter.
- Such floppy cuffs are disclosed in my copending patent applications Ser. Nos. 427,60l and 719,994, and require very low pressure to inflate, thus effectively combatting the necrosis problem.
- Such cuffs flex to the shape shown when the lung pressure exceeds atmospheric pressure.
- a layer 26 comprised on surface effective anesthetic and bonding material physically securing the anesthetic in place.
- the layer 26 has the characteristic of presenting at its outer surface, to tissue 28 in contact therewith, surface-effective anesthetization of nontoxic levels extending over a period of at least 1 hour, preferably over periods of ID or 20 hours, in accordance with the curve of FIG. 2 which will be discussed further below.
- the layer comprises an elastomeric adhesive coating applied to the outer surfaces of a previously formed endotracheal tube and cuff assembly.
- FIG. 5 there is shown a distensible sleeve member 30 formed of resilient material which is supplied in a rolled-up shape.
- a layer 32 similar to layer 26 of the preceding figures, of such flexibility and resiliency to remain coherent when the tube is convoluted in the roll 30a.
- FIGS. 6 and 7 show an endotracheal tube 36 with two cuffs 38, 40 and corresponding inflation lumens 42. 44.
- the distensible sleeve is shown partly applied to endotracheal tube 3, the two dotted line positions showing progressive positions during application.
- the sleeve is shown fully applied, with the distal cuff 40 inflated, that portion of the sleeve distending therewith and exposing its outer surface to scaling contact with the tracheal wall.
- FIG. 8 shows a section of bendable tube 50 to which has been attached a film wrapping 52 upon the inside surface of which is deposited solid anesthetic particles diffusable through the film upon wetting the outside by secretions.
- EXAMPLE I A conventional endotracheal tube with a balloon cuff similar to one of the cuffs of FIG. 7 was coated on surfaces exposed to mucous tissue with medical grade silicone adhesive containing a dispersion of solid particles of a surface effective anesthetic.
- a quantity of tetracaine anesthetic in solid particle form (Pontocaine," Winthrop Drug Company), was ground by a mortar and pestle until a powder of solid particles was obtained. The particles were greenish-blue in color. 20 milligrams of the powder were mixed with 1 cc. of medical grade silicone adhesive (Vivosil" medical adhesive Silicone-Type A, Becton, Dickinson and Company).
- the adhesive was water-white in color, a nonflowing soft paste.
- the adhesive with the 2 percent concentration of dispersed anesthetic particles had a uniform greensh-blue cast.
- the prepared quantity i.e. 20 mg. of tetracaine
- the coating was allowed to cure at humidity conditions in excess of 20 percent at 77 F., penetration of the atmospheric water through the silicone adhesive causing its setup.
- the resulting layer was estimated to be between a 0.003 and 0.005 inch thickness, and provided a shiny, smooth surface. In the cured state the layer appeared clear, however under close examination the anesthetic particles can be observed (particles did not dissolve in the adhesive).
- the layer was flexible with the underlying endotracheal tube and cuff, the layer remaining coherent upon normal bending of the tube and distension of the cuff.
- the thus-prepared endotracheal tube was'administered to an age 45 female, gall bladder excision, under a normal level of general anesthetic. Three hours after the operation began the patient awoke in the recovery room and looked around, with endotracheal tube in place. There were no coughing or gaging reflexes, swallowing being the only reaction of the patient even when the tube was jiggled by the attending physician. When asked if she felt pain she shook her head no. After the patient was awake 1 hour the endotracheal tube was removed, with no spasm or coughing observed during removal, indicating anesthetization of the upper airway as well as the tracheal tissue in contact with the tube.
- An endotracheal tube of identical construction was soaked in water for 24 hours, after which anesthetic particles could still be seen in the layer. After a total soaking of 72 hours the physician placed the tube in his mouth and was able to detect numbing on the tip of his tongue, after minute exposure. Prior to soaking, numbing of his tongue was detected with shorter exposure.
- EXAMPLE 2 A dispersion of tetracaine particles and silicone adhesive was prepared as in Example 1, with 30 mg. tetracaine per cc. of adhesive (3 percent concentration). This mixture was diluted by 3 cc. of ether and the resulting dilute suspension was painted on the endotracheal tube in two coatings to form layer 26 of FIG. 1. The overall thickness of the layer was estimated to be between 0.002 and 0.004 inch in thickness. When setup the layer presented a smooth, shiny surface.
