[go: up one dir, main page]

US3576031A - Amide acid and imido-substituted organosilanes - Google Patents

Amide acid and imido-substituted organosilanes Download PDF

Info

Publication number
US3576031A
US3576031A US821969A US3576031DA US3576031A US 3576031 A US3576031 A US 3576031A US 821969 A US821969 A US 821969A US 3576031D A US3576031D A US 3576031DA US 3576031 A US3576031 A US 3576031A
Authority
US
United States
Prior art keywords
imido
substituted
radicals
mixture
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US821969A
Inventor
Fred F Holub
Milton L Evans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3576031A publication Critical patent/US3576031A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • reaction can be effected between an aliphatically unsaturated dicarboxylic acid anhydride and an aminoorganoalkoxysilane.
  • amido acid precursors of such unsaturated imido-substituted organosilanes also can be made.
  • the aliphatically unsaturated imido-substituted organosilanes of the present invention can be employed to impart improved surface characteristics to cellulosic substrates and to make aliphatically unsaturated imido-substituted organopolysiloxanes.
  • the present invention relates to organosilanes having at least one aliphatically unsaturated imidoorganic radical and methods for making these materials.
  • aliphatically unsaturated imido-substituted organosilanes of the present invention have the formula,
  • R is selected from monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and eyanoalkyl radicals
  • R is selected from divalent hydrocarbon radicals and halogenated divalent hydrocarbon radicals
  • Y is a hydrolyzable radical
  • M is an aliphatically unsaturated imido radical of the formula
  • R" is an aliphatically unsaturated divalent organic radical selected from hydrocarbon radicals and halogenated hydrocarbon radicals
  • a is an integer equal to from 1 to 3 inclusive and b is a whole number equal to 0 to 2 inclusive and the sum of a+b is equal to 1 to 3 inclusive.
  • Radicals included by R of Formula 1 are, for example: aryl radicals such as phenyl, chlorophenyl, naphthyl, tolyl, xylyl, etc.; alkly radicals such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, etc.; alkenyl radicals such as vinyl, allyl, propenyl, etc.; cycloaliphatic radicals such as cyclopentyl, cyclohexyl, cvycloheptyl, cyclohexenyl, etc.; cyanoalkyl radicals such as cyanoethyl, cyanopropyl, cyanobutyl, etc.
  • Radicals included by R are for example: arylene radicals such as phenylene, xylylene, naphthylene, anthrylene, etc.; halogenated aryl radicals such as chlorophenylene, bromophenylene, chloronaphthylene, etc.; arylenealkylene radicals such as ethylenephenylene, ethylenexylylene, propylenephenylene, etc.; alkylene radicals such as methylene, ethylene, propylene,
  • R 3,576,031 Patented Apr. 20, 1971 butylene, pentylene, etc. Radicals included by R" are, for example:
  • Radicals included by Y are, for example: halogen radicals such as chloro, bromo, iodo, fluoro, etc.; alkoxyl and aryloxy radicals such as methoxy, ethoxy, propoxy, butoxy, phenoxy, etc.; amido radicals such as methylamido, ethylamido, propylamido, etc.; imidato radicals such as ethyl acetimidato, methylpropionimidato, etc.; aminoxy radicals such as N,N-diethylaminoxy, N,ethyl- N,methyldiaminoxy, dipropyl N-aminoxy, etc.; amino radicals such as methylamino, dimethylamino, ethylamino, diethylamino, propylamino, etc.; acyloxy radicals such as formoxy, acet
  • imido-substituted organosilanes of Formula 1 are, for example:
  • the imido-substituted organosilanes of Formula 1 can be utilized to treat various cellulosic substrates to improve the surface characteristics thereto. They also can be employed as coupling agents on glass fibers to provide for glass fiber-organic polymer composites. In addition, the imido-substituted organosilanes can be used to make organopolysilanes polymers as taught in our copending application, filed concurrently herewith and assigned to the same assignee as the present invention.
  • One method for making the imido-substituted organosilanes of Formula 1 is by effecting reaction between an aminoorganoalkoxysilane of the formula,
  • R, R', R", Y, a and b are as defined above and R is a lower alkyl radical such as methyl, ethyl, propyl, butyl, etc.
