[go: up one dir, main page]

US3604012A - Binary phase-scanning antenna with diode controlled slot radiators - Google Patents

Binary phase-scanning antenna with diode controlled slot radiators Download PDF

Info

Publication number
US3604012A
US3604012A US766012*A US3604012DA US3604012A US 3604012 A US3604012 A US 3604012A US 3604012D A US3604012D A US 3604012DA US 3604012 A US3604012 A US 3604012A
Authority
US
United States
Prior art keywords
phase
slots
waveguide
elements
diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US766012*A
Inventor
Dale C Lindley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singer Co
Original Assignee
Textron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Textron Inc filed Critical Textron Inc
Application granted granted Critical
Publication of US3604012A publication Critical patent/US3604012A/en
Assigned to SINGER COMPANY THE reassignment SINGER COMPANY THE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: TEXTRON INC., A CORP OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital

Definitions

  • the present invention relates to an antenna having a plurality of radiators energized to produce radiation in at least two adjacent quadrants and having control means for selectively reversing the phase of radiation of individual radiators to thereby provide direction radiation from the array and to scan such radiation.
  • the direction of a beam from a broadside array can be shifted.
  • One manner of changing the relative phase of energy radiated from adjacent elements of an array is to vary the frequency of element energization.
  • Another manner of electronically scanning a beam from an antenna array is to employ phase-shifting devices between elements for changing the phase of energy radiated from separate elements. In this latter category fall ferrite-loaded beam-shifting antennas and the like.
  • the prior art has relied upon some manner of relatively continuously varying the phase between successive elements of an antenna array in order to electronically scan a beam radiated therefrom, and the above-noted patent employs both of the phase-shifting techniques identified above.
  • the present invention provides for the scanning, or controlled variation, in the direction of propagation of the beam by the selective reversal of the phase of energy radiated from separate elements of the antenna array.
  • it is not necessary to employ any type of continuous or near continuous phase variation; there is consequently achieved a material simplification of structures and circuits required for electronic-beam scanning.
  • the antenna of the present invention comprises a plurality of radiators which may be physically embodied as dipoles, waveguide slots or the like. These individual radiators are energized in some predetermined or random phase relationship which satisfies the following conditions:
  • phase of elements of any group of adjacent elements substantially different 3.
  • aperiodic phase distribution Selective phase reversal of energy radiated from individual antenna elements is herein employed to first produce a desired beam pattern, and second to produce a desired scanning of, or change in, such beam.
  • the production of a highly directional beam of electromagnetic energy is taken as an example, and the explanation of the invention is referenced to the production of such a beam and to the scanning of same, i.e., the controlled variation in direction of propagation. It is, however, to be appreciated that the present invention is equally applicable to the generation of substantially any desired beam pattern and to controlled changing of the pattern.
  • the antenna of the present invention produces an aperiodic phase front which suppresses radiation in other than the desired direction, and it is to be noted that this is quite contrary to conventional systems or antennas normally generating a plane or periodic phase front.
  • a relationship for the relative farfield voltage at a predetermined far-field point and containing a phase term is not determined by a unique set of individual element excitation phases, but, instead, is determined by the phase of the algebraic summation of radiation from a number of elements.
  • the excitation phases of separate elements are considered to be distributed in a nonperiodic manner over the range of 0 to 21v radians.
  • phase of each element in the array is then compared in the value of the phase term as described in more detail below, and if the elements excitation phase differs from this value by more than Ir/2 radians, the phase thereof is reversed. Consequently, the phase of the resultant of the summation of all elements in a strip statistically approaches the above-noted term as the number of elements is increased.
  • the present invention may be best described and most easily understood in connection with a series of linear strips of radiating elements, and is thus so described below. It is, however, to be appreciated that the invention is equally applicable to circular apertures, as is also discussed below.
  • FIG. 1 is a schematic illustration bearing notations employed in theoretical considerations upon which the present invention is based;
  • FIG. 2 is a schematic illustration of an octagonal antenna array in accordance with the present invention.
  • FIG. 3 is a partial perspective view of a slotted waveguide as may be employed in the present invention.
  • FIG. 4 is a schematic perspective illustration of a dipole radiator as may be employed in the present invention.
  • FIG. 5 is a simple circuit diagram of diode connections for switching in accordance with the present invention.
  • a aperture surface N normal-to-surfacc at some reference point 0 0 angle between the straight lines O-N and 0-? L line on aperture surface defined by the intersection of the plane 0 containing the lines ON and OP and the aperture surface S narrow strip on aperture surface perpendicular to line L and containing a large plurality of radiating elements
  • the far-field radiation pattern in plane Q of the array of radiating elements in FIG. I is determined by the relationship All 3E9??? In the foregoing relationship the terms are defined as follows:
  • E(8) relative far-field voltage [(d 6) a phase term related to the difference in path length from the reference point 0 to the far-field point P and from the aperture point, i, to the far-field point P.
  • This phase term is a function of the location of the i" element relative to the point 0 and of the angle 9.
  • Phase o f mi Q g(d,, 6) C(t) All elements in a strip where C(r) is any spacial constant and may vary with time.
  • the excitation phases of the elements in each strip are considered to be distributed in a nonperiodic manner over the range of to Zn radians.
  • the phase of each element is then compared to the value of the right-hand term in the phase equation above corresponding to the strip in which the element lies. If the excitation phase of the element differs from this value by more than 1r/2 radians, the phase thereof is reversed.
  • the amplitude of the resultant approaches It is to be appreciated that the requirements of the phase equation above does not constrain the distribution of elements within a strip; thus this distribution may be made such that the resultant of the summation of all elements in a strip is considerably less than for all points outside of the plane Q. By making the distribution different for each strip, it is possible to further reduce the radiation outside of the plane 0, and by the proper variation of C(t) it is possible to still further reduce this radiation.
  • the maximum minor lobe level can be made to be essen tially the same as would be generated by a planar phase-front antenna having the same amplitude distribution.
  • This is best understood by considering the far-field electric field to be composed of two components; one in phase with C(t) and one in quadrature with C(t).
  • the in-phase components thus produce a radiation pattern with essentially the same minor lobe level as would be produced by a planar phase-front.
  • the quadrature components produce a pattern which fluctuates about a spacial average power level given by 1r"',/8n where n number of elements.
  • the quadrature pattern maxima and minima are moved, while the in-phase pattern remains fixed. Therefore, the time average quadrature pattern level approaches the above spacial average at all points in space. This, by increasing the number of elements in the array, the maximum quadrature pattern level may be reduced to an arbitrary amount below the maximum in-phase or planar phasefront level.