- This tube was placed in a patient having glaucoma, undergoing lridentasis. Twenty minutes after anesthetization the patient awoke with the tube in place and with no reaction.
- a similar tube was employed in a patient undergoing gall bladder removal (cholecystectomy).
- the patient was maintained on a respirator (assisted breathing) for 4 hours after awakening. After cessation of the respirator the tube was left in the awake patient for 1 hour. After this period the tube was jiggled by the attending physician with no reaction whatever by the patient.
- EXAMPLE 3 A sleeve of distensible latex rubber of 4 inch length, inch internal diameter, was coated on its exterior with a mixture of silicone adhesive containing a 2 percent concentration of tetracaine particles slightly diluted with ether. After solidification of the adhesive layer the physician, by applying the outer surface of the the to his tongue and lips, detected numbness within 2 minutes.
- the sleeve was slipped over an endotracheal tube having s single balloon cuff, using liquid soap as lubricant.
- the tube was inserted and the cuff inflated with air, distending he sleeve in the manner ofcuff40 in FIG. 7.
- EXAMPLE 4 An endotracheal tube cuff was formed by a 19/16 inch diameter, approximately 0.002 inch wall thickness, cellophane tube (Weck Sterilizing tubing," Edward Weck & Co., division of Sterling Precision Corp.) applied over an endotracheal tube, and tied to the endotracheal tube at opposite ends spaced approximately 2 inches apart. An inflating lumen was connected to the cuff volume. The cuff was filled with 10 cc. of a 2 percent solution (water base) lidocaine hydrochloride surface-effective anesthetic (xylocaine," Astra Pharamaceutical Products).
- the cuff was exposed to air for 4 days until the liquid had dried within the cuff, forming a deposit of 200 milligrams solid anesthetic on the inner surfaces of the cuff assembly. The deposit was not observable through the cellophane and was not friable.
- the exterior of the cuff was moistened with a slight amount of saline solution, to restore the flexibility of the cellophane, and the endotracheal tube was inserted into a patient and the cuff was inflated by introduction of air through the lumen. The patient awoke after 4 hours. The tube was jiggled in the trachea of the conscious patient without causing cough.
- EXAMPLE 5 A loose wrapping was formed using the cellophane tubing of example 4 along a portion of the endotracheal tube proximal to the inflatable cuff. 20 cc. of 2 percent lidocaine hydrochloride, water base, was dried within this wrapping forming a coating on the inner surface of the cellophane. The cellophane wrapping was collapsed upon the endotracheal tube in irregular folds.
- the endotracheal tube was inserted with the wrapping located proximal of the trachea.
- the attending physician observed that the gas reflex of the awake patient was obtunded for 8 hours.
- FIG. 3 a magnified cross-sectional view along line 3-3 of FIG. 1, mucous tissue 29 lying proximal of the trachea contacts the outer surface of the layer 26. It has been observed that the gag reflex caused by such contact is obtunded over an extended period by anesthetic passing from the layer 26. The physical securement of the anesthetic prevents its being washed away by normal secretions, indeed in important instances it is believed that the secretions play an important part in progressive transport of the surface-effective anesthetic to the tissue. It should be observed that the effective thickness of the layer t, is only a small fraction of the remaining thickness of the tube wall t, which defines the passage in a manner which permits bending without closingoff the passage.
- FIG. 4 a magnified view along line 44 of FIG. 1, it is seen that the cut? 20, inflated by air 24, seals against the tissue of trachea, with direct contact between layer 26 and the tracheal tissue. It has been observed that the coughing and bucking reflexes caused by such contact are obtunded over an extended period by anesthetic passing from the layer 26. Here again the physical securing of the anesthetic prevents its being washed away by normal secretions, the secretions in important instances believed to be effective in causing progressive transport of the anesthetic to the tissue.
- the relationship of the effective thickness 1, of the layer and the remaining thickness t of the cuff corresponds to cuffs of the balloon type such as are shown in FIG. 6.
- the wall thickness of the cuff can comprise the layer in or to which the anesthetic is secured.
- FIG. 4a a diagrammatic highly magnified cross-sectional view of the layer 24 in action, there are shown three anesthetic particles a, b and 0. Particle a is spaced distance I, away from the tissue, corresponding with the distance all of the anesthetic was spaced from the tissue in examples 4 and 5, and some of the anesthetic in the other examples.
- anesthetic is positioned closer to the effective surface, as for instance particles b and c.
- Particle c near or at the surface, can, with proper selection of the anesthetic, provide immediate onset of anesthetization, or, if relatively insoluble in water (and therefore insoluble in the secretions) many maintain anesthetization for a substantial period.
- Particle b enables an intermediate condition to be achieved.
- the particular components of the layer will depend upon the desired characteristics of the device. Using materials available currently, it is most preferred to employ a solid coating in which the anesthetic is distributed from the outer surface to a depth of at least 0.001 inch as illustrated by each of the tiny particles a, b and c, with the inner particles masked with semipermeable material as in the foregoing examples. By this means rapid onset is achieved, but also the layer (being of semipermeable material or rendered so) has an impeding effect that ensures the availability of the anesthetic over an extended period.
- silicone adhesive diluted with ether or the like dilution not only enabling smoother and thinner coatings but also believed to increase the permeability of the coating to such anesthetics as tetracaine which, being water and not oil soluble, has very low solubility in silicone.
- Suitable semipermeable substances presently known to the inventor, in addition to silicone adhesive and sheet films, are regenerated cellulose (cellophane) and cellulose nitrate.
- the cellulose thickness in important instances is less than 0.005 inch.
- FIG. 2 is a curve of the characteristic of a typically acceptable embodiment.
- the horizontal line denotes the threshold of anesthetizing effectiveness, established by a detectable numbness of the tongue after contact with the surface of the layer for 5 minutes.
- the nontoxicity of the quantities of anesthetic is shown by the fact that accepted prior practice has been to apply to the tracheal tissue at a single instant equivalent or greater quantities of the anesthetic by means of spray or ointment (with however only short lasting affect). No toxic reactions were observed for the examples described above.
- variable parameters include the nature of the semipermeable membrane or adhesive material, the
- a medical tracheal tube constructed for insertion into a body passage for prolonged exposure to mucous tissue of the patient, and having on its outside a solid layer comprised of solid surface effective anesthetic and solid substance physically securing the anesthetic with respect to the tube, both said anesthetic and said substance being solid at body temperature, the outer surface of said layer having a nontoxic surface anesthetizing characteristic extending over a period of at least 1 hour.
- the tracheal tube of claim 1 wherein said solid substance is at least in part semipermeable to secretions of mucous tissue and to solutions of said anesthetic in said secretions whereby said anesthetic can be gradually dissolved and flow in solution into contact with some mucous tissue over a prolonged period of time.
- the tracheal tube of claim 1 wherein said tube is formed of resilient material, adapted to bend during insertion into the patient, and said layer is flexible and adapted to conform to said medical tube.
- a tracheal tube for introducing air into the lungs of a patient, said tube having means on its exterior surface for applying surface effective anesthetic to the tissue of the trachea by means of diffusion through a thickness of material having a diffusion characteristic, the improvement wherein said exterior surface is defined by film exposed for contact with body tissue to be anesthetized, said film carrying substantially dry surface-effective anesthetic spaced inwardly from said exterior surface, said film material and said surface-effective anesthetic being solid at body temperature and semipermeable by a liquid compatible with said body tissue to mobilize said anesthetic to diffuse to said exterior surface.
- the tracheal tube of claim 8 including an inflatable cuff secured adjacent the distal end of said tube, wherein said cuff is formed by said film material, and at least one air passage adapted to introduce air into said cuff to cause said cuff to seal against tracheal tissue.
- tracheal tube of claim 10 wherein said cuff is comprised of semipermeable cellophane of a thickness less than 0.005 inch and said surface-effective anesthetic is in the form of a deposit adhered to the inner surface of said cuff, whereby said anesthetic can diffuse through said cuff to the tracheal tissue.
- a means for applying surface effective anesthetic by diffusion through a thickness of material having a diffusion characteristic wherein the material comprises a film having a surface exposed for contact with body tissue to be anesthetized, the film carrying substantially dry surface-effective anesthetic spaced inwardly from said surface, said film material being permeable to and said surface anesthetic being dissolvable by a liquid compatible with said body tissue to mobilize said anesthetic to diffuse to said surface.
Landscapes
- Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Anesthesiology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Hematology (AREA)
- Heart & Thoracic Surgery (AREA)
- Emergency Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Medicinal Preparation (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80371769A | 1969-03-03 | 1969-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3610247A true US3610247A (en) | 1971-10-05 |
Family
ID=25187257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US803717A Expired - Lifetime US3610247A (en) | 1969-03-03 | 1969-03-03 | Surface-anesthetizing medical appliance |
Country Status (3)
Country | Link |
---|---|
US (1) | US3610247A (de) |
CA (1) | CA971847A (de) |
DE (1) | DE2009968A1 (de) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4979505A (en) * | 1989-06-06 | 1990-12-25 | Cox Everard F | Tracheal tube |
DE4316920A1 (de) * | 1993-05-20 | 1994-11-24 | Michael Dr Med Hartmann | Endotrachealer Tubus |
WO1995008305A1 (en) * | 1993-09-24 | 1995-03-30 | Jackson Richard R | Medical devices and methods of manufacture |
WO1997018849A1 (en) * | 1995-11-23 | 1997-05-29 | Alec Douglas Bangham | Endotracheal tubes with pulmonary medicaments |
US5707355A (en) * | 1995-11-15 | 1998-01-13 | Zimmon Science Corporation | Apparatus and method for the treatment of esophageal varices and mucosal neoplasms |
US5709657A (en) * | 1989-06-28 | 1998-01-20 | Zimmon Science Corporation | Methods for placement of balloon tamponade devices |
WO1999045991A1 (de) * | 1998-03-09 | 1999-09-16 | Goebel Fred G | Trachealbeatmungsvorrichtung |
US6146358A (en) * | 1989-03-14 | 2000-11-14 | Cordis Corporation | Method and apparatus for delivery of therapeutic agent |
US6679262B1 (en) * | 1996-03-11 | 2004-01-20 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US6716895B1 (en) | 1999-12-15 | 2004-04-06 | C.R. Bard, Inc. | Polymer compositions containing colloids of silver salts |
US20040116551A1 (en) * | 1999-12-15 | 2004-06-17 | Terry Richard N. | Antimicrobial compositions containing colloids of oligodynamic metals |
EP1428544A3 (de) * | 1998-03-09 | 2004-07-14 | Dr. Fred Göbel Patentverwaltung GmbH | Trachealbeatmungsvorrichtung |
US7060135B2 (en) | 1996-03-11 | 2006-06-13 | Orlando Morejon | Endotracheal tube cleaning apparatus and method |
US20060130847A1 (en) * | 1996-03-11 | 2006-06-22 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US7487778B2 (en) | 2003-08-11 | 2009-02-10 | Breathe Technologies, Inc. | Tracheal catheter and prosthesis and method of respiratory support of a patient |
US7533670B1 (en) * | 2005-09-20 | 2009-05-19 | Breathe Technologies, Inc. | Systems, methods and apparatus for respiratory support of a patient |
US7588033B2 (en) | 2003-06-18 | 2009-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
US7631642B2 (en) | 2006-05-18 | 2009-12-15 | Breathe Technologies, Inc. | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
US20100012130A1 (en) * | 2006-09-22 | 2010-01-21 | Romano Guerra | Tracheostomy apparatus and device |
US20100186748A1 (en) * | 1996-03-11 | 2010-07-29 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US7820284B2 (en) | 2001-12-03 | 2010-10-26 | C.R. Bard Inc. | Microbe-resistant medical device, microbe-resistant polymeric coating and methods for producing same |
US20110186052A1 (en) * | 2010-02-01 | 2011-08-04 | Orlando Morejon | Cleaning assembly for an endotracheal tube |
US20110197894A1 (en) * | 2010-02-18 | 2011-08-18 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US8136527B2 (en) | 2003-08-18 | 2012-03-20 | Breathe Technologies, Inc. | Method and device for non-invasive ventilation with nasal interface |
US20130000650A1 (en) * | 2006-06-22 | 2013-01-03 | Nellcor Puritan Bennett Llc | Endotracheal cuff and technique for using the same |
US8381729B2 (en) | 2003-06-18 | 2013-02-26 | Breathe Technologies, Inc. | Methods and devices for minimally invasive respiratory support |
US8567399B2 (en) | 2007-09-26 | 2013-10-29 | Breathe Technologies, Inc. | Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy |
USD699348S1 (en) | 2010-01-27 | 2014-02-11 | Orlando Morejon | Handle |
US8677999B2 (en) | 2008-08-22 | 2014-03-25 | Breathe Technologies, Inc. | Methods and devices for providing mechanical ventilation with an open airway interface |
US8770193B2 (en) | 2008-04-18 | 2014-07-08 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8776793B2 (en) | 2008-04-18 | 2014-07-15 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8925545B2 (en) | 2004-02-04 | 2015-01-06 | Breathe Technologies, Inc. | Methods and devices for treating sleep apnea |
US8939152B2 (en) | 2010-09-30 | 2015-01-27 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
US9032957B2 (en) | 2006-06-22 | 2015-05-19 | Covidien Lp | Endotracheal cuff and technique for using the same |
US9132250B2 (en) | 2009-09-03 | 2015-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US9180270B2 (en) | 2009-04-02 | 2015-11-10 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube |
US9962512B2 (en) | 2009-04-02 | 2018-05-08 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
US10058668B2 (en) | 2007-05-18 | 2018-08-28 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and providing ventilation therapy |
US10099028B2 (en) | 2010-08-16 | 2018-10-16 | Breathe Technologies, Inc. | Methods, systems and devices using LOX to provide ventilatory support |
US10252020B2 (en) | 2008-10-01 | 2019-04-09 | Breathe Technologies, Inc. | Ventilator with biofeedback monitoring and control for improving patient activity and health |
US10279137B1 (en) | 2014-06-27 | 2019-05-07 | Orlando Morejon | Connector assembly for a medical ventilator system |
US10792449B2 (en) | 2017-10-03 | 2020-10-06 | Breathe Technologies, Inc. | Patient interface with integrated jet pump |
US11154672B2 (en) | 2009-09-03 | 2021-10-26 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
WO2021225473A1 (en) * | 2020-04-29 | 2021-11-11 | Obschestvo S Ogranichennoy Otvetstvennostyu “Vladimed” | Endotracheal tube |
US11395897B1 (en) | 2014-06-27 | 2022-07-26 | Orlando Morejon | Connector assembly for a medical ventilator system |
US11406482B2 (en) * | 2020-08-11 | 2022-08-09 | James C. Block | Urinary catheter or plug and method for managing urinary incontinence |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE215350C (de) * | ||||
US2803582A (en) * | 1956-07-16 | 1957-08-20 | Leonid S Cherney | Local anesthetic composition |
GB998794A (en) * | 1962-08-28 | 1965-07-21 | Dow Corning | Carrier for controlled release of drugs |
US3348542A (en) * | 1964-12-02 | 1967-10-24 | Richard R Jackson | Anesthetic articles |
US3363624A (en) * | 1964-08-14 | 1968-01-16 | Fishman Sam | Prophylactic device |
US3363629A (en) * | 1963-08-17 | 1968-01-16 | Willy Rusch Fa | Endotracheal catheter |
US3375828A (en) * | 1965-04-15 | 1968-04-02 | Brunswick Corp | Suction catheter |
-
1969
- 1969-03-03 US US803717A patent/US3610247A/en not_active Expired - Lifetime
-
1970
- 1970-03-03 CA CA076,378A patent/CA971847A/en not_active Expired
- 1970-03-03 DE DE19702009968 patent/DE2009968A1/de active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE215350C (de) * | ||||
US2803582A (en) * | 1956-07-16 | 1957-08-20 | Leonid S Cherney | Local anesthetic composition |
GB998794A (en) * | 1962-08-28 | 1965-07-21 | Dow Corning | Carrier for controlled release of drugs |
US3363629A (en) * | 1963-08-17 | 1968-01-16 | Willy Rusch Fa | Endotracheal catheter |
US3363624A (en) * | 1964-08-14 | 1968-01-16 | Fishman Sam | Prophylactic device |
US3348542A (en) * | 1964-12-02 | 1967-10-24 | Richard R Jackson | Anesthetic articles |
US3375828A (en) * | 1965-04-15 | 1968-04-02 | Brunswick Corp | Suction catheter |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6146358A (en) * | 1989-03-14 | 2000-11-14 | Cordis Corporation | Method and apparatus for delivery of therapeutic agent |
US6616650B1 (en) | 1989-03-14 | 2003-09-09 | Cordis Corporation | Method and apparatus for delivery of therapeutic agent |
US4979505A (en) * | 1989-06-06 | 1990-12-25 | Cox Everard F | Tracheal tube |
US5709657A (en) * | 1989-06-28 | 1998-01-20 | Zimmon Science Corporation | Methods for placement of balloon tamponade devices |
US5417671A (en) * | 1990-05-23 | 1995-05-23 | Jackson; Richard R. | Medical devices having local anesthetic effect and methods of their manufacture |
DE4316920A1 (de) * | 1993-05-20 | 1994-11-24 | Michael Dr Med Hartmann | Endotrachealer Tubus |
US5725510A (en) * | 1993-05-20 | 1998-03-10 | Hartmann; Michael | Endotracheal tube |
US5810786A (en) * | 1993-09-24 | 1998-09-22 | Richard R. Jackson | Tissue-numbing anesthetic articles |
EP0722302A1 (de) * | 1993-09-24 | 1996-07-24 | Richard Robert Jackson | Medizinische vorrichtungen und verfahren zum herstellen derselben |
EP0722302A4 (de) * | 1993-09-24 | 2000-02-23 | Richard Robert Jackson | Medizinische vorrichtungen und verfahren zum herstellen derselben |
WO1995008305A1 (en) * | 1993-09-24 | 1995-03-30 | Jackson Richard R | Medical devices and methods of manufacture |
US5707355A (en) * | 1995-11-15 | 1998-01-13 | Zimmon Science Corporation | Apparatus and method for the treatment of esophageal varices and mucosal neoplasms |
US5906587A (en) * | 1995-11-15 | 1999-05-25 | Zimmon; David S. | Apparatus and method for the treatment of esophageal varices and mucosal neoplasms |
WO1997018849A1 (en) * | 1995-11-23 | 1997-05-29 | Alec Douglas Bangham | Endotracheal tubes with pulmonary medicaments |
US20060130847A1 (en) * | 1996-03-11 | 2006-06-22 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US8557054B2 (en) | 1996-03-11 | 2013-10-15 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US6679262B1 (en) * | 1996-03-11 | 2004-01-20 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US20100186748A1 (en) * | 1996-03-11 | 2010-07-29 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US7669600B2 (en) | 1996-03-11 | 2010-03-02 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US7060135B2 (en) | 1996-03-11 | 2006-06-13 | Orlando Morejon | Endotracheal tube cleaning apparatus and method |
US20030066532A1 (en) * | 1998-03-09 | 2003-04-10 | Gobel Fred G. | Tracheal ventilating device |
AU748342B2 (en) * | 1998-03-09 | 2002-06-06 | Avent, Inc. | Tracheal breathing apparatus |
EP1428544A3 (de) * | 1998-03-09 | 2004-07-14 | Dr. Fred Göbel Patentverwaltung GmbH | Trachealbeatmungsvorrichtung |
US6802317B2 (en) | 1998-03-09 | 2004-10-12 | Fred Goebel Patentvarwaltung Gmbh | Tracheal ventilating device |
WO1999045991A1 (de) * | 1998-03-09 | 1999-09-16 | Goebel Fred G | Trachealbeatmungsvorrichtung |
US6526977B1 (en) | 1998-03-09 | 2003-03-04 | Goebel Fred G. | Tracheal breathing apparatus |
US7179849B2 (en) | 1999-12-15 | 2007-02-20 | C. R. Bard, Inc. | Antimicrobial compositions containing colloids of oligodynamic metals |
US20090293882A1 (en) * | 1999-12-15 | 2009-12-03 | C.R. Bard, Inc. | Antimicrobial compositions containing colloids of oligodynamic metals |
US8034454B2 (en) | 1999-12-15 | 2011-10-11 | C.R. Bard, Inc. | Antimicrobial compositions containing colloids of oligodynamic metals |
US20040116551A1 (en) * | 1999-12-15 | 2004-06-17 | Terry Richard N. | Antimicrobial compositions containing colloids of oligodynamic metals |
US6716895B1 (en) | 1999-12-15 | 2004-04-06 | C.R. Bard, Inc. | Polymer compositions containing colloids of silver salts |
US7820284B2 (en) | 2001-12-03 | 2010-10-26 | C.R. Bard Inc. | Microbe-resistant medical device, microbe-resistant polymeric coating and methods for producing same |
US8955518B2 (en) | 2003-06-18 | 2015-02-17 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
US7588033B2 (en) | 2003-06-18 | 2009-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
US8381729B2 (en) | 2003-06-18 | 2013-02-26 | Breathe Technologies, Inc. | Methods and devices for minimally invasive respiratory support |
US8418694B2 (en) | 2003-08-11 | 2013-04-16 | Breathe Technologies, Inc. | Systems, methods and apparatus for respiratory support of a patient |
US7487778B2 (en) | 2003-08-11 | 2009-02-10 | Breathe Technologies, Inc. | Tracheal catheter and prosthesis and method of respiratory support of a patient |
US8573219B2 (en) | 2003-08-18 | 2013-11-05 | Breathe Technologies, Inc. | Method and device for non-invasive ventilation with nasal interface |
US8136527B2 (en) | 2003-08-18 | 2012-03-20 | Breathe Technologies, Inc. | Method and device for non-invasive ventilation with nasal interface |
US8925545B2 (en) | 2004-02-04 | 2015-01-06 | Breathe Technologies, Inc. | Methods and devices for treating sleep apnea |
CN101454041B (zh) * | 2005-09-20 | 2012-12-12 | 呼吸科技公司 | 对患者进行呼吸支持的系统、方法和装置 |
US20090255533A1 (en) * | 2005-09-20 | 2009-10-15 | Breathe Technologies | Systems, methods and apparatus for respiratory support of a patient |
US7533670B1 (en) * | 2005-09-20 | 2009-05-19 | Breathe Technologies, Inc. | Systems, methods and apparatus for respiratory support of a patient |
US8631797B2 (en) * | 2005-09-20 | 2014-01-21 | Breathe Technologies, Inc. | Systems, methods and apparatus for respiratory support of a patient |
US8985099B2 (en) | 2006-05-18 | 2015-03-24 | Breathe Technologies, Inc. | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
US7631642B2 (en) | 2006-05-18 | 2009-12-15 | Breathe Technologies, Inc. | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
US10485942B2 (en) | 2006-06-22 | 2019-11-26 | Covidien Lp | Endotracheal cuff and technique for using the same |
US10888677B2 (en) | 2006-06-22 | 2021-01-12 | Covidien Lp | Endotracheal cuff and technique for using the same |
US9289567B2 (en) | 2006-06-22 | 2016-03-22 | Covidien Lp | Endotracheal cuff and technique for using the same |
US10076623B2 (en) | 2006-06-22 | 2018-09-18 | Covidien Lp | Endotracheal cuff and technique for using the same |
US9032957B2 (en) | 2006-06-22 | 2015-05-19 | Covidien Lp | Endotracheal cuff and technique for using the same |
US20130000650A1 (en) * | 2006-06-22 | 2013-01-03 | Nellcor Puritan Bennett Llc | Endotracheal cuff and technique for using the same |
US20100012130A1 (en) * | 2006-09-22 | 2010-01-21 | Romano Guerra | Tracheostomy apparatus and device |
US8757161B2 (en) * | 2006-09-22 | 2014-06-24 | Romano Guerra | Tracheostomy apparatus and device |
US10058668B2 (en) | 2007-05-18 | 2018-08-28 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and providing ventilation therapy |
US8567399B2 (en) | 2007-09-26 | 2013-10-29 | Breathe Technologies, Inc. | Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy |
US8776793B2 (en) | 2008-04-18 | 2014-07-15 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8770193B2 (en) | 2008-04-18 | 2014-07-08 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8677999B2 (en) | 2008-08-22 | 2014-03-25 | Breathe Technologies, Inc. | Methods and devices for providing mechanical ventilation with an open airway interface |
US10252020B2 (en) | 2008-10-01 | 2019-04-09 | Breathe Technologies, Inc. | Ventilator with biofeedback monitoring and control for improving patient activity and health |
US9675774B2 (en) | 2009-04-02 | 2017-06-13 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles in free space |
US10232136B2 (en) | 2009-04-02 | 2019-03-19 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation for treating airway obstructions |
US12161807B2 (en) | 2009-04-02 | 2024-12-10 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within nasal pillows |
US11103667B2 (en) | 2009-04-02 | 2021-08-31 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space |
US9962512B2 (en) | 2009-04-02 | 2018-05-08 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
US10046133B2 (en) | 2009-04-02 | 2018-08-14 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation for providing ventilation support |
US9180270B2 (en) | 2009-04-02 | 2015-11-10 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube |
US11707591B2 (en) | 2009-04-02 | 2023-07-25 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube |
US9227034B2 (en) | 2009-04-02 | 2016-01-05 | Beathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation for treating airway obstructions |
US10709864B2 (en) | 2009-04-02 | 2020-07-14 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube |
US10695519B2 (en) | 2009-04-02 | 2020-06-30 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within nasal pillows |
US11896766B2 (en) | 2009-04-02 | 2024-02-13 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space |
US10265486B2 (en) | 2009-09-03 | 2019-04-23 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US12048813B2 (en) | 2009-09-03 | 2024-07-30 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US11154672B2 (en) | 2009-09-03 | 2021-10-26 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US9132250B2 (en) | 2009-09-03 | 2015-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
USD699348S1 (en) | 2010-01-27 | 2014-02-11 | Orlando Morejon | Handle |
US20110186052A1 (en) * | 2010-02-01 | 2011-08-04 | Orlando Morejon | Cleaning assembly for an endotracheal tube |
US20110197894A1 (en) * | 2010-02-18 | 2011-08-18 | Orlando Morejon | Endotracheal tube cleaning apparatus |
US10099028B2 (en) | 2010-08-16 | 2018-10-16 | Breathe Technologies, Inc. | Methods, systems and devices using LOX to provide ventilatory support |
US8939152B2 (en) | 2010-09-30 | 2015-01-27 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
US9358358B2 (en) | 2010-09-30 | 2016-06-07 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
US11395897B1 (en) | 2014-06-27 | 2022-07-26 | Orlando Morejon | Connector assembly for a medical ventilator system |
US10279137B1 (en) | 2014-06-27 | 2019-05-07 | Orlando Morejon | Connector assembly for a medical ventilator system |
US10792449B2 (en) | 2017-10-03 | 2020-10-06 | Breathe Technologies, Inc. | Patient interface with integrated jet pump |
US12017002B2 (en) | 2017-10-03 | 2024-06-25 | Breathe Technologies, Inc. | Patient interface with integrated jet pump |
WO2021225473A1 (en) * | 2020-04-29 | 2021-11-11 | Obschestvo S Ogranichennoy Otvetstvennostyu “Vladimed” | Endotracheal tube |
US11406482B2 (en) * | 2020-08-11 | 2022-08-09 | James C. Block | Urinary catheter or plug and method for managing urinary incontinence |
US11712327B2 (en) | 2020-08-11 | 2023-08-01 | James C. Block | Urinary catheter or plug and method for managing urinary incontinence |
Also Published As
Publication number | Publication date |
---|---|
DE2009968A1 (de) | 1970-09-24 |
CA971847A (en) | 1975-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3610247A (en) | Surface-anesthetizing medical appliance | |
US3915173A (en) | Intubation device for the inhalation of gasses | |
Bach et al. | Noninvasive options for ventilatory support of the traumatic high level quadriplegic patient | |
TAKESHIMA et al. | Cardiovascular response to rapid anesthesia induction and endotracheal intubation | |
US4090518A (en) | Esophago-pharyngeal airway | |
Spoerel et al. | Transtracheal ventilation | |
US4693243A (en) | Conduit system for directly administering topical anaesthesia to blocked laryngeal-tracheal areas | |
KR910005214B1 (ko) | 소아용 치료약물 흡입기 | |
Motley et al. | Use of intermittent positive pressure breathing combined with nebulization in pulmonary disease | |
US3455294A (en) | Respiratory device | |
JPS6254511B2 (de) | ||
Jacobs et al. | Transtracheal catheter ventilation: clinical experience in 36 patients | |
MXPA94005022A (es) | Tubo endotraqueal. | |
Reed | Current concepts in airway management for cardiopulmonary resuscitation | |
US20230158262A1 (en) | Endotracheal tube | |
Stirt | Endotracheal tube misplacement | |
JOHNSTONE | The effects of sedation on the digital plethysmogram: A radiotelemetric study of haloperidol | |
Fisher | A “last ditch” airway | |
CN210542779U (zh) | 一种可同时行雾化和管壁扇喷注药的气管导管套件装置 | |
Gilbert et al. | Anesthesia for thoracic surgery | |
Mirakhur | Airway obstruction with cuffed armoured tracheal tubes | |
HARRIS | THE MANAGEMENT OF ANESTHESIA FOR CONGENTIAL HEART OPERATIONS IN CHILDREN | |
RU2806513C1 (ru) | Анестезиологический набор для обеспечения безопасности больного в условиях общей анестезии | |
CN108671352A (zh) | 一种气管插管 | |
CN217311507U (zh) | 一种无创呼吸面罩 |