  • R is a lower alkyl radical such as methyl, ethyl, propyl, butyl, etc.
  • R, R", R', a and b are as previously defined.
  • These amide-acids can be employed as primers for coating organic polymers onto various substrates.
  • these amide-acid substituted organosilanes can be employed as curling agents for room temperature vulcanizing composition.
  • Another method which can be utilized to make the imido-substituted organosilanes of Formula 1 is by effecting addition between a silicon hydride of the formula,
  • aminorganoalkoxysilane of Formula 3 y-aminopmpyltriethoxysilane, e-aminobutyldimethylmethoxysilane, 'y-aminopropylmethyldiethoxysilane, -aminopropyldimethylmethoxysilane, 'y-aminopropylphenylmethylethoxysilane, and p-aminophenyltriethoxysilane.
  • aliphatically unsaturated anhydride of Formula 4 there are included, maleic anhydride, tetrahydrophathalic anhydride, endomethylenetetrahydrophthalic anhydride, citraconic anhydride, itaconic anhydride, hexachloroendomethylenetetrahydrophthalic anhydride, etc.
  • the silicon hydrides of Formula 5 are well known and include, for example, dimethylchlorosilane, trichloro silane, diphenylchlorosilane, methylchlorosilane, methyldichlorosilane, phenyldichlorosilane, etc.
  • imido-substituted aliphatically unsaturated materials include p-maleimido-styrene, o-tetrahydrophthalimidobutene-l, 'y-endometihylenetetrahydrophthalimidopropene-l, etc.
  • aliphatically unsaturated imido organic materials can be made by eifecting reaction between the corresponding olefinically unsaturated organic amine and the aliphatically unsaturated anhydride of Formula 4.
  • Reaction between the aminoorganoalkoxysilane of Formula 3, and the aliphatically unsaturated anhydride of Formula 4 can be performed in the presence or absence of an organic solvent depending upon the nature of the reactants. Temperature between 60 C. to 200 C. can be employed. Reaction times of as little as two minutes or up to four hours or more, will depend on such factors as the reactants employed, conditions utilized, presence or absence of solvents, dehydrating agents, etc.
  • a suitable organic solvent has in particular instances been found to facilitate the removal of water formed during the anhydride-amine condensation which can be azeotroped from the mixture.
  • a suitable o ganic sol ent is any solvent in- 4 ert to the reactants water from the mixture. For example, there are included organic solvents, such as N,N-dimethylformamide, toluene, benzene, pyridine, etc.
  • a platinum catalyst can be employed such as platinum metal on a finely divided inert carrier, chloroplatinic acid, a platinum-olefin complex as taught in Ashby, Pat. 3,159,601, assigned to the same assignee as the present invention, etc. Addition can be effected at a temperature between 20 C. to 200 C.
  • EXAMPLE 1 A mixture of 4.4 parts of 'y-aminopropyltriethoxysilane, 1.96 parts of maleic anhydride, about 60 parts of hexane and 0.1 part of pyridine was refluxed. Reflux was continued until all of the water formed during the reaction was evolved. The mixture was then stripped of hexane under reduced pressure. A soft white so id was obtained. Based on method of preparation, the product was 'y-maleimidopropyltriethoxysilane. Its identity was confimied by its infrared and NMR spectra.
  • EXAMPLE 2 An equal molar mixture of maleic anhydride and 'yaminopropyltriethoxysilane was stirred while maintaining the temperature below 40 C. The mixture was prepared by slowly adding the maleic anhydride to the 'y-aminopropyltriethoxysilane. Exothermic heat of reaction was removed with external cooling. After an hour of stirring, the mixture was allowed to cool to room temperature. There was obtained a slightly viscous liquid. Based on method of preparation and its infrared spectrum, the product was an amide-acid of the formula,
  • a mixture of 7 parts of the above amide-acid, 100 parts of a silanol terminated polydimethylsiloxane having a viscosity of about 3,000 centipoises of 25 C. and 0.23 part of zirconium pentanedionate is prepared under anhydrous conditions.
  • the mixture is poured onto an aluminum substrate and allowed to cure under atmospheric conditions. After 24 hours a tack-free elastomer is obtained Which has valuable insulating properties.
  • EXAMPLE 3 A suspension of N-allylmaleimide and toluene was prepared containing 0.0028 part of platinum in the form of a chlorolatinic acid-octyl alcohol complex. A mixture of 27.4 parts of N-allylmaleimide, 100 parts of toluene and the platium catalyst was heated with stirring to C. There was then added 2.19 parts of dimethylchlorosilane to the resulting suspension. An exothermic reaction resulted during the addition, while the temperature was maintained between C. to C. The mixture was then stirred for an additional hour. The mixture was then stripped of toluene under reduced pressure. There was obtained a quantitative yield of y-maleimidopropyldimethylchlorosilane based on method of preparation. The identity of the product was further confirmed by its infrared spectrum.
  • EXAMPLE 4 -Aminophenyltriethoxysilane is prepared by the method of Fleming, Pat. 2,386,452. There is added two parts of pyridine to a mixture of 25 parts of the p-aminophenyltriethoxysilane and parts of anhydrous toluene. To the resulting mixture, there is added a solution of 25 parts of toluene and 9.8 parts of maleic anhydride. The mixt re is allowed to exotherm and then refluxed vigorously. Water of reaction is continuously moved by azeotropic distillation. After the water of reaction has been completely removed, the mixture is stripped of solvent under reduced pressure. There is obtained maleimidophenyltriethoxy silane based on method of preparation. The identity of the product is confirmed by its infrared spectrum.
  • EXAMPLE There are added 33 parts of endomethylenetetrahydr phthalic anhydride to a mixture of 30 parts of -aminopropylmethyldimethoxysilane, 150 parts of anhydrous toluene, and two parts of pyridine. An exothermic reaction occurs immediately. The mixture is refluxed until all f the water formed during the reaction is removed. The mixture is then stripped of toluene under reduced pressure. Based on method of preparation, the product is q -endomethylenetetrahydrophthalimidopropylmethyldimethoxysilane. Its identity is further confirmed by its infrared spectrum.
  • a mixture of 100 parts of a silanol terminated polydimethylsiloxane having an average of about 18 chemically-combined dimethylsiloxy units, parts of the above silane, and 0.1 part of stannous octoate is heated at 80 C. for about 10 hours. The viscosity of the mixture gradually increases.
  • a product is Obtained having a significantly higher molecular weight than the aforementioned silanolterminated polydimethylsiloxane.
  • the product is a high molecular weight silanol terminated polydimethylsiloxane consisting essentially f chemically-combined blocks of polydimethylsiloxane joined together by -endomethylenetetrahydrophthalimidopropylmethylsiloxy units.
  • EXAMPLE 6 There was added a solution of 33 parts of endomethylenetetrahydrophthalic anhydride and 50 parts of anhydrous toluene to a mixture of 32 parts of 5aminobutyldimethylmethoxysilane, 150 parts of anhydrous toluene and two parts of pyridine. An exothermic reaction resulted. The mixture was brought to reflux to effect the complete separation of water formed during the reaction. The mixture was then stripped of solvent under reduced pressure. There was obtained a brown, slightly viscous, liquid. Based on method of preparation, the product was o-endomethylenetetrahydrophthalimidobutyldimethylmethoxysilane. Its identity was further confirmed by its infrared spectrum.
  • EXAMPLE 7 A mixture of the 6-endomethylenetetrahydropthalirnidobutyldimethylmethoxysilane of Example 5, and acetylchloride is heated at about 50 C. for four days. The mixture is then stripped of by-product methylacetate, and excess acetylchloride under reduced pressure. Based on method of preparation, there is obtained S-endomethylenetetrahydrophthalimidobutyldimethylchlorosilane. Its identity is confirmed by its infrared spectrum.
  • EXAMPLE 8 There are added 8.7 parts of ethylacetirnidate to a mixture of 17 parts of the 5-endomethylenetetrahydrO- phthalimidobutyldimethylchlorosilane of Example 6, parts of dry toluene and 10 parts of triethylamine. The mixture is refluxed for two hours. The mixture is filtered and stripped of solvent under reduced pