US3594514A - Hearing aid with piezoelectric ceramic element - Google Patents
Hearing aid with piezoelectric ceramic element Download PDFInfo
- Publication number
- US3594514A US3594514A US489A US3594514DA US3594514A US 3594514 A US3594514 A US 3594514A US 489 A US489 A US 489A US 3594514D A US3594514D A US 3594514DA US 3594514 A US3594514 A US 3594514A
- Authority
- US
- United States
- Prior art keywords
- hearing aid
- piezoelectric ceramic
- animal
- contact
- electrical signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/60—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
- H04R25/604—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
- H04R25/606—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
Definitions
- Hearing aids have long been known in the field of medicalelectronics. Generally these known hearing aids are mounted external to the body and apply a vibration from a device mounted adjacent the external portion of the ear drum. While satisfactory for some uses, these known hearing aids are ineffective when the auditory system of the middle ear has become inoperative or highly inefficient. Some prior art attempts have been made to provide an implantable hearing aid by which the inoperative portions of the auditory system can be bypassed. These prior art systems used the technique of converting the vibration into air acoustics, and providing the vibrated air to the inner ear.
- the apparatus of this invention provides a piezoelectric ceramic element which is suitable for implantation in the middle ear structure of the body.
- mechanical vibrations can be applied directly to the auditory system, such as the auditory ossicles or the oval window, or the vibrations can be caused at a predetermined spacing from the desired element of the auditory system.
- the apparatus of this invention comprises a piezoelectric ceramic element, described herein in its preferred embodiment as a bimorphic ceramic element, capable of transducing electrical signals to mechanical vibrations.
- the piezoelectric element is electrically connected to an electrical circuit which provides electrical signals to the piezoelectrical element representing the sound waves desired to be heard.
- the electrical circuit and the piezoelectric element are encapsulated in a substance inert to body fluids and tissue to avoid harmful effects from implantation in the body.
- the electrical circuit can be a receiver which receives electric signals from a transmitter located external to the body, or can be a complete unit which receives the sound waves through devices totally implanted, for transmission to the piezoelectric element.
- FIG. 1 is a view of an embodiment of the apparatus of this invention shown completely encapsulated
- FIG. 2 is a sectional view of a portion of the embodiment of FIG. I showing an encapsulated piezoelectric ceramic element
- FIG. 3 is a schematic drawing of the circuit of the embodiment of FIG. I.
- FIG. 4 is a block diagram of an external transmitter which can be used with the circuitry of FIG. 3.
- FIG. 2 there is shown a sectional view of tall 13 and a portion of stem I2.
- a piezoelectric transducer 15 here shown as a bimorphic ceramic element, similar to bimorphic elements used in phonograph pickup apparatus well known to those skilled in the electrical art.
- a pair of leads I6 and I7 are each shown connected to piezoelectric element 15, and extending through stem 12.
- Element I5 is shown encased in an epoxy 18.
- Element 15 and epoxy coating 18, as well as leads 16 and 17, are shown encapsulated in a substance 19 which is substantially inert to body fluids and tissue, such as silicon rubber.
- the substance 19 around tail portion I3 is sufficiently thin so as to allow efficient translation of vibratory motion from transducer 15 to the auditory system of the middle ear, as more fully described below.
- piezoelectric element 15 was 0.3-0.5 inches long; 0.05 inches wide; and 0.025 inches thick (including both layers of a bimorphic element); epoxy coating 18 around element 15 was approximately 0.01-0.015 inches thick; and substance 19 comprised a coating of about 0.01 inches thickness. The preceding dimensions are approximate.
- FIG. 3 there is shown a signal receiving coil 20.
- a capacitor 21 Connected in parallel with coil 20 is a capacitor 21.
- a diode 22 and a resistor 23 are connected in series across capacitor 21.
- Lead 16 connects from piezoelectric element 15 to a point between diode 22 and one side of resistor 23.
- Lead 17 connects between element 15 and the other side of resistor
- FIG. 4 there is shown an exemplary block diagram of a transmitter used to provide signals to coil 20 of FIG. 3.
- a microphone 24 the output of which enters an audio preamplifier 25.
- Preamplifier 25 then provides a signal to a modulator 26 which in turn presents the modulated signal to an R-F oscillator 27.
- the output of oscillator 27 is transmitted through a transmitting coil 28 to coil 20 of FIG. 3.
- piezoelectric element 15 is a bimorphic element. That is, it is a ceramic element composed of two layers. When a voltage is applied between the two layers, that is across the bimorphic element, one of the layers tends to lengthen while the other tends to contract. Thus a bending is accomplished. It thus becomes apparent that the application of a varying voltage signal, such as one representing sound waves, will cause element 15 to bend or vibrate in response to the varying voltage signal. Element 15 is chosen to respond, or vibrate, in the audio frequency range, and is thus uniquely adapted to act as an electricalmechanical transducer in an implanted hearing aid.
- the mode of vibration or bending is similar to that of a common diving board when the element used is substantially rectangular, as that shown in the preferred embodiment.
- an element I5 can be chosen such that the frequency response covers the audio frequency range.
- the amount of bending or vibration is relatively small and is proportional to the amplitude of the applied signal.
- the bending force of an element such as element 15 is related to atomic crystal binding forces, and is thus relatively large and can overcome damping effects such as may be caused by epoxy coating 18 and silicon rubber coating 19.
- epoxy coating 18 is shown here as part of the preferred embodiment for its function of adding further protection to the implanted device of this invention, such as added moisture protection.
- the apparatus of this invention will operate without epoxy coating 18. It should further be noted that greater efficiency of operation of the apparatus of this invention occurs when the portion of substance 19 encapsulating element 15 and its coating 18 in tail 13 of the apparatus is relatively thin, to avoid undue damping ef fects.
- one end of element tail 13
- element 15 is then placed adjacent one of the elements of the auditory system of the middle ear, such as one of the auditory ossicles or the oval window.
- the free or vibrating end of element [5 can actually touch, or can be spaced from, the portion of the auditory system, as required.
- Head 11 can be mounted, for example, in the antrum cell of the mastoid, from which stem 12 can extend to tail 13 in the middle ear.
- microphone 24 will transduce sound waves into electrical signals which will be amplified in preamplifier 25, modulated in modulator 26, and then passed on to R-F oscillator 27 whence it will be transmitted by coil 28.
- the apparatus of FIG. 4 is in this preferred embodiment intended to be located external to the body. However, as will be described below, it is possible to incorporate this entire hearing aid within an implantable device.
- Coil 28 will transmit a modulated RF signal which will be picked up by the circuit comprising receiving coil and capacitor 21.
- the resulting voltage drop across capacitor 21 will be felt across diode 22 and resistor 23.
- Leads 16 and 17 connect element 15 across resistor 23.
- Diode 22 provides rectification or detection of the RF signal, and the combination of resistor 23 with the inherent capacitance of element 15 provides filtering of the RF signal leaving the resultant audio frequency modulation signal applied across element 15.
- a proportional varying voltage signal will be felt across element 15. This will cause bending or vibration of element 15 which will be mechanically transmitted directly to the auditory ossicle or oval window or other member of the auditory system of the middle ear.
- microphone 24 and amplifier 25 can be mounted within head 11 ofdevice 10 so that the entire hearing aid is implanted. This will remove the need for transmission and receiving coils 28 and 20, as well as modulator 26 and oscillator 27 and the associated electronic components described above, as will be obvious to those skilled in the art. Also, because a piezoelectric element such as element 15 can also be used as a microphone, microphone 24 can comprise another piezoelectric element, such as a bimorphic element, which transduces from mechanical to electrical signals.
- the apparatus of this invention can also be used when it is necessary to remove completely the auditory ossicles of the middle car. This is a further example of the situation where it may be desirable to place vibrating element 15 adjacent the oval window.
- the apparatus of this invention provides a new and important hearing aid capable of implantation in the body, for imparting vibrations to one or more members of the auditory system of the middle car by means of a piezoelectric element.
- an implantable hearing aid including means for providing electrical signals representative of and derived from sound waves, piezoelectric ceramic means connected to receive the electrical signals, and further means operatively connected to said piezoelectric ceramic means and adapted to be mounted to contact a portion ofa middle ear of an animal.
- An implantable hearing aid comprising: electrical circuit means for providing electrical signals representative of sound waves; piezoelectric ceramic means for converting the electrical signals to mechanical vibrations; electrically conductive means connecting said circuit means to said piezoelectric means; all said means being encapsulated in a substance substantially inert to body fluids and tissue; said encapsulated piezoelectric ceramic means adapted to be mounted to contact a portion of the structure of the ear of an animal for imparting vibrations thereto.
- said bimorphic element is substantially rectangular and said bimorphic element has one end adapted to be mounted to the mastoid bone in an ear of an animal and the other end adapted to extend to contact a portion of the middle ear of an animal.
- said electrical cir cuit means comprises electrical receiver means for receiving electrical signals from a transmitter external to the body in which the hearing aid is implanted.
- said electrical circuit means includes mechanical-electrical transducer means for transforming sound waves into electrical signals.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Neurosurgery (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Abstract
Implantable hearing aid apparatus having a piezoelectric ceramic element mounted adjacent to the auditory conductive system of the middle ear for imparting vibration thereto. The piezoelectric element being electrically connected to electrical circuitry for providing electrical signals representative of sound waves. The electrical circuitry and the piezoelectric element being properly encapsulated for implantation within the body.
Description
United States Patent [72] Inventor Robert C. Wingrove Minneapolis, Minn. [21] Appl. No. 489 [22] Filed Jan. 2,1970 [45] Patented July 20, I971 [73] Assignee Medtronic, Inc. I
Minneapolis, Minn. Continuation of application Ser. No. 625,042, Mar. 22, 1967, now abandoned.
[541 HEARING AID WITH PIEZOELECTRIC CERAMIC ELEMENT 13 Claims, 4 Drawing Figs.
[52] US. Cl 179/107 R, 128/1 R [51] Int. Cl H04r 25/00 [50] Field oISearch 179/107; 128/1 R [56] References Cited UNITED STATES PATENTS 2,339,148 [/1944 Carlisle I79/107 2,995,633 8/1961 Puharich et a1 179/107 3,156,787 11/1964 Puharich et a1 3,170,993 2/1965 Puharich et al.... 179/107 3,209,081 9/ 1 965 Ducote et al. 179/ 107 3,346,704 10/ I 967 Mahoney 179/107 FOREIGN PATENTS 788,099 12/ I 957 England 179/107 OTHER REFERENCES Conservative Tympanoplasty," October 1, 1966, Geze J. Jako MD. and Claus Jensen M.D., A REPORT TO THE AMERICAN ACADEMY OF OPHTALMOLOGY AND OTOLARYNAOLOGY, Page 54 1 Primary Examiner-Kathleen H. Clat'fy Assistant Examiner-Randall P. Myers Attorneyl.'ew Schwartz ABSTRACT: Implantable hearing aid apparatus having a piezoelectric ceramic element mounted adjacent to the auditory conductive system of the middle ear for imparting vibra HEARING AID WITH PIEZOELECTRIC CERAMIC ELEMENT This is a continuation of application, Ser. No. 625,042 filed Mar. 22, I967 andnow abandoned.
BACKGROUND OF THE INVENTION Hearing aids have long been known in the field of medicalelectronics. Generally these known hearing aids are mounted external to the body and apply a vibration from a device mounted adjacent the external portion of the ear drum. While satisfactory for some uses, these known hearing aids are ineffective when the auditory system of the middle ear has become inoperative or highly inefficient. Some prior art attempts have been made to provide an implantable hearing aid by which the inoperative portions of the auditory system can be bypassed. These prior art systems used the technique of converting the vibration into air acoustics, and providing the vibrated air to the inner ear. These systems have the disadvantages of being inefficient and not capable of overcoming many common problems of inoperability of the auditory system, such as when the auditory ossicles are fused as pointed out in the publication Conservative Tympanoplasty," G. .I. .lako, MD. and C. Jansen, M.D., AMERICAN ACADEMY OF OPHTALMOLOGY AND OTOLARYNGOLOGY, IN STRUCTIONS SECTION, 1966.
To overcome these disadvantages the apparatus of this invention provides a piezoelectric ceramic element which is suitable for implantation in the middle ear structure of the body. Thus mechanical vibrations can be applied directly to the auditory system, such as the auditory ossicles or the oval window, or the vibrations can be caused at a predetermined spacing from the desired element of the auditory system.
SUMMARY OF THE INVENTION Briefly described, the apparatus of this invention comprises a piezoelectric ceramic element, described herein in its preferred embodiment as a bimorphic ceramic element, capable of transducing electrical signals to mechanical vibrations. The piezoelectric element is electrically connected to an electrical circuit which provides electrical signals to the piezoelectrical element representing the sound waves desired to be heard. The electrical circuit and the piezoelectric element are encapsulated in a substance inert to body fluids and tissue to avoid harmful effects from implantation in the body. The electrical circuit can be a receiver which receives electric signals from a transmitter located external to the body, or can be a complete unit which receives the sound waves through devices totally implanted, for transmission to the piezoelectric element.
IN THE DRAWINGS FIG. 1 is a view of an embodiment of the apparatus of this invention shown completely encapsulated;
FIG. 2 is a sectional view of a portion of the embodiment of FIG. I showing an encapsulated piezoelectric ceramic element;
FIG. 3 is a schematic drawing of the circuit of the embodiment of FIG. I; and
FIG. 4 is a block diagram of an external transmitter which can be used with the circuitry of FIG. 3.
DESCRIPTION OF FIGURES In FIG. 2 there is shown a sectional view of tall 13 and a portion of stem I2. Within tail 13 there is shown a piezoelectric transducer 15, here shown as a bimorphic ceramic element, similar to bimorphic elements used in phonograph pickup apparatus well known to those skilled in the electrical art. A pair of leads I6 and I7 are each shown connected to piezoelectric element 15, and extending through stem 12. Element I5 is shown encased in an epoxy 18. Element 15 and epoxy coating 18, as well as leads 16 and 17, are shown encapsulated in a substance 19 which is substantially inert to body fluids and tissue, such as silicon rubber. Preferably, the substance 19 around tail portion I3 is sufficiently thin so as to allow efficient translation of vibratory motion from transducer 15 to the auditory system of the middle ear, as more fully described below.
With respect to FIGS. I and 2 it should be understood that for purposes of clarity the drawings are not dimensionally accurate or in scale. For example, in one embodiment of this in vention which has been successfully tested, piezoelectric element 15 was 0.3-0.5 inches long; 0.05 inches wide; and 0.025 inches thick (including both layers of a bimorphic element); epoxy coating 18 around element 15 was approximately 0.01-0.015 inches thick; and substance 19 comprised a coating of about 0.01 inches thickness. The preceding dimensions are approximate.
Referring now to FIG. 3, there is shown a signal receiving coil 20. Connected in parallel with coil 20 is a capacitor 21. A diode 22 and a resistor 23 are connected in series across capacitor 21. Lead 16 connects from piezoelectric element 15 to a point between diode 22 and one side of resistor 23. Lead 17 connects between element 15 and the other side of resistor In FIG. 4 there is shown an exemplary block diagram of a transmitter used to provide signals to coil 20 of FIG. 3. In FIG, 4 there is shown a microphone 24, the output of which enters an audio preamplifier 25. Preamplifier 25 then provides a signal to a modulator 26 which in turn presents the modulated signal to an R-F oscillator 27. The output of oscillator 27 is transmitted through a transmitting coil 28 to coil 20 of FIG. 3.
OPERATION In the preferred embodiment disclosed herein, piezoelectric element 15 is a bimorphic element. That is, it is a ceramic element composed of two layers. When a voltage is applied between the two layers, that is across the bimorphic element, one of the layers tends to lengthen while the other tends to contract. Thus a bending is accomplished. It thus becomes apparent that the application of a varying voltage signal, such as one representing sound waves, will cause element 15 to bend or vibrate in response to the varying voltage signal. Element 15 is chosen to respond, or vibrate, in the audio frequency range, and is thus uniquely adapted to act as an electricalmechanical transducer in an implanted hearing aid.
The mode of vibration or bending is similar to that of a common diving board when the element used is substantially rectangular, as that shown in the preferred embodiment. As mentioned above, an element I5 can be chosen such that the frequency response covers the audio frequency range. The amount of bending or vibration is relatively small and is proportional to the amplitude of the applied signal. The bending force of an element such as element 15 is related to atomic crystal binding forces, and is thus relatively large and can overcome damping effects such as may be caused by epoxy coating 18 and silicon rubber coating 19.
It should be noted that epoxy coating 18 is shown here as part of the preferred embodiment for its function of adding further protection to the implanted device of this invention, such as added moisture protection. The apparatus of this invention will operate without epoxy coating 18. It should further be noted that greater efficiency of operation of the apparatus of this invention occurs when the portion of substance 19 encapsulating element 15 and its coating 18 in tail 13 of the apparatus is relatively thin, to avoid undue damping ef fects.
When mounting the apparatus 10 in a body, it is preferable to firmly mount one end of element (tail 13) in an area that can provide a stable platform, such as the mastoid bone. The other end of element 15 is then placed adjacent one of the elements of the auditory system of the middle ear, such as one of the auditory ossicles or the oval window. The free or vibrating end of element [5 can actually touch, or can be spaced from, the portion of the auditory system, as required. Head 11 can be mounted, for example, in the antrum cell of the mastoid, from which stem 12 can extend to tail 13 in the middle ear.