  • a practical embodiment of the present invention may be constructed by the provision of a slotted waveguide with individual radiating elements of the invention being comprised v of slots cut in the broad wall of the guide as schematically illustrated in FIG. 3.
  • Energy is propagated in the TE, mode through the rectangular waveguide 11, and energy is coupled out of the waveguide through slots formed through the broad wall thereof.
  • FIG. 3 one pair of slots 12 and 13 in such a waveguide with the slots of each pair being symmetrically disposed on opposite sides of the center line of the guide. It will be appreciated that energy propagated through the waveguide will be coupled out of the guide through these slots, with pairs of slots being spaced longitudinally along the guide.
  • diodes l4 and I6 are preferably electrically connected in parallel, as illustrated in FIG. 5.
  • Application of a bias voltage in one direction between the terminals 17 and 18 of FIG. 5 will serve to cut off one of the diodes, and oppositely poled bias voltage will cut off the other diode.
  • These diodes serve to open or close the waveguide slots for coupling of energy from the waveguide.
  • diodes l4 and 16 shall be employed only to detune the slots.
  • the diodes being employed to controllably short the coupling slots, it is necessary for these diodes then to carry a relatively heavy current, but with the diodes placed as shown in FIG. 3 at the ends of the slots, it is provided that conduction of a diode only detunes the slot, rather than fully shorting it. It will be appreciated that a detuned slot does not couple substantial energy from the waveguide.
  • Switching between waveguide slots 12 and 13 of each pair of slots in the waveguide provides for reversing the phase of energy coupled from each element of the waveguide.
  • the present invention provides for beam scanning by selective phase reversal of energy radiated from individual elements of a large plurality thereof.
  • the above-described slotted waveguide structure with diode switching for selective slot detuning is capable of carrying out the present invention.
  • FIG. 4 a dipole 21 having quarter-wavelength arms 22 and 23 extending outwardly from the outer conductor of a coaxial cable 24 at the upper ter minus thereof.
  • This outer conductor is longitudinally slotted from the upper end for a distance of one-quarter wavelength to separate the outer conductor into two portions of such length, with one of the anus 22 or 23 connected to each side of the outer conductor.
  • Switching is accomplished with this structure by the provision of a pair of diodes 26 and 27 connected between a central conductor 28 of the coaxial cable and the separate arms 22 and 23. These diodes are preferably connected in parallel as indicated in FIG. 5, so that it is possible with appropriate biasing to cause either of the diodes to conduct.
  • energizing voltage between inner and outer conductors of the coaxial cable 24, there is thus applied energization to the arms of the dipole with the phase of such energization being reversible by control of the conduction of the two diodes 26 and 27.
  • the present invention is also possible to form the present invention as a pair of spaced plates energized, for example, by a probe extending between the plates at the center thereof and probes from in dividual radiating elements extending through one of the plates at varying distances radially outward from the energizing probe.
  • Various other conventional types of radiators and radiatonenergizing means may be employed in carrying out the present invention
  • FIG. 2 of the drawing an octagonal array of radiators formed, for example, of strips of radiators 31, 32, etc, transversely thereacross, and each of such strips being comprised of a plurality of successive individual radiators.
  • Each strip could, for example, be formed as a waveguide of the type illustrated in FlG.
  • FIG. 2 provides a substantially circular aperture so that the distribution of phases in any strip located a given distance from the center of the aperture, for example, will be independent of the location of the point P at which the beam is to be directed consequently, the far-field pattern shape is independent of the choice of the plane Q of FIG. 1.
  • the present invention employs a very substantial number of radiators or radiating elements, and that the elements of any strip or line thereof are energized to radiate in at least tow adjacent phase quadrants so that phase-reversal radiation is achieved in all four phase quadrants.
  • the phase of radiation from selected elements to produce a desired beam direction; consequently, by further selected reversals to scan such a beam.
  • the preceding description references diode switching; however, it is believed evident that alterna tive types of switching may be employed.
  • phase reversal the sequence of diode switching, or phase reversal, and the manner in which such is physically accomplished, is likewise open to wide variation
  • Electronic or electromechanical means may be employed to control diode switching.
  • a radiation source at a point P with phase C(r) toward which such a beam is to be directed and to measure the radiation at each element of the invention and then to proceed as described above by reversing the phase of those elements differing from the phase of energy received by more than 90.
  • This may be repeated for different locations of point P throughout a beam scan so as to thus arrive at a phase reversal program, which, when repeated, will direct a beam as desired and scan same in a desired manner.
  • the programming of reversal may be accomplished by a computer.
  • phase of energy radiated from the elements of an antenna array in accordance with the present invention is a random phase distribution between elements.
  • any line 4! drawn across the array of FIG. 2 may be considered as a strip of radiating elements in which elements of the strip radiate in all four quadrants of phase relationship, so that it is possible in accordance with the present invention to reverse the phase of particular elements thereof to generate a beam directed to any far point P.
  • An antenna array of the general configuration of FIG. 2 and having of the order of 400 radiating elements was employed to produce a highly directional beam which was readily and rapidly scanned through a predetermined pattern by the successive reversal of phase of radiation from individual elements of the array.
  • An improved antenna comprising a large plurality of radiating elements aligned in strips, each strip comprising a waveguide having pairs of slots therein with the slots of each pair being diametrically disposed on opposite sides of the center of the waveguide and diodes connected across each slot, means energizing said elements to radiate energy in at least two adjacent phase quadrants with the phase of elements of any group of adjacent elements substantially different and establishing a nonperiodic phase distribution across the array, and switching means selectively reversing biasing of diodes of each pair of slots for selectively reversing the phase ofenergy radiated by each radiated element to thereby establish a predetermined radiation beam pattern and further successively reversing the phase of predetermined elements in predetermined order to change the direction or pattern of a radiated beam in a preselected manner.
  • the antenna of claim 1 further defined by said diodes being disposed across ends of said slots for selectively detuning said slots from said waveguide.
  • each waveguide having pairs of slots spaced along the length thereof with the slots of each pair disposed equidistant on opposite sides of the center of the waveguide, diodes connected one across the end of each waveguide slot with the diodes of each pair of slots being connected in parallel opposed arrange ment and being controllably biased by opposite polarity voltage causing either one only of each pair of diodes to conduct for selectively reversing the phase ofenergy coupled to the at mosphcre from each pair of slots.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention relates to an antenna having a plurality of radiators energized to produce radiation in at least two adjacent quadrants and having control means for selectively reversing the phase of radiation of individual radiators to thereby provide direction radiation from the array and to scan such radiation.