Referring to FIGS. 3 and 4, it can be seen that microphone 24 will transduce sound waves into electrical signals which will be amplified in preamplifier 25, modulated in modulator 26, and then passed on to R-F oscillator 27 whence it will be transmitted by coil 28. The apparatus of FIG. 4 is in this preferred embodiment intended to be located external to the body. However, as will be described below, it is possible to incorporate this entire hearing aid within an implantable device.
If desired, and completely in keeping with the spirit of this invention, microphone 24 and amplifier 25 can be mounted within head 11 ofdevice 10 so that the entire hearing aid is implanted. This will remove the need for transmission and receiving coils 28 and 20, as well as modulator 26 and oscillator 27 and the associated electronic components described above, as will be obvious to those skilled in the art. Also, because a piezoelectric element such as element 15 can also be used as a microphone, microphone 24 can comprise another piezoelectric element, such as a bimorphic element, which transduces from mechanical to electrical signals.
The apparatus of this invention can also be used when it is necessary to remove completely the auditory ossicles of the middle car. This is a further example of the situation where it may be desirable to place vibrating element 15 adjacent the oval window.
ln summary, the apparatus of this invention provides a new and important hearing aid capable of implantation in the body, for imparting vibrations to one or more members of the auditory system of the middle car by means ofa piezoelectric element.
I claim:
1. In an implantable hearing aid including means for providing electrical signals representative of and derived from sound waves, piezoelectric ceramic means connected to receive the electrical signals, and further means operatively connected to said piezoelectric ceramic means and adapted to be mounted to contact a portion ofa middle ear of an animal.
2. The hearing aid of claim 1 in which said piezoelectric ceramic means comprises a bimorphic element.
3. The hearing aid of claim 1 in which said further means is adapted to be mounted to contact the auditory ossicles.
4. The hearing aid ol'claim l in which said further means is adapted to be mounted to contact the oval window.
5. The hearing aid of claim 1 in which said piezoelectric ceramic means is substantially rectangular and said piezoelectric ceramic means has one end adapted to be mounted to the mastoid bone In an ear of an animal, the other end connected to said further means adapted to extend to contact the portion of the middle ear of an animal for imparting vibrations thereto.
6. An implantable hearing aid comprising: electrical circuit means for providing electrical signals representative of sound waves; piezoelectric ceramic means for converting the electrical signals to mechanical vibrations; electrically conductive means connecting said circuit means to said piezoelectric means; all said means being encapsulated in a substance substantially inert to body fluids and tissue; said encapsulated piezoelectric ceramic means adapted to be mounted to contact a portion of the structure of the ear of an animal for imparting vibrations thereto.
7. The hearing aid of claim 6 in which said encapsulated piezoelectric ceramic means is operatively connected to further means adapted to contact a portion of the structure of the ear of an animal.
8. The hearing aid of claim 6 in which said piezoelectric ceramic means comprises a bimorphic element.
9. The hearing aid of claim 8 in which said bimorphic element is substantially rectangular and said bimorphic element has one end adapted to be mounted to the mastoid bone in an ear of an animal and the other end adapted to extend to contact a portion of the middle ear of an animal.
10. The hearing aid of claim 6 in which said electrical cir cuit means comprises electrical receiver means for receiving electrical signals from a transmitter external to the body in which the hearing aid is implanted.
11. The hearing aid of claim 6 in which said electrical circuit means includes mechanical-electrical transducer means for transforming sound waves into electrical signals.
12. The hearing aid of claim 11 in which said transducer means comprises second piezoelectric ceramic means.
13. The hearing aid of claim 12 in which said second piezoelectric ceramic means comprises a second bimorphic element.
Claims (13)
1. In an implantable hearing aid including means for providing electrical signals representative of and derived from sound waves, piezoelectric ceramic means connected to receive the electrical signals, and further means operatively connected to said piezoelectric ceramic means and adapted to be mounted to contact a portion of a middle ear of an animal.
2. The hearing aid of claim 1 in which said piezoelectric ceramic means comprises a bimorphic element.
3. The hearing aid of claim 1 in which said further means is adapted to be mounted to contact the auditory ossicles.
4. The hearing aid of claim 1 in which said further means is adapted to be mounted to contact the oval window.
5. The hearing aid of claim 1 in which said piezoelectric ceramic means is substantially rectangular and said piezoelectric ceramic means has one end adapted to be mounted to the mastoid bone in an ear of an animal, the other end connected to said further means adapted to extend to contact the portion of the middle ear of an animal for imparting vibrations thereto.
6. An implantable hearing aid comprising: electrical circuit means for providing electrical signals representative of sound waves; piezoelectric ceramic means for converting the electrical signals to mechanical vibrations; electrically conductive means connecting said circuit means to said piezoelectric means; all said means being encapsulated in a substance substantially inert to body fluids and tissue; said encapsulated piezoelectric ceramic means adapted to be mounted to contact a portion of the structure of the ear of an animal for imparting vibrations thereto.
7. The hearing aid of claim 6 in which said encapsulated piezoelectric ceramic means is operatively connected to further means adapted to contact a portion of the structure of the ear of an animal.
8. The hearing aid of claim 6 in which said piezoelectric ceramic means comprises a bimorphic element.
9. The hearing aid of claim 8 in which said bimorphic element is substantially rectangular and said bimorphic element has one end adapted to be mounted to the mastoid bone in an ear of an animal and the other end adapted to extend to contact a portion of the middle ear of an animal.
10. The hearing aid of claim 6 in which said electrical circuit means comprises electrical receiver means for receiving electrical signals from a transmitter external to the body in which the hearing aid is implanted.
11. The hearing aid of claim 6 in which said electrical circuit means includes mechanical-electrical transducer means for transforming sound waves into electrical signals.
12. The hearing aid of claim 11 in which said transducer means comprises second piezoelectric ceramic means.
13. The hearing aid of claim 12 in which said second piezoelectric ceramic means comprises a second bimorphic element.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48970A | 1970-01-02 | 1970-01-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3594514A true US3594514A (en) | 1971-07-20 |
Family
ID=21691735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US489A Expired - Lifetime US3594514A (en) | 1970-01-02 | 1970-01-02 | Hearing aid with piezoelectric ceramic element |
Country Status (1)
Country | Link |
---|---|
US (1) | US3594514A (en) |
Cited By (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3764748A (en) * | 1972-05-19 | 1973-10-09 | J Branch | Implanted hearing aids |
US4498461A (en) * | 1981-12-01 | 1985-02-12 | Bo Hakansson | Coupling to a bone-anchored hearing aid |
US4606329A (en) * | 1985-05-22 | 1986-08-19 | Xomed, Inc. | Implantable electromagnetic middle-ear bone-conduction hearing aid device |
FR2582216A1 (en) * | 1985-05-23 | 1986-11-28 | Bristol Myers Co | HEARING PROSTHESIS WITH DIRECT BONE CONDUCTION |
US4628907A (en) * | 1984-03-22 | 1986-12-16 | Epley John M | Direct contact hearing aid apparatus |
US4982434A (en) * | 1989-05-30 | 1991-01-01 | Center For Innovative Technology | Supersonic bone conduction hearing aid and method |
US5277694A (en) * | 1991-02-13 | 1994-01-11 | Implex Gmbh | Electromechanical transducer for implantable hearing aids |
US5360388A (en) * | 1992-10-09 | 1994-11-01 | The University Of Virginia Patents Foundation | Round window electromagnetic implantable hearing aid |
US5411467A (en) * | 1989-06-02 | 1995-05-02 | Implex Gmbh Spezialhorgerate | Implantable hearing aid |
FR2712800A1 (en) * | 1993-11-25 | 1995-06-02 | Dumon Thibaud | Hearing aid with piezoelectric vibrator implantable in medium ear |
US5460593A (en) * | 1993-08-25 | 1995-10-24 | Audiodontics, Inc. | Method and apparatus for imparting low amplitude vibrations to bone and similar hard tissue |
US5498226A (en) * | 1990-03-05 | 1996-03-12 | Lenkauskas; Edmundas | Totally implanted hearing device |
US5554096A (en) * | 1993-07-01 | 1996-09-10 | Symphonix | Implantable electromagnetic hearing transducer |
US5624376A (en) * | 1993-07-01 | 1997-04-29 | Symphonix Devices, Inc. | Implantable and external hearing systems having a floating mass transducer |
WO1998006236A1 (en) * | 1996-08-07 | 1998-02-12 | St. Croix Medical, Inc. | Middle ear transducer |
US5762583A (en) * | 1996-08-07 | 1998-06-09 | St. Croix Medical, Inc. | Piezoelectric film transducer |
US5772575A (en) * | 1995-09-22 | 1998-06-30 | S. George Lesinski | Implantable hearing aid |
US5800336A (en) * | 1993-07-01 | 1998-09-01 | Symphonix Devices, Inc. | Advanced designs of floating mass transducers |
US5836863A (en) * | 1996-08-07 | 1998-11-17 | St. Croix Medical, Inc. | Hearing aid transducer support |
US5842967A (en) * | 1996-08-07 | 1998-12-01 | St. Croix Medical, Inc. | Contactless transducer stimulation and sensing of ossicular chain |
WO1999008480A2 (en) * | 1997-08-07 | 1999-02-18 | St. Croix Medical, Inc. | Middle ear transducer |
US5879283A (en) * | 1996-08-07 | 1999-03-09 | St. Croix Medical, Inc. | Implantable hearing system having multiple transducers |
US5881158A (en) * | 1996-05-24 | 1999-03-09 | United States Surgical Corporation | Microphones for an implantable hearing aid |
US5894651A (en) * | 1990-10-29 | 1999-04-20 | Trw Inc. | Method for encapsulating a ceramic device for embedding in composite structures |
US5897486A (en) * | 1993-07-01 | 1999-04-27 | Symphonix Devices, Inc. | Dual coil floating mass transducers |
US5913815A (en) * | 1993-07-01 | 1999-06-22 | Symphonix Devices, Inc. | Bone conducting floating mass transducers |
US5951601A (en) * | 1996-03-25 | 1999-09-14 | Lesinski; S. George | Attaching an implantable hearing aid microactuator |
US5977689A (en) * | 1996-07-19 | 1999-11-02 | Neukermans; Armand P. | Biocompatible, implantable hearing aid microactuator |
US5984859A (en) * | 1993-01-25 | 1999-11-16 | Lesinski; S. George | Implantable auditory system components and system |
US5997466A (en) * | 1996-08-07 | 1999-12-07 | St. Croix Medical, Inc. | Implantable hearing system having multiple transducers |
US6001129A (en) * | 1996-08-07 | 1999-12-14 | St. Croix Medical, Inc. | Hearing aid transducer support |
US6010532A (en) * | 1996-11-25 | 2000-01-04 | St. Croix Medical, Inc. | Dual path implantable hearing assistance device |
US6137889A (en) * | 1998-05-27 | 2000-10-24 | Insonus Medical, Inc. | Direct tympanic membrane excitation via vibrationally conductive assembly |
US6171229B1 (en) | 1996-08-07 | 2001-01-09 | St. Croix Medical, Inc. | Ossicular transducer attachment for an implantable hearing device |
WO2001050815A1 (en) | 1999-12-30 | 2001-07-12 | Insonus Medical, Inc. | Direct tympanic drive via a floating filament assembly |
US6261224B1 (en) | 1996-08-07 | 2001-07-17 | St. Croix Medical, Inc. | Piezoelectric film transducer for cochlear prosthetic |
US6264603B1 (en) | 1997-08-07 | 2001-07-24 | St. Croix Medical, Inc. | Middle ear vibration sensor using multiple transducers |
US6277148B1 (en) | 1999-02-11 | 2001-08-21 | Soundtec, Inc. | Middle ear magnet implant, attachment device and method, and test instrument and method |
US6315710B1 (en) | 1997-07-21 | 2001-11-13 | St. Croix Medical, Inc. | Hearing system with middle ear transducer mount |
US6436028B1 (en) | 1999-12-28 | 2002-08-20 | Soundtec, Inc. | Direct drive movement of body constituent |
US6540662B2 (en) | 1998-06-05 | 2003-04-01 | St. Croix Medical, Inc. | Method and apparatus for reduced feedback in implantable hearing assistance systems |
US6629922B1 (en) | 1999-10-29 | 2003-10-07 | Soundport Corporation | Flextensional output actuators for surgically implantable hearing aids |
US6643378B2 (en) | 2001-03-02 | 2003-11-04 | Daniel R. Schumaier | Bone conduction hearing aid |
US6676592B2 (en) | 1993-07-01 | 2004-01-13 | Symphonix Devices, Inc. | Dual coil floating mass transducers |
US6689045B2 (en) | 1998-09-24 | 2004-02-10 | St. Croix Medical, Inc. | Method and apparatus for improving signal quality in implantable hearing systems |
US6726618B2 (en) | 2001-04-12 | 2004-04-27 | Otologics, Llc | Hearing aid with internal acoustic middle ear transducer |
US6730015B2 (en) | 2001-06-01 | 2004-05-04 | Mike Schugt | Flexible transducer supports |
US6914994B1 (en) | 2001-09-07 | 2005-07-05 | Insound Medical, Inc. | Canal hearing device with transparent mode |
US6940988B1 (en) | 1998-11-25 | 2005-09-06 | Insound Medical, Inc. | Semi-permanent canal hearing device |
US20050203557A1 (en) * | 2001-10-30 | 2005-09-15 | Lesinski S. G. | Implantation method for a hearing aid microactuator implanted into the cochlea |
US20050259840A1 (en) * | 1999-06-08 | 2005-11-24 | Insound Medical, Inc. | Precision micro-hole for extended life batteries |
US20060050914A1 (en) * | 1998-11-25 | 2006-03-09 | Insound Medical, Inc. | Sealing retainer for extended wear hearing devices |
US20060058573A1 (en) * | 2004-09-16 | 2006-03-16 | Neisz Johann J | Method and apparatus for vibrational damping of implantable hearing aid components |
US7016504B1 (en) | 1999-09-21 | 2006-03-21 | Insonus Medical, Inc. | Personal hearing evaluator |
US20070003087A1 (en) * | 2005-06-30 | 2007-01-04 | Insound Medical, Inc. | Hearing aid microphone protective barrier |
US20070086608A1 (en) * | 2005-10-18 | 2007-04-19 | Nec Tokin Corporation | Bone-conduction microphone and method of manufacturing the same |
US7302071B2 (en) | 2004-09-15 | 2007-11-27 | Schumaier Daniel R | Bone conduction hearing assistance device |
US20090043149A1 (en) * | 2005-01-13 | 2009-02-12 | Sentient Medical Limited | Hearing implant |
US20090074220A1 (en) * | 2007-08-14 | 2009-03-19 | Insound Medical, Inc. | Combined microphone and receiver assembly for extended wear canal hearing devices |
US20090245555A1 (en) * | 2008-03-31 | 2009-10-01 | Cochlear Limited | Piezoelectric bone conduction device having enhanced transducer stroke |
US7668325B2 (en) | 2005-05-03 | 2010-02-23 | Earlens Corporation | Hearing system having an open chamber for housing components and reducing the occlusion effect |
US20100056851A1 (en) * | 2008-09-02 | 2010-03-04 | Georgia Tech Research Corporation | Piezoelectric Nanowire Vibration Sensors |
US20100171095A1 (en) * | 2008-07-07 | 2010-07-08 | Georgia Tech Research Corporation | Super Sensitive UV Detector Using Polymer Functionalized Nanobelts |
US20100179375A1 (en) * | 2007-05-24 | 2010-07-15 | Cochlear Limited | Vibrator for bone conducting hearing devices |
US7771642B2 (en) * | 2002-05-20 | 2010-08-10 | Novartis Ag | Methods of making an apparatus for providing aerosol for medical treatment |
DE102009014770A1 (en) | 2009-03-25 | 2010-09-30 | Cochlear Ltd., Lane Cove | vibrator |
DE102009014772A1 (en) | 2009-03-25 | 2010-09-30 | Cochlear Ltd., Lane Cove | hearing aid |
US20100322452A1 (en) * | 2004-02-05 | 2010-12-23 | Insound Medical, Inc. | Contamination resistant ports for hearing devices |
US7867160B2 (en) | 2004-10-12 | 2011-01-11 | Earlens Corporation | Systems and methods for photo-mechanical hearing transduction |
US20110106254A1 (en) * | 2007-03-03 | 2011-05-05 | Sentient Medical Limited | Ossicular replacement prosthesis |
US20110268303A1 (en) * | 2010-04-29 | 2011-11-03 | Cochlear Limited | Bone conduction device having limited range of travel |
US8295523B2 (en) | 2007-10-04 | 2012-10-23 | SoundBeam LLC | Energy delivery and microphone placement methods for improved comfort in an open canal hearing aid |
US8396239B2 (en) | 2008-06-17 | 2013-03-12 | Earlens Corporation | Optical electro-mechanical hearing devices with combined power and signal architectures |
US8401212B2 (en) | 2007-10-12 | 2013-03-19 | Earlens Corporation | Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management |
US8401214B2 (en) | 2009-06-18 | 2013-03-19 | Earlens Corporation | Eardrum implantable devices for hearing systems and methods |
US8682016B2 (en) | 2011-11-23 | 2014-03-25 | Insound Medical, Inc. | Canal hearing devices and batteries for use with same |
US8715153B2 (en) | 2009-06-22 | 2014-05-06 | Earlens Corporation | Optically coupled bone conduction systems and methods |
US8715152B2 (en) | 2008-06-17 | 2014-05-06 | Earlens Corporation | Optical electro-mechanical hearing devices with separate power and signal components |
US8715154B2 (en) | 2009-06-24 | 2014-05-06 | Earlens Corporation | Optically coupled cochlear actuator systems and methods |
US8761423B2 (en) | 2011-11-23 | 2014-06-24 | Insound Medical, Inc. | Canal hearing devices and batteries for use with same |
US8808906B2 (en) | 2011-11-23 | 2014-08-19 | Insound Medical, Inc. | Canal hearing devices and batteries for use with same |
US8824715B2 (en) | 2008-06-17 | 2014-09-02 | Earlens Corporation | Optical electro-mechanical hearing devices with combined power and signal architectures |
US8845705B2 (en) | 2009-06-24 | 2014-09-30 | Earlens Corporation | Optical cochlear stimulation devices and methods |
US8908891B2 (en) | 2011-03-09 | 2014-12-09 | Audiodontics, Llc | Hearing aid apparatus and method |
WO2015077786A1 (en) * | 2013-11-25 | 2015-05-28 | Massachusetts Eye & Ear Infirmary | Piezoelectric sensors for hearing aids |
US9055379B2 (en) | 2009-06-05 | 2015-06-09 | Earlens Corporation | Optically coupled acoustic middle ear implant systems and methods |
US9107013B2 (en) | 2011-04-01 | 2015-08-11 | Cochlear Limited | Hearing prosthesis with a piezoelectric actuator |
US9282395B1 (en) | 2013-10-17 | 2016-03-08 | Google Inc. | Flexible transducer for soft-tissue and acoustic audio production |
US9392377B2 (en) | 2010-12-20 | 2016-07-12 | Earlens Corporation | Anatomically customized ear canal hearing apparatus |
US9544700B2 (en) | 2009-06-15 | 2017-01-10 | Earlens Corporation | Optically coupled active ossicular replacement prosthesis |
US9604325B2 (en) | 2011-11-23 | 2017-03-28 | Phonak, LLC | Canal hearing devices and batteries for use with same |
US9686623B2 (en) | 2007-05-11 | 2017-06-20 | Sentient Medical Limited | Middle ear implant |
US9749758B2 (en) | 2008-09-22 | 2017-08-29 | Earlens Corporation | Devices and methods for hearing |
US9924276B2 (en) | 2014-11-26 | 2018-03-20 | Earlens Corporation | Adjustable venting for hearing instruments |
US9930458B2 (en) | 2014-07-14 | 2018-03-27 | Earlens Corporation | Sliding bias and peak limiting for optical hearing devices |
US10034103B2 (en) | 2014-03-18 | 2018-07-24 | Earlens Corporation | High fidelity and reduced feedback contact hearing apparatus and methods |
US10178483B2 (en) | 2015-12-30 | 2019-01-08 | Earlens Corporation | Light based hearing systems, apparatus, and methods |
US10286215B2 (en) | 2009-06-18 | 2019-05-14 | Earlens Corporation | Optically coupled cochlear implant systems and methods |
US10292601B2 (en) | 2015-10-02 | 2019-05-21 | Earlens Corporation | Wearable customized ear canal apparatus |
US10492010B2 (en) | 2015-12-30 | 2019-11-26 | Earlens Corporations | Damping in contact hearing systems |
US10555100B2 (en) | 2009-06-22 | 2020-02-04 | Earlens Corporation | Round window coupled hearing systems and methods |
US10629969B2 (en) | 2014-07-27 | 2020-04-21 | Sonova Ag | Batteries and battery manufacturing methods |
US11102594B2 (en) | 2016-09-09 | 2021-08-24 | Earlens Corporation | Contact hearing systems, apparatus and methods |
USRE48797E1 (en) | 2009-03-25 | 2021-10-26 | Cochlear Limited | Bone conduction device having a multilayer piezoelectric element |
US11166114B2 (en) | 2016-11-15 | 2021-11-02 | Earlens Corporation | Impression procedure |
US11212626B2 (en) | 2018-04-09 | 2021-12-28 | Earlens Corporation | Dynamic filter |
US11350226B2 (en) | 2015-12-30 | 2022-05-31 | Earlens Corporation | Charging protocol for rechargeable hearing systems |
US11516603B2 (en) | 2018-03-07 | 2022-11-29 | Earlens Corporation | Contact hearing device and retention structure materials |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2339148A (en) * | 1942-12-29 | 1944-01-11 | Sonotone Corp | Bone conduction receiver |
GB788099A (en) * | 1954-03-18 | 1957-12-23 | Fortiphone Ltd | Improvements in and relating to hearing aids |
US2995633A (en) * | 1958-09-25 | 1961-08-08 | Henry K Puharich | Means for aiding hearing |
US3156787A (en) * | 1962-10-23 | 1964-11-10 | Henry K Puharich | Solid state hearing system |
US3170993A (en) * | 1962-01-08 | 1965-02-23 | Henry K Puharich | Means for aiding hearing by electrical stimulation of the facial nerve system |
US3209081A (en) * | 1961-10-02 | 1965-09-28 | Behrman A Ducote | Subcutaneously implanted electronic device |
US3346704A (en) * | 1963-12-27 | 1967-10-10 | Jack L Mahoney | Means for aiding hearing |
-
1970
- 1970-01-02 US US489A patent/US3594514A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2339148A (en) * | 1942-12-29 | 1944-01-11 | Sonotone Corp | Bone conduction receiver |
GB788099A (en) * | 1954-03-18 | 1957-12-23 | Fortiphone Ltd | Improvements in and relating to hearing aids |
US2995633A (en) * | 1958-09-25 | 1961-08-08 | Henry K Puharich | Means for aiding hearing |
US3209081A (en) * | 1961-10-02 | 1965-09-28 | Behrman A Ducote | Subcutaneously implanted electronic device |
US3170993A (en) * | 1962-01-08 | 1965-02-23 | Henry K Puharich | Means for aiding hearing by electrical stimulation of the facial nerve system |
US3156787A (en) * | 1962-10-23 | 1964-11-10 | Henry K Puharich | Solid state hearing system |
US3346704A (en) * | 1963-12-27 | 1967-10-10 | Jack L Mahoney | Means for aiding hearing |
Non-Patent Citations (1)
Title |
---|
Conservative Tympanoplasty, October 1, 1966, Geze J. Jako M.D. and Claus Jensen M.D., A REPORT TO THE AMERICAN ACADEMY OF OPHTALMOLOGY AND OTOLARYNAOLOGY, Page 54 * |
Cited By (194)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3764748A (en) * | 1972-05-19 | 1973-10-09 | J Branch | Implanted hearing aids |
US4498461A (en) * | 1981-12-01 | 1985-02-12 | Bo Hakansson | Coupling to a bone-anchored hearing aid |
US4628907A (en) * | 1984-03-22 | 1986-12-16 | Epley John M | Direct contact hearing aid apparatus |
US4606329A (en) * | 1985-05-22 | 1986-08-19 | Xomed, Inc. | Implantable electromagnetic middle-ear bone-conduction hearing aid device |
FR2582216A1 (en) * | 1985-05-23 | 1986-11-28 | Bristol Myers Co | HEARING PROSTHESIS WITH DIRECT BONE CONDUCTION |
WO1992012605A1 (en) * | 1989-05-30 | 1992-07-23 | Center For Innovative Technology | Supersonic bone conduction hearing aid and method |
US4982434A (en) * | 1989-05-30 | 1991-01-01 | Center For Innovative Technology | Supersonic bone conduction hearing aid and method |
US5411467A (en) * | 1989-06-02 | 1995-05-02 | Implex Gmbh Spezialhorgerate | Implantable hearing aid |
US5498226A (en) * | 1990-03-05 | 1996-03-12 | Lenkauskas; Edmundas | Totally implanted hearing device |
US5894651A (en) * | 1990-10-29 | 1999-04-20 | Trw Inc. | Method for encapsulating a ceramic device for embedding in composite structures |
US5277694A (en) * | 1991-02-13 | 1994-01-11 | Implex Gmbh | Electromechanical transducer for implantable hearing aids |
US5360388A (en) * | 1992-10-09 | 1994-11-01 | The University Of Virginia Patents Foundation | Round window electromagnetic implantable hearing aid |
US5984859A (en) * | 1993-01-25 | 1999-11-16 | Lesinski; S. George | Implantable auditory system components and system |
US5624376A (en) * | 1993-07-01 | 1997-04-29 | Symphonix Devices, Inc. | Implantable and external hearing systems having a floating mass transducer |
US5897486A (en) * | 1993-07-01 | 1999-04-27 | Symphonix Devices, Inc. | Dual coil floating mass transducers |
US5554096A (en) * | 1993-07-01 | 1996-09-10 | Symphonix | Implantable electromagnetic hearing transducer |
US6676592B2 (en) | 1993-07-01 | 2004-01-13 | Symphonix Devices, Inc. | Dual coil floating mass transducers |
US5800336A (en) * | 1993-07-01 | 1998-09-01 | Symphonix Devices, Inc. | Advanced designs of floating mass transducers |
US6475134B1 (en) | 1993-07-01 | 2002-11-05 | Symphonix Devices, Inc. | Dual coil floating mass transducers |
US5913815A (en) * | 1993-07-01 | 1999-06-22 | Symphonix Devices, Inc. | Bone conducting floating mass transducers |
US5857958A (en) * | 1993-07-01 | 1999-01-12 | Symphonix Devices, Inc. | Implantable and external hearing systems having a floating mass transducer |
US5460593A (en) * | 1993-08-25 | 1995-10-24 | Audiodontics, Inc. | Method and apparatus for imparting low amplitude vibrations to bone and similar hard tissue |
FR2712800A1 (en) * | 1993-11-25 | 1995-06-02 | Dumon Thibaud | Hearing aid with piezoelectric vibrator implantable in medium ear |
US5772575A (en) * | 1995-09-22 | 1998-06-30 | S. George Lesinski | Implantable hearing aid |
US5951601A (en) * | 1996-03-25 | 1999-09-14 | Lesinski; S. George | Attaching an implantable hearing aid microactuator |
US5881158A (en) * | 1996-05-24 | 1999-03-09 | United States Surgical Corporation | Microphones for an implantable hearing aid |
US6153966A (en) * | 1996-07-19 | 2000-11-28 | Neukermans; Armand P. | Biocompatible, implantable hearing aid microactuator |
US5977689A (en) * | 1996-07-19 | 1999-11-02 | Neukermans; Armand P. | Biocompatible, implantable hearing aid microactuator |
US6005955A (en) * | 1996-08-07 | 1999-12-21 | St. Croix Medical, Inc. | Middle ear transducer |
US6261224B1 (en) | 1996-08-07 | 2001-07-17 | St. Croix Medical, Inc. | Piezoelectric film transducer for cochlear prosthetic |
US5879283A (en) * | 1996-08-07 | 1999-03-09 | St. Croix Medical, Inc. | Implantable hearing system having multiple transducers |
US6488616B1 (en) | 1996-08-07 | 2002-12-03 | St. Croix Medical, Inc. | Hearing aid transducer support |
US5997466A (en) * | 1996-08-07 | 1999-12-07 | St. Croix Medical, Inc. | Implantable hearing system having multiple transducers |
US6001129A (en) * | 1996-08-07 | 1999-12-14 | St. Croix Medical, Inc. | Hearing aid transducer support |
WO1998006236A1 (en) * | 1996-08-07 | 1998-02-12 | St. Croix Medical, Inc. | Middle ear transducer |
US5836863A (en) * | 1996-08-07 | 1998-11-17 | St. Croix Medical, Inc. | Hearing aid transducer support |
US6050933A (en) * | 1996-08-07 | 2000-04-18 | St. Croix Medical, Inc. | Hearing aid transducer support |
US5762583A (en) * | 1996-08-07 | 1998-06-09 | St. Croix Medical, Inc. | Piezoelectric film transducer |
US5842967A (en) * | 1996-08-07 | 1998-12-01 | St. Croix Medical, Inc. | Contactless transducer stimulation and sensing of ossicular chain |
US6171229B1 (en) | 1996-08-07 | 2001-01-09 | St. Croix Medical, Inc. | Ossicular transducer attachment for an implantable hearing device |
US20040181117A1 (en) * | 1996-08-07 | 2004-09-16 | Adams Theodore P. | Piezoelectric film transducer |
US6491722B1 (en) | 1996-11-25 | 2002-12-10 | St. Croix Medical, Inc. | Dual path implantable hearing assistance device |
US6010532A (en) * | 1996-11-25 | 2000-01-04 | St. Croix Medical, Inc. | Dual path implantable hearing assistance device |
US6315710B1 (en) | 1997-07-21 | 2001-11-13 | St. Croix Medical, Inc. | Hearing system with middle ear transducer mount |
US6264603B1 (en) | 1997-08-07 | 2001-07-24 | St. Croix Medical, Inc. | Middle ear vibration sensor using multiple transducers |
WO1999008480A3 (en) * | 1997-08-07 | 1999-04-29 | St Croix Medical Inc | Middle ear transducer |
WO1999008480A2 (en) * | 1997-08-07 | 1999-02-18 | St. Croix Medical, Inc. | Middle ear transducer |
US6137889A (en) * | 1998-05-27 | 2000-10-24 | Insonus Medical, Inc. | Direct tympanic membrane excitation via vibrationally conductive assembly |
US6540662B2 (en) | 1998-06-05 | 2003-04-01 | St. Croix Medical, Inc. | Method and apparatus for reduced feedback in implantable hearing assistance systems |
US6755778B2 (en) | 1998-06-05 | 2004-06-29 | St. Croix Medical, Inc. | Method and apparatus for reduced feedback in implantable hearing assistance systems |
US6689045B2 (en) | 1998-09-24 | 2004-02-10 | St. Croix Medical, Inc. | Method and apparatus for improving signal quality in implantable hearing systems |
US6940988B1 (en) | 1998-11-25 | 2005-09-06 | Insound Medical, Inc. | Semi-permanent canal hearing device |
US20080137892A1 (en) * | 1998-11-25 | 2008-06-12 | Insound Medical, Inc. | Semi-permanent canal hearing device and insertion method |
US7424124B2 (en) | 1998-11-25 | 2008-09-09 | Insound Medical, Inc. | Semi-permanent canal hearing device |
US7664282B2 (en) | 1998-11-25 | 2010-02-16 | Insound Medical, Inc. | Sealing retainer for extended wear hearing devices |
US8538055B2 (en) | 1998-11-25 | 2013-09-17 | Insound Medical, Inc. | Semi-permanent canal hearing device and insertion method |
US20100098281A1 (en) * | 1998-11-25 | 2010-04-22 | Insound Medical, Inc. | Sealing retainer for extended wear hearing devices |
US8503707B2 (en) | 1998-11-25 | 2013-08-06 | Insound Medical, Inc. | Sealing retainer for extended wear hearing devices |
US20060050914A1 (en) * | 1998-11-25 | 2006-03-09 | Insound Medical, Inc. | Sealing retainer for extended wear hearing devices |
US6277148B1 (en) | 1999-02-11 | 2001-08-21 | Soundtec, Inc. | Middle ear magnet implant, attachment device and method, and test instrument and method |
US8666101B2 (en) | 1999-06-08 | 2014-03-04 | Insound Medical, Inc. | Precision micro-hole for extended life batteries |
US20080069386A1 (en) * | 1999-06-08 | 2008-03-20 | Insound Medical, Inc. | Precision micro-hole for extended life batteries |
US20050259840A1 (en) * | 1999-06-08 | 2005-11-24 | Insound Medical, Inc. | Precision micro-hole for extended life batteries |
US8068630B2 (en) | 1999-06-08 | 2011-11-29 | Insound Medical, Inc. | Precision micro-hole for extended life batteries |
US7016504B1 (en) | 1999-09-21 | 2006-03-21 | Insonus Medical, Inc. | Personal hearing evaluator |
US20060210090A1 (en) * | 1999-09-21 | 2006-09-21 | Insound Medical, Inc. | Personal hearing evaluator |
US6629922B1 (en) | 1999-10-29 | 2003-10-07 | Soundport Corporation | Flextensional output actuators for surgically implantable hearing aids |
US6436028B1 (en) | 1999-12-28 | 2002-08-20 | Soundtec, Inc. | Direct drive movement of body constituent |
US6940989B1 (en) * | 1999-12-30 | 2005-09-06 | Insound Medical, Inc. | Direct tympanic drive via a floating filament assembly |
WO2001050815A1 (en) | 1999-12-30 | 2001-07-12 | Insonus Medical, Inc. | Direct tympanic drive via a floating filament assembly |
US6643378B2 (en) | 2001-03-02 | 2003-11-04 | Daniel R. Schumaier | Bone conduction hearing aid |
US6726618B2 (en) | 2001-04-12 | 2004-04-27 | Otologics, Llc | Hearing aid with internal acoustic middle ear transducer |
US6730015B2 (en) | 2001-06-01 | 2004-05-04 | Mike Schugt | Flexible transducer supports |
US6914994B1 (en) | 2001-09-07 | 2005-07-05 | Insound Medical, Inc. | Canal hearing device with transparent mode |
US20060002574A1 (en) * | 2001-09-07 | 2006-01-05 | Insound Medical, Inc. | Canal hearing device with transparent mode |
US8876689B2 (en) | 2001-10-30 | 2014-11-04 | Otokinetics Inc. | Hearing aid microactuator |
US20050203557A1 (en) * | 2001-10-30 | 2005-09-15 | Lesinski S. G. | Implantation method for a hearing aid microactuator implanted into the cochlea |
US8147544B2 (en) | 2001-10-30 | 2012-04-03 | Otokinetics Inc. | Therapeutic appliance for cochlea |
US7771642B2 (en) * | 2002-05-20 | 2010-08-10 | Novartis Ag | Methods of making an apparatus for providing aerosol for medical treatment |
US20100322452A1 (en) * | 2004-02-05 | 2010-12-23 | Insound Medical, Inc. | Contamination resistant ports for hearing devices |
US8457336B2 (en) | 2004-02-05 | 2013-06-04 | Insound Medical, Inc. | Contamination resistant ports for hearing devices |
US9226083B2 (en) | 2004-07-28 | 2015-12-29 | Earlens Corporation | Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management |
US7302071B2 (en) | 2004-09-15 | 2007-11-27 | Schumaier Daniel R | Bone conduction hearing assistance device |
US20060058573A1 (en) * | 2004-09-16 | 2006-03-16 | Neisz Johann J | Method and apparatus for vibrational damping of implantable hearing aid components |
US7867160B2 (en) | 2004-10-12 | 2011-01-11 | Earlens Corporation | Systems and methods for photo-mechanical hearing transduction |
US8696541B2 (en) | 2004-10-12 | 2014-04-15 | Earlens Corporation | Systems and methods for photo-mechanical hearing transduction |
US20090043149A1 (en) * | 2005-01-13 | 2009-02-12 | Sentient Medical Limited | Hearing implant |
US8864645B2 (en) * | 2005-01-13 | 2014-10-21 | Sentient Medical Limited | Hearing implant |
US9154891B2 (en) | 2005-05-03 | 2015-10-06 | Earlens Corporation | Hearing system having improved high frequency response |
US7668325B2 (en) | 2005-05-03 | 2010-02-23 | Earlens Corporation | Hearing system having an open chamber for housing components and reducing the occlusion effect |
US9949039B2 (en) | 2005-05-03 | 2018-04-17 | Earlens Corporation | Hearing system having improved high frequency response |
US20110085688A1 (en) * | 2005-06-30 | 2011-04-14 | Insound Medical, Inc. | Hearing aid microphone protective barrier |
US20070003087A1 (en) * | 2005-06-30 | 2007-01-04 | Insound Medical, Inc. | Hearing aid microphone protective barrier |
US7876919B2 (en) | 2005-06-30 | 2011-01-25 | Insound Medical, Inc. | Hearing aid microphone protective barrier |
US8494200B2 (en) | 2005-06-30 | 2013-07-23 | Insound Medical, Inc. | Hearing aid microphone protective barrier |
US20070086608A1 (en) * | 2005-10-18 | 2007-04-19 | Nec Tokin Corporation | Bone-conduction microphone and method of manufacturing the same |
US8920496B2 (en) | 2007-03-03 | 2014-12-30 | Sentient Medical Limited | Ossicular replacement prosthesis |
US20110106254A1 (en) * | 2007-03-03 | 2011-05-05 | Sentient Medical Limited | Ossicular replacement prosthesis |
US9686623B2 (en) | 2007-05-11 | 2017-06-20 | Sentient Medical Limited | Middle ear implant |
US8620015B2 (en) | 2007-05-24 | 2013-12-31 | Cochlear Limited | Vibrator for bone conducting hearing devices |
US20100179375A1 (en) * | 2007-05-24 | 2010-07-15 | Cochlear Limited | Vibrator for bone conducting hearing devices |
US20090074220A1 (en) * | 2007-08-14 | 2009-03-19 | Insound Medical, Inc. | Combined microphone and receiver assembly for extended wear canal hearing devices |
US9071914B2 (en) | 2007-08-14 | 2015-06-30 | Insound Medical, Inc. | Combined microphone and receiver assembly for extended wear canal hearing devices |
US8295523B2 (en) | 2007-10-04 | 2012-10-23 | SoundBeam LLC | Energy delivery and microphone placement methods for improved comfort in an open canal hearing aid |
US10516950B2 (en) | 2007-10-12 | 2019-12-24 | Earlens Corporation | Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management |
US8401212B2 (en) | 2007-10-12 | 2013-03-19 | Earlens Corporation | Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management |
US10154352B2 (en) | 2007-10-12 | 2018-12-11 | Earlens Corporation | Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management |
US10863286B2 (en) | 2007-10-12 | 2020-12-08 | Earlens Corporation | Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management |
US11483665B2 (en) | 2007-10-12 | 2022-10-25 | Earlens Corporation | Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management |
US8150083B2 (en) | 2008-03-31 | 2012-04-03 | Cochlear Limited | Piezoelectric bone conduction device having enhanced transducer stroke |
US20090245555A1 (en) * | 2008-03-31 | 2009-10-01 | Cochlear Limited | Piezoelectric bone conduction device having enhanced transducer stroke |
US9591409B2 (en) | 2008-06-17 | 2017-03-07 | Earlens Corporation | Optical electro-mechanical hearing devices with separate power and signal components |
US8715152B2 (en) | 2008-06-17 | 2014-05-06 | Earlens Corporation | Optical electro-mechanical hearing devices with separate power and signal components |
US8396239B2 (en) | 2008-06-17 | 2013-03-12 | Earlens Corporation | Optical electro-mechanical hearing devices with combined power and signal architectures |
US9961454B2 (en) | 2008-06-17 | 2018-05-01 | Earlens Corporation | Optical electro-mechanical hearing devices with separate power and signal components |
US10516949B2 (en) | 2008-06-17 | 2019-12-24 | Earlens Corporation | Optical electro-mechanical hearing devices with separate power and signal components |
US9049528B2 (en) | 2008-06-17 | 2015-06-02 | Earlens Corporation | Optical electro-mechanical hearing devices with combined power and signal architectures |
US8824715B2 (en) | 2008-06-17 | 2014-09-02 | Earlens Corporation | Optical electro-mechanical hearing devices with combined power and signal architectures |
US11310605B2 (en) | 2008-06-17 | 2022-04-19 | Earlens Corporation | Optical electro-mechanical hearing devices with separate power and signal components |
US20100171095A1 (en) * | 2008-07-07 | 2010-07-08 | Georgia Tech Research Corporation | Super Sensitive UV Detector Using Polymer Functionalized Nanobelts |
US8294141B2 (en) | 2008-07-07 | 2012-10-23 | Georgia Tech Research Corporation | Super sensitive UV detector using polymer functionalized nanobelts |
US20100056851A1 (en) * | 2008-09-02 | 2010-03-04 | Georgia Tech Research Corporation | Piezoelectric Nanowire Vibration Sensors |
US8758217B2 (en) | 2008-09-02 | 2014-06-24 | Georgia Tech Research Corporation | Piezoelectric nanowire vibration sensors |
US11057714B2 (en) | 2008-09-22 | 2021-07-06 | Earlens Corporation | Devices and methods for hearing |
US9749758B2 (en) | 2008-09-22 | 2017-08-29 | Earlens Corporation | Devices and methods for hearing |
US10516946B2 (en) | 2008-09-22 | 2019-12-24 | Earlens Corporation | Devices and methods for hearing |
US10511913B2 (en) | 2008-09-22 | 2019-12-17 | Earlens Corporation | Devices and methods for hearing |
US10743110B2 (en) | 2008-09-22 | 2020-08-11 | Earlens Corporation | Devices and methods for hearing |
US10237663B2 (en) | 2008-09-22 | 2019-03-19 | Earlens Corporation | Devices and methods for hearing |
US9949035B2 (en) | 2008-09-22 | 2018-04-17 | Earlens Corporation | Transducer devices and methods for hearing |
USRE48797E1 (en) | 2009-03-25 | 2021-10-26 | Cochlear Limited | Bone conduction device having a multilayer piezoelectric element |
US20100298626A1 (en) * | 2009-03-25 | 2010-11-25 | Cochlear Limited | Bone conduction device having a multilayer piezoelectric element |
DE102009014772A1 (en) | 2009-03-25 | 2010-09-30 | Cochlear Ltd., Lane Cove | hearing aid |
US8837760B2 (en) | 2009-03-25 | 2014-09-16 | Cochlear Limited | Bone conduction device having a multilayer piezoelectric element |
DE102009014770A1 (en) | 2009-03-25 | 2010-09-30 | Cochlear Ltd., Lane Cove | vibrator |
US9055379B2 (en) | 2009-06-05 | 2015-06-09 | Earlens Corporation | Optically coupled acoustic middle ear implant systems and methods |
US9544700B2 (en) | 2009-06-15 | 2017-01-10 | Earlens Corporation | Optically coupled active ossicular replacement prosthesis |
US8401214B2 (en) | 2009-06-18 | 2013-03-19 | Earlens Corporation | Eardrum implantable devices for hearing systems and methods |
US10286215B2 (en) | 2009-06-18 | 2019-05-14 | Earlens Corporation | Optically coupled cochlear implant systems and methods |
US9277335B2 (en) | 2009-06-18 | 2016-03-01 | Earlens Corporation | Eardrum implantable devices for hearing systems and methods |
US8787609B2 (en) | 2009-06-18 | 2014-07-22 | Earlens Corporation | Eardrum implantable devices for hearing systems and methods |
US8715153B2 (en) | 2009-06-22 | 2014-05-06 | Earlens Corporation | Optically coupled bone conduction systems and methods |
US11323829B2 (en) | 2009-06-22 | 2022-05-03 | Earlens Corporation | Round window coupled hearing systems and methods |
US10555100B2 (en) | 2009-06-22 | 2020-02-04 | Earlens Corporation | Round window coupled hearing systems and methods |
US8845705B2 (en) | 2009-06-24 | 2014-09-30 | Earlens Corporation | Optical cochlear stimulation devices and methods |
US8986187B2 (en) | 2009-06-24 | 2015-03-24 | Earlens Corporation | Optically coupled cochlear actuator systems and methods |
US8715154B2 (en) | 2009-06-24 | 2014-05-06 | Earlens Corporation | Optically coupled cochlear actuator systems and methods |
US20110268303A1 (en) * | 2010-04-29 | 2011-11-03 | Cochlear Limited | Bone conduction device having limited range of travel |
US8594356B2 (en) * | 2010-04-29 | 2013-11-26 | Cochlear Limited | Bone conduction device having limited range of travel |
US10609492B2 (en) | 2010-12-20 | 2020-03-31 | Earlens Corporation | Anatomically customized ear canal hearing apparatus |
US9392377B2 (en) | 2010-12-20 | 2016-07-12 | Earlens Corporation | Anatomically customized ear canal hearing apparatus |
US11153697B2 (en) | 2010-12-20 | 2021-10-19 | Earlens Corporation | Anatomically customized ear canal hearing apparatus |
US10284964B2 (en) | 2010-12-20 | 2019-05-07 | Earlens Corporation | Anatomically customized ear canal hearing apparatus |
US11743663B2 (en) | 2010-12-20 | 2023-08-29 | Earlens Corporation | Anatomically customized ear canal hearing apparatus |
US8908891B2 (en) | 2011-03-09 | 2014-12-09 | Audiodontics, Llc | Hearing aid apparatus and method |
US10142746B2 (en) | 2011-04-01 | 2018-11-27 | Cochlear Limited | Hearing prosthesis with a piezoelectric actuator |
US9107013B2 (en) | 2011-04-01 | 2015-08-11 | Cochlear Limited | Hearing prosthesis with a piezoelectric actuator |
US10264372B2 (en) | 2011-11-23 | 2019-04-16 | Sonova Ag | Canal hearing devices and batteries for use with same |
US9060234B2 (en) | 2011-11-23 | 2015-06-16 | Insound Medical, Inc. | Canal hearing devices and batteries for use with same |
US8761423B2 (en) | 2011-11-23 | 2014-06-24 | Insound Medical, Inc. | Canal hearing devices and batteries for use with same |
US8808906B2 (en) | 2011-11-23 | 2014-08-19 | Insound Medical, Inc. | Canal hearing devices and batteries for use with same |
US8682016B2 (en) | 2011-11-23 | 2014-03-25 | Insound Medical, Inc. | Canal hearing devices and batteries for use with same |
US9604325B2 (en) | 2011-11-23 | 2017-03-28 | Phonak, LLC | Canal hearing devices and batteries for use with same |
US9282395B1 (en) | 2013-10-17 | 2016-03-08 | Google Inc. | Flexible transducer for soft-tissue and acoustic audio production |
US9699540B2 (en) | 2013-10-17 | 2017-07-04 | Google Inc. | Flexible transducer for soft-tissue and acoustic audio production |
US9813795B2 (en) | 2013-10-17 | 2017-11-07 | Google Inc. | Flexible transducer for soft-tissue and acoustic audio production |
WO2015077786A1 (en) * | 2013-11-25 | 2015-05-28 | Massachusetts Eye & Ear Infirmary | Piezoelectric sensors for hearing aids |
US11317224B2 (en) | 2014-03-18 | 2022-04-26 | Earlens Corporation | High fidelity and reduced feedback contact hearing apparatus and methods |
US10034103B2 (en) | 2014-03-18 | 2018-07-24 | Earlens Corporation | High fidelity and reduced feedback contact hearing apparatus and methods |
US9930458B2 (en) | 2014-07-14 | 2018-03-27 | Earlens Corporation | Sliding bias and peak limiting for optical hearing devices |
US11259129B2 (en) | 2014-07-14 | 2022-02-22 | Earlens Corporation | Sliding bias and peak limiting for optical hearing devices |
US10531206B2 (en) | 2014-07-14 | 2020-01-07 | Earlens Corporation | Sliding bias and peak limiting for optical hearing devices |
US11800303B2 (en) | 2014-07-14 | 2023-10-24 | Earlens Corporation | Sliding bias and peak limiting for optical hearing devices |
US10629969B2 (en) | 2014-07-27 | 2020-04-21 | Sonova Ag | Batteries and battery manufacturing methods |
US11252516B2 (en) | 2014-11-26 | 2022-02-15 | Earlens Corporation | Adjustable venting for hearing instruments |
US10516951B2 (en) | 2014-11-26 | 2019-12-24 | Earlens Corporation | Adjustable venting for hearing instruments |
US9924276B2 (en) | 2014-11-26 | 2018-03-20 | Earlens Corporation | Adjustable venting for hearing instruments |
US11058305B2 (en) | 2015-10-02 | 2021-07-13 | Earlens Corporation | Wearable customized ear canal apparatus |
US10292601B2 (en) | 2015-10-02 | 2019-05-21 | Earlens Corporation | Wearable customized ear canal apparatus |
US11337012B2 (en) | 2015-12-30 | 2022-05-17 | Earlens Corporation | Battery coating for rechargable hearing systems |
US11516602B2 (en) | 2015-12-30 | 2022-11-29 | Earlens Corporation | Damping in contact hearing systems |
US10492010B2 (en) | 2015-12-30 | 2019-11-26 | Earlens Corporations | Damping in contact hearing systems |
US10306381B2 (en) | 2015-12-30 | 2019-05-28 | Earlens Corporation | Charging protocol for rechargable hearing systems |
US10178483B2 (en) | 2015-12-30 | 2019-01-08 | Earlens Corporation | Light based hearing systems, apparatus, and methods |
US11070927B2 (en) | 2015-12-30 | 2021-07-20 | Earlens Corporation | Damping in contact hearing systems |
US11350226B2 (en) | 2015-12-30 | 2022-05-31 | Earlens Corporation | Charging protocol for rechargeable hearing systems |
US10779094B2 (en) | 2015-12-30 | 2020-09-15 | Earlens Corporation | Damping in contact hearing systems |
US11540065B2 (en) | 2016-09-09 | 2022-12-27 | Earlens Corporation | Contact hearing systems, apparatus and methods |
US11102594B2 (en) | 2016-09-09 | 2021-08-24 | Earlens Corporation | Contact hearing systems, apparatus and methods |
US11166114B2 (en) | 2016-11-15 | 2021-11-02 | Earlens Corporation | Impression procedure |
US11671774B2 (en) | 2016-11-15 | 2023-06-06 | Earlens Corporation | Impression procedure |
US11516603B2 (en) | 2018-03-07 | 2022-11-29 | Earlens Corporation | Contact hearing device and retention structure materials |
US11564044B2 (en) | 2018-04-09 | 2023-01-24 | Earlens Corporation | Dynamic filter |
US11212626B2 (en) | 2018-04-09 | 2021-12-28 | Earlens Corporation | Dynamic filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3594514A (en) | Hearing aid with piezoelectric ceramic element | |
US3712962A (en) | Implantable piezoelectric hearing aid | |
US5707338A (en) | Stapes vibrator | |
US6261224B1 (en) | Piezoelectric film transducer for cochlear prosthetic | |
US5993376A (en) | Electromagnetic input transducers for middle ear sensing | |
US5879283A (en) | Implantable hearing system having multiple transducers | |
US5762583A (en) | Piezoelectric film transducer | |
US5772575A (en) | Implantable hearing aid | |
US5997466A (en) | Implantable hearing system having multiple transducers | |
US6161046A (en) | Totally implantable cochlear implant for improvement of partial and total sensorineural hearing loss | |
US6005955A (en) | Middle ear transducer | |
EP2600796B1 (en) | Implantable piezoelectric polymer film microphone | |
WO1999008475A2 (en) | Capacitive input transducers for middle ear sensing | |
WO1999008481A1 (en) | Middle ear vibration sensor using multiple transducers | |
WO2004010733A1 (en) | Hearing aid system and hearing aid method | |
US20090220115A1 (en) | Miniature Bio-Compatible Piezoelectric Transducer Apparatus | |
US7556597B2 (en) | Active vibration attenuation for implantable microphone | |
JPS5979700A (en) | Detector of vibration | |
Gyo et al. | Sound pickup utilizing an implantable piezoelectric ceramic bimorph element: application to the cochlear implant | |
WO1999008480A2 (en) | Middle ear transducer | |
US6364825B1 (en) | Method and apparatus for improving signal quality in implantable hearing systems | |
US20150098593A1 (en) | Sound receiver and method for manufacturing the same | |
JPH03153200A (en) | Acoustic pickup device | |
JPH03183223A (en) | Transmitting device |