Description

United States Patent Inventor Dale C. Lindley Sunnyvale, Calif.
Appl. No. 766,012
Filed Aug. 19, 1968 Patented Sept. 7, 1971 Assignee Textron Inc.
Belmont, Calii.
BINARY PHASE-SCANNING ANTENNA WITH DIODE CONTROLLED SLOT RADIATORS 3 Claims, 5 Drawing Figs.
U.S. Cl 343/768, 343/771, 343/854 Int.Cl ..H0lq 13/10 Field of Search 343/768,
[56] llelerenees C lted UNITED STATES PATENTS 3,016,535 1/1962 Hewitt 343/768 3,056,961 10/1962 Mitchell 4. 343/854 3,085,204 4/1963 Sletten 4. 343/777 3,100,300 8/1963 Sletten 343/771 3,175,218 3/1965 Goebels.... 343/768 3,274,601 9/1966 Blass 343/778 3,392,393 7/1968 Spitz 343/754 3,500,251 3/1970 Peace 333/7 Primary Examiner-Eli Lieberman Anomey- Lippincott, Gregg, Hendricson 8t Stidham ABSTRACT: The present invention relates to an antenna having a plurality of radiators energized to produce radiation in at least two adjacent quadrants and having control means for selectively reversing the phase of radiation of individual radiators to thereby provide direction radiation from the array and to scan such radiation.
BINARY PHASE-SANNING ANTENNA WITH DIODE CONTROLLED SLOT RADIATORS BACKGROUND OF INVENTION In many fields such as that of radar it is common practice to radiate a highly directional beam of electromagnetic energy and to scan the beam so as to controllably vary the direction of beam propagation. It is noted that there have been developed a large number of antennas, antenna arrays and antenna feedand control systems to achieve the above-identified result. It is stated, for example, in U.S. Pat. No. 3,286,260 to Shirly La Var Howard that it is conventional to employ phase shifting between adjacent elements of an antenna array in order to produce scanning of the beam. By incrementally changing the relative phase of energy radiated from successive elements of an array, the direction of a beam from a broadside array, for example, can be shifted. One manner of changing the relative phase of energy radiated from adjacent elements of an array is to vary the frequency of element energization. Another manner of electronically scanning a beam from an antenna array is to employ phase-shifting devices between elements for changing the phase of energy radiated from separate elements. In this latter category fall ferrite-loaded beam-shifting antennas and the like. The prior art has relied upon some manner of relatively continuously varying the phase between successive elements of an antenna array in order to electronically scan a beam radiated therefrom, and the above-noted patent employs both of the phase-shifting techniques identified above.
While it is recognized that a directional beam can be electronically scanned, it is generally accepted that such scanning requires the utilization of some type of continuous or near continuous phase variation at each of the radiating elements. This requirement is highly disadvantageous in necessitating the utilization of relatively complex structures and circuits.
The present invention provides for the scanning, or controlled variation, in the direction of propagation of the beam by the selective reversal of the phase of energy radiated from separate elements of the antenna array. Thus, in accordance with the present invention, it is not necessary to employ any type of continuous or near continuous phase variation; there is consequently achieved a material simplification of structures and circuits required for electronic-beam scanning.
SUMMARY OF INVENTION The antenna of the present invention comprises a plurality of radiators which may be physically embodied as dipoles, waveguide slots or the like. These individual radiators are energized in some predetermined or random phase relationship which satisfies the following conditions:
I. phase distributed approximately uniformly over at least two adjacent phase quadrants 2. phase of elements of any group of adjacent elements substantially different 3. aperiodic phase distribution Selective phase reversal of energy radiated from individual antenna elements is herein employed to first produce a desired beam pattern, and second to produce a desired scanning of, or change in, such beam. In the following description of the present invention the production of a highly directional beam of electromagnetic energy is taken as an example, and the explanation of the invention is referenced to the production of such a beam and to the scanning of same, i.e., the controlled variation in direction of propagation. It is, however, to be appreciated that the present invention is equally applicable to the generation of substantially any desired beam pattern and to controlled changing of the pattern.
The antenna of the present invention produces an aperiodic phase front which suppresses radiation in other than the desired direction, and it is to be noted that this is quite contrary to conventional systems or antennas normally generating a plane or periodic phase front. In accordance with the present invention there is derived a relationship for the relative farfield voltage at a predetermined far-field point and containing a phase term. It is herein determined that the far-field pattern is not determined by a unique set of individual element excitation phases, but, instead, is determined by the phase of the algebraic summation of radiation from a number of elements. In accordance herewith the excitation phases of separate elements are considered to be distributed in a nonperiodic manner over the range of 0 to 21v radians. The phase of each element in the array is then compared in the value of the phase term as described in more detail below, and if the elements excitation phase differs from this value by more than Ir/2 radians, the phase thereof is reversed. Consequently, the phase of the resultant of the summation of all elements in a strip statistically approaches the above-noted term as the number of elements is increased.
The present invention may be best described and most easily understood in connection with a series of linear strips of radiating elements, and is thus so described below. It is, however, to be appreciated that the invention is equally applicable to circular apertures, as is also discussed below.
DESCRIPTION OF FIGURES FIG. 1 is a schematic illustration bearing notations employed in theoretical considerations upon which the present invention is based;
FIG. 2 is a schematic illustration of an octagonal antenna array in accordance with the present invention;
FIG. 3 is a partial perspective view of a slotted waveguide as may be employed in the present invention;
FIG. 4 is a schematic perspective illustration of a dipole radiator as may be employed in the present invention; and
FIG. 5 is a simple circuit diagram of diode connections for switching in accordance with the present invention.
DESCRIPTION OF PREFERRED EMBODIMENTS The present invention may be best described and understood by initially considering a planar aperture surface A and radiation in a plane perpendicular thereto. In this respect reference is made to FIG. I employing the conventions:
A aperture surface N normal-to-surfacc at some reference point 0 0= angle between the straight lines O-N and 0-? L line on aperture surface defined by the intersection of the plane 0 containing the lines ON and OP and the aperture surface S narrow strip on aperture surface perpendicular to line L and containing a large plurality of radiating elements The far-field radiation pattern in plane Q of the array of radiating elements in FIG. I is determined by the relationship All 3E9??? In the foregoing relationship the terms are defined as follows:
E(8)= relative far-field voltage [(d 6) a phase term related to the difference in path length from the reference point 0 to the far-field point P and from the aperture point, i, to the far-field point P. This phase term is a function of the location of the i" element relative to the point 0 and of the angle 9. a, complex voltage feeding coefficient for the element located at position 1'. Consider first that the point, P, toward which the peak of the radiation pattern is to be directed has been chosen. This choice determines the plane, Q, and therefore the intersection line L. This, then, also fixes the orientation of the aperture strips such as S. The orientation of these aperture strips may thus be different for different positions of the main beam peak. Making use of the fact that, once the strip orientation has been determined, the elements lying on any strip are equidistant from the far-iield point P, the relative far-field voltage may be written as:
All All strips elements i 9 ti l.
Phase o f mi: Q g(d,, 6) C(t) All elements in a strip where C(r) is any spacial constant and may vary with time. In order to satisfy the requirements of the phase relationship set forth immediately above, the excitation phases of the elements in each strip are considered to be distributed in a nonperiodic manner over the range of to Zn radians. The phase of each element is then compared to the value of the right-hand term in the phase equation above corresponding to the strip in which the element lies. If the excitation phase of the element differs from this value by more than 1r/2 radians, the phase thereof is reversed. The phase of the resultant of the summation of all elements in a strip thereby statistically approaches g(d, 6) =C(r) as the number of elements is increase. The amplitude of the resultant approaches It is to be appreciated that the requirements of the phase equation above does not constrain the distribution of elements within a strip; thus this distribution may be made such that the resultant of the summation of all elements in a strip is considerably less than for all points outside of the plane Q. By making the distribution different for each strip, it is possible to further reduce the radiation outside of the plane 0, and by the proper variation of C(t) it is possible to still further reduce this radiation. In fact, the maximum minor lobe level can be made to be essen tially the same as would be generated by a planar phase-front antenna having the same amplitude distribution. This is best understood by considering the far-field electric field to be composed of two components; one in phase with C(t) and one in quadrature with C(t). The in-phase components thus produce a radiation pattern with essentially the same minor lobe level as would be produced by a planar phase-front. The quadrature components produce a pattern which fluctuates about a spacial average power level given by 1r"',/8n where n number of elements.
As the value of C(l) is varied, the quadrature pattern maxima and minima are moved, while the in-phase pattern remains fixed. Therefore, the time average quadrature pattern level approaches the above spacial average at all points in space. This, by increasing the number of elements in the array, the maximum quadrature pattern level may be reduced to an arbitrary amount below the maximum in-phase or planar phasefront level.
A practical embodiment of the present invention may be constructed by the provision of a slotted waveguide with individual radiating elements of the invention being comprised v of slots cut in the broad wall of the guide as schematically illustrated in FIG. 3. Energy is propagated in the TE, mode through the rectangular waveguide 11, and energy is coupled out of the waveguide through slots formed through the broad wall thereof. There is shown in FIG. 3 one pair of slots 12 and 13 in such a waveguide with the slots of each pair being symmetrically disposed on opposite sides of the center line of the guide. It will be appreciated that energy propagated through the waveguide will be coupled out of the guide through these slots, with pairs of slots being spaced longitudinally along the guide. In accordance with the present invention, provision is made for reversing the phase of energy coupled from any pair of slots. This is herein shown to be accomplished by the location of diodes l4 and I6 in the slots 12 and 13, respectively. These diodes are preferably electrically connected in parallel, as illustrated in FIG. 5. Application of a bias voltage in one direction between the terminals 17 and 18 of FIG. 5 will serve to cut off one of the diodes, and oppositely poled bias voltage will cut off the other diode. These diodes serve to open or close the waveguide slots for coupling of energy from the waveguide.
It is possible in accordance with conventional practice to employ diodes in the manner described above to short one or the other of the slots of each pair, so that only the slot which is not shorted will couple energy from the waveguide. It is, however, provided in accordance with the present invention that the diodes l4 and 16 shall be employed only to detune the slots. with the diodes being employed to controllably short the coupling slots, it is necessary for these diodes then to carry a relatively heavy current, but with the diodes placed as shown in FIG. 3 at the ends of the slots, it is provided that conduction of a diode only detunes the slot, rather than fully shorting it. It will be appreciated that a detuned slot does not couple substantial energy from the waveguide. It is to be further appreciated that employment of the diodes in the manner described above materially reduces the rating required of the diodes, so that it is possible to employ much less expensive diodes for phase reversal herein. It was, in fact, found in one application of the present invention that diodes having a normal capability of operating at 2 billion Hz., when located at the ends of the waveguide slots as shown, provided fully satisfactory switching at 10 billion Hz. It is considered that this is a marked and novel improvement.
Switching between waveguide slots 12 and 13 of each pair of slots in the waveguide provides for reversing the phase of energy coupled from each element of the waveguide. As noted above, the present invention provides for beam scanning by selective phase reversal of energy radiated from individual elements of a large plurality thereof. Thus, the above-described slotted waveguide structure with diode switching for selective slot detuning is capable of carrying out the present invention.
The slotted waveguide structure described above is only one example of structure in accordance with the present invert tion. Insofar as individual radiating elements are concerned, it is possible to employ various types and structures. Thus, for example, there is illustrated in FIG. 4 a dipole 21 having quarter-wavelength arms 22 and 23 extending outwardly from the outer conductor of a coaxial cable 24 at the upper ter minus thereof. This outer conductor is longitudinally slotted from the upper end for a distance of one-quarter wavelength to separate the outer conductor into two portions of such length, with one of the anus 22 or 23 connected to each side of the outer conductor. Switching is accomplished with this structure by the provision of a pair of diodes 26 and 27 connected between a central conductor 28 of the coaxial cable and the separate arms 22 and 23. These diodes are preferably connected in parallel as indicated in FIG. 5, so that it is possible with appropriate biasing to cause either of the diodes to conduct. By the application of energizing voltage between inner and outer conductors of the coaxial cable 24, there is thus applied energization to the arms of the dipole with the phase of such energization being reversible by control of the conduction of the two diodes 26 and 27.
It is also possible to form the present invention as a pair of spaced plates energized, for example, by a probe extending between the plates at the center thereof and probes from in dividual radiating elements extending through one of the plates at varying distances radially outward from the energizing probe. Various other conventional types of radiators and radiatonenergizing means may be employed in carrying out the present invention There is illustrated in FIG. 2 of the drawing an octagonal array of radiators formed, for example, of strips of radiators 31, 32, etc, transversely thereacross, and each of such strips being comprised of a plurality of successive individual radiators. Each strip could, for example, be formed as a waveguide of the type illustrated in FlG. 3, with the individual radiators being then comprised as pairs of waveguide slots, as described above. This configuration of FIG. 2 provides a substantially circular aperture so that the distribution of phases in any strip located a given distance from the center of the aperture, for example, will be independent of the location of the point P at which the beam is to be directed consequently, the far-field pattern shape is independent of the choice of the plane Q of FIG. 1.
it is to be understood that the present invention employs a very substantial number of radiators or radiating elements, and that the elements of any strip or line thereof are energized to radiate in at least tow adjacent phase quadrants so that phase-reversal radiation is achieved in all four phase quadrants. Thus it is possible by reversal of the phase of radiation from selected elements to produce a desired beam direction; consequently, by further selected reversals to scan such a beam. With regard to this accomplishment of phase reversal, it is noted that the preceding description references diode switching; however, it is believed evident that alterna tive types of switching may be employed. It is furthermore noted that the sequence of diode switching, or phase reversal, and the manner in which such is physically accomplished, is likewise open to wide variation Electronic or electromechanical means may be employed to control diode switching. With regard to the establishment of a particular desired beam, it is possible to locate a radiation source at a point P with phase C(r) toward which such a beam is to be directed and to measure the radiation at each element of the invention and then to proceed as described above by reversing the phase of those elements differing from the phase of energy received by more than 90. This may be repeated for different locations of point P throughout a beam scan so as to thus arrive at a phase reversal program, which, when repeated, will direct a beam as desired and scan same in a desired manner. More practically, the programming of reversal may be accomplished by a computer.
With regard to the phase of energy radiated from the elements of an antenna array in accordance with the present invention, it is noted that one highly advantageous arrangement is a random phase distribution between elements. It will be seen that any line 4! drawn across the array of FIG. 2 may be considered as a strip of radiating elements in which elements of the strip radiate in all four quadrants of phase relationship, so that it is possible in accordance with the present invention to reverse the phase of particular elements thereof to generate a beam directed to any far point P. An antenna array of the general configuration of FIG. 2 and having of the order of 400 radiating elements was employed to produce a highly directional beam which was readily and rapidly scanned through a predetermined pattern by the successive reversal of phase of radiation from individual elements of the array.
There has been described above an improved and simplified scanning antenna formed of a large plurality of radiating elements energized to produce radiation in all four phase quadrants and adapted for reversal of phase of radiation from individual elements thereof. In this manner there is produced a desired radiation pattern from the array; and scanning of the beam so produced is accomplished by appropriate switching of the phase of energy radiated by individual elements of the array. There is also provided hereby an advantageous arrangement for reversing the phase of radiation from waveguide slots by the location of diodes at the ends of such slots for detuning a predetermined one of a pair of slots located on opposite sides of the center line of a waveguide. Prior art requirements offrequency variation or substantially continuous phase variations for electronic beam scanning are hereby precluded.
Although the present invention is described herein with respect to particular preferred embodiments thereof, it is not intended to limit the invention to the exact terms of description or details of illustration, but, instead, reference is made to the appended claims for a precise delineation of the true scope of this invention.
That which is claimed is:
1. An improved antenna comprising a large plurality of radiating elements aligned in strips, each strip comprising a waveguide having pairs of slots therein with the slots of each pair being diametrically disposed on opposite sides of the center of the waveguide and diodes connected across each slot, means energizing said elements to radiate energy in at least two adjacent phase quadrants with the phase of elements of any group of adjacent elements substantially different and establishing a nonperiodic phase distribution across the array, and switching means selectively reversing biasing of diodes of each pair of slots for selectively reversing the phase ofenergy radiated by each radiated element to thereby establish a predetermined radiation beam pattern and further successively reversing the phase of predetermined elements in predetermined order to change the direction or pattern of a radiated beam in a preselected manner.
2. The antenna of claim 1 further defined by said diodes being disposed across ends of said slots for selectively detuning said slots from said waveguide.
3. In an antenna structure having at least one waveguide with coupling slots in the wall thereof for coupling waveguide energy to the atmosphere, the improvement comprising each waveguide having pairs of slots spaced along the length thereof with the slots of each pair disposed equidistant on opposite sides of the center of the waveguide, diodes connected one across the end of each waveguide slot with the diodes of each pair of slots being connected in parallel opposed arrange ment and being controllably biased by opposite polarity voltage causing either one only of each pair of diodes to conduct for selectively reversing the phase ofenergy coupled to the at mosphcre from each pair of slots.

Claims (3)

1. An improved antenna comprising a large plurality of radiating elements aligned in strips, each strip comprising a waveguide having pairs of slots therein with the slots of each pair being diametrically disposed on opposite sides of the center of the waveguide and diodes connected across each slot, means energizing said elements to radiate energy in at least two adjacent phase quadrants with the phase of elements of any group of adjacent elements substantially different and establishing a nonperiodic phase distribution across the array, and switching means selectively reversing biasing of diodes of each pair of slots for selectively reversing the phase of energy radiated by each radiated element to thereby establish a predetermined radiation beam pattern and further successively reversing the phase of predetermined elements in predetermined order to change the direction or pattern of a radiated beam in a preselected manner.
2. The antenna of claim 1 further defined by said diodes being disposed across ends of said slots for selectively detuning said slots from said waveguide.
3. In an antenna structure having at least one waveguide with coupling slots in the wall thereof for coupling waveguide energy to the atmosphere, the improvement comprising each waveguide having pairs of slots spaced along the length thereof with the slots of each pair disposed equidistant on opposite sides of the center of the waveguide, diodes connected one across the end of each waveguide slot with the diodes of each pair of slots being connected in parallel opposed arrangement and being controllably biased by opposite polarity voltage causing either one only of each pair of diodes to conduct for selectively reversing the phase of energy coupled to the atmosphere from each pair of slots.
US766012*A 1968-08-19 1968-08-19 Binary phase-scanning antenna with diode controlled slot radiators Expired - Lifetime US3604012A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76601268A 1968-08-19 1968-08-19

Publications (1)

Publication Number Publication Date
US3604012A true US3604012A (en) 1971-09-07

Family

ID=25075129

Family Applications (1)

Application Number Title Priority Date Filing Date
US766012*A Expired - Lifetime US3604012A (en) 1968-08-19 1968-08-19 Binary phase-scanning antenna with diode controlled slot radiators

Country Status (1)

Country Link
US (1) US3604012A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969729A (en) * 1975-03-17 1976-07-13 International Telephone And Telegraph Corporation Network-fed phased array antenna system with intrinsic RF phase shift capability
US4376281A (en) * 1980-12-23 1983-03-08 United Technologies Corporation Multimode array antenna
DE3802662A1 (en) * 1988-01-29 1989-08-03 Licentia Gmbh Phase-controlled antenna
US4885592A (en) * 1987-12-28 1989-12-05 Kofol J Stephen Electronically steerable antenna
US5754143A (en) * 1996-10-29 1998-05-19 Southwest Research Institute Switch-tuned meandered-slot antenna
US5990844A (en) * 1997-06-13 1999-11-23 Thomson-Csf Radiating slot array antenna
WO2001069720A1 (en) * 2000-03-14 2001-09-20 Technische Universität Dresden Device for transmitting and receiving electromagnetic waves in a route-selective manner
FR2843834A1 (en) * 2002-08-23 2004-02-27 Thomson Licensing Sa Terrestrial digital television portable antenna having waveguide with radiating slots each having control circuit providing short/open circuit between slot edges.
EP1455415A1 (en) * 2003-03-07 2004-09-08 Thomson Licensing S.A. Radiation diversity antenna
US7305935B1 (en) * 2004-08-25 2007-12-11 The United States Of America As Represented By The Administration Of Nasa Slotted antenna waveguide plasma source
WO2011117003A1 (en) * 2010-03-26 2011-09-29 Robert Bosch Gmbh Microwave scanner
US20130178702A1 (en) * 2011-05-30 2013-07-11 Olympus Medical Systems Corp. Antenna apparatus, antenna, antenna holder, and body-insertable apparatus system
US20150318620A1 (en) * 2014-05-02 2015-11-05 Searete Llc Curved surface scattering antennas
US20150318618A1 (en) * 2014-05-02 2015-11-05 Searete Llc Surface scattering antennas with lumped elements
US20170123057A1 (en) * 2014-07-04 2017-05-04 Sick Ag Sensor for a roller track and method for recognizing objects located on a roller track
US20180019519A1 (en) * 2016-07-12 2018-01-18 Chunghwa Telecom Co., Ltd. Electronic switching beamforming antenna array
US9882288B2 (en) 2014-05-02 2018-01-30 The Invention Science Fund I Llc Slotted surface scattering antennas
US9923271B2 (en) 2013-10-21 2018-03-20 Elwha Llc Antenna system having at least two apertures facilitating reduction of interfering signals
US10178560B2 (en) 2015-06-15 2019-01-08 The Invention Science Fund I Llc Methods and systems for communication with beamforming antennas
US10236574B2 (en) 2013-12-17 2019-03-19 Elwha Llc Holographic aperture antenna configured to define selectable, arbitrary complex electromagnetic fields
US10320084B2 (en) 2010-10-15 2019-06-11 The Invention Science Fund I Llc Surface scattering antennas
US10361481B2 (en) 2016-10-31 2019-07-23 The Invention Science Fund I, Llc Surface scattering antennas with frequency shifting for mutual coupling mitigation
US10998628B2 (en) 2014-06-20 2021-05-04 Searete Llc Modulation patterns for surface scattering antennas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016535A (en) * 1957-12-31 1962-01-09 Bell Telephone Labor Inc Slotted waveguide antenna
US3056961A (en) * 1957-08-15 1962-10-02 Post Office Steerable directional random antenna array
US3085204A (en) * 1958-09-03 1963-04-09 Carlyle J Sletten Amplitude scanning
US3100300A (en) * 1956-10-10 1963-08-06 Carlyle J Sletten Antenna array synthesis method
US3175218A (en) * 1963-03-01 1965-03-23 Hughes Aircraft Co Variable electronic slot coupler
US3274601A (en) * 1962-12-12 1966-09-20 Blass Antenna Electronics Corp Antenna system with electronic scanning means
US3392393A (en) * 1962-05-03 1968-07-09 Csf Electrically controlled scanning antennas having a plurality of wave diffracting elements for varying the phase shift of a generated wave
US3500251A (en) * 1967-09-12 1970-03-10 Chain Lakes Res Assoc Wide band log periodic slot rf switch

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100300A (en) * 1956-10-10 1963-08-06 Carlyle J Sletten Antenna array synthesis method
US3056961A (en) * 1957-08-15 1962-10-02 Post Office Steerable directional random antenna array
US3016535A (en) * 1957-12-31 1962-01-09 Bell Telephone Labor Inc Slotted waveguide antenna
US3085204A (en) * 1958-09-03 1963-04-09 Carlyle J Sletten Amplitude scanning
US3392393A (en) * 1962-05-03 1968-07-09 Csf Electrically controlled scanning antennas having a plurality of wave diffracting elements for varying the phase shift of a generated wave
US3274601A (en) * 1962-12-12 1966-09-20 Blass Antenna Electronics Corp Antenna system with electronic scanning means
US3175218A (en) * 1963-03-01 1965-03-23 Hughes Aircraft Co Variable electronic slot coupler
US3500251A (en) * 1967-09-12 1970-03-10 Chain Lakes Res Assoc Wide band log periodic slot rf switch

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2305037A1 (en) * 1975-03-17 1976-10-15 Int Standard Electric Corp UNIBLOC ANTENNA AND PHASER ELEMENT, ESPECIALLY FOR A SCANNED NETWORK IN PHASE
US3969729A (en) * 1975-03-17 1976-07-13 International Telephone And Telegraph Corporation Network-fed phased array antenna system with intrinsic RF phase shift capability
US4376281A (en) * 1980-12-23 1983-03-08 United Technologies Corporation Multimode array antenna
US4885592A (en) * 1987-12-28 1989-12-05 Kofol J Stephen Electronically steerable antenna
DE3802662A1 (en) * 1988-01-29 1989-08-03 Licentia Gmbh Phase-controlled antenna
US5754143A (en) * 1996-10-29 1998-05-19 Southwest Research Institute Switch-tuned meandered-slot antenna
US5990844A (en) * 1997-06-13 1999-11-23 Thomson-Csf Radiating slot array antenna
DE10190998B4 (en) * 2000-03-14 2014-10-30 Rohde & Schwarz Gmbh & Co. Kg Device for directionally selective transmission and reception of electromagnetic waves
WO2001069720A1 (en) * 2000-03-14 2001-09-20 Technische Universität Dresden Device for transmitting and receiving electromagnetic waves in a route-selective manner
FR2843834A1 (en) * 2002-08-23 2004-02-27 Thomson Licensing Sa Terrestrial digital television portable antenna having waveguide with radiating slots each having control circuit providing short/open circuit between slot edges.
FR2852150A1 (en) * 2003-03-07 2004-09-10 Thomson Licensing Sa IMPROVEMENT TO RADIATION DIVERSITY ANTENNAS
US20050237252A1 (en) * 2003-03-07 2005-10-27 Franck Thudor Radiation diversity antennas
US7336233B2 (en) 2003-03-07 2008-02-26 Thomson Licensing Radiation diversity antennas
CN100533855C (en) * 2003-03-07 2009-08-26 汤姆森许可贸易公司 Radiation Diversity Antenna
EP1455415A1 (en) * 2003-03-07 2004-09-08 Thomson Licensing S.A. Radiation diversity antenna
US7305935B1 (en) * 2004-08-25 2007-12-11 The United States Of America As Represented By The Administration Of Nasa Slotted antenna waveguide plasma source
US20130120204A1 (en) * 2010-03-26 2013-05-16 Thomas Schoeberl Microwave scanner
WO2011117003A1 (en) * 2010-03-26 2011-09-29 Robert Bosch Gmbh Microwave scanner
US10320084B2 (en) 2010-10-15 2019-06-11 The Invention Science Fund I Llc Surface scattering antennas
US8821380B2 (en) * 2011-05-30 2014-09-02 Olympus Medical Systems Corp. Antenna apparatus, antenna, antenna holder, and body-insertable apparatus system
US20130178702A1 (en) * 2011-05-30 2013-07-11 Olympus Medical Systems Corp. Antenna apparatus, antenna, antenna holder, and body-insertable apparatus system
US9923271B2 (en) 2013-10-21 2018-03-20 Elwha Llc Antenna system having at least two apertures facilitating reduction of interfering signals
US10236574B2 (en) 2013-12-17 2019-03-19 Elwha Llc Holographic aperture antenna configured to define selectable, arbitrary complex electromagnetic fields
US20150318618A1 (en) * 2014-05-02 2015-11-05 Searete Llc Surface scattering antennas with lumped elements
US9882288B2 (en) 2014-05-02 2018-01-30 The Invention Science Fund I Llc Slotted surface scattering antennas
US9853361B2 (en) * 2014-05-02 2017-12-26 The Invention Science Fund I Llc Surface scattering antennas with lumped elements
US20150318620A1 (en) * 2014-05-02 2015-11-05 Searete Llc Curved surface scattering antennas
US10446903B2 (en) * 2014-05-02 2019-10-15 The Invention Science Fund I, Llc Curved surface scattering antennas
US10727609B2 (en) 2014-05-02 2020-07-28 The Invention Science Fund I, Llc Surface scattering antennas with lumped elements
US10998628B2 (en) 2014-06-20 2021-05-04 Searete Llc Modulation patterns for surface scattering antennas
US20170123057A1 (en) * 2014-07-04 2017-05-04 Sick Ag Sensor for a roller track and method for recognizing objects located on a roller track
US10178560B2 (en) 2015-06-15 2019-01-08 The Invention Science Fund I Llc Methods and systems for communication with beamforming antennas
US20180019519A1 (en) * 2016-07-12 2018-01-18 Chunghwa Telecom Co., Ltd. Electronic switching beamforming antenna array
US10418714B2 (en) * 2016-07-12 2019-09-17 Chunghwa Telecom Co., Ltd. Electronic switching beamforming antenna array
US10361481B2 (en) 2016-10-31 2019-07-23 The Invention Science Fund I, Llc Surface scattering antennas with frequency shifting for mutual coupling mitigation

Similar Documents

Publication Publication Date Title
US3604012A (en) Binary phase-scanning antenna with diode controlled slot radiators
Wheeler The radiation resistance of an antenna in an infinite array or waveguide
Goebels et al. Arbitrary polarization from annular slot plannar antennas
US3708796A (en) Electrically controlled dielectric panel lens
King et al. Unequally-spaced, broad-band antenna arrays
US4716415A (en) Dual polarization flat plate antenna
US3818490A (en) Dual frequency array
US4021813A (en) Geometrically derived beam circular antenna array
US3623111A (en) Multiaperture radiating array antenna
US3438035A (en) Pencil beam frequency/phase scanning system
US4613869A (en) Electronically scanned array antenna
US3987454A (en) Log-periodic longitudinal slot antenna array excited by a waveguide with a conductive ridge
US3858221A (en) Limited scan antenna array
Ang et al. A passive redirecting Van Atta-type reflector
US3569974A (en) Dual polarization microwave energy phase shifter for phased array antenna systems
US3274601A (en) Antenna system with electronic scanning means
Allen Array antennas: New applications for an old technique
US3419870A (en) Dual-plane frequency-scanned antenna array
US3340534A (en) Elliptically or circularly polarized antenna
US4063248A (en) Multiple polarization antenna element
US3213454A (en) Frequency scanned antenna array
Lechtreck Effects of coupling accumulation in antenna arrays
US3641579A (en) FREQUENCY-INDEPENDENT IcR ANTENNA
US3673606A (en) Flush mounted steerable array antenna
US3192530A (en) Electronically scanned array with diode controlled delay network

Legal Events

Date Code Title Description
AS Assignment

Owner name: SINGER COMPANY THE, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEXTRON INC., A CORP OF DE.;REEL/FRAME:004552/0681

Effective date: 19860315

Owner name: SINGER COMPANY THE, A CORP OF NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TEXTRON INC., A CORP OF DE.;REEL/FRAME:004552/0681

Effective date: 19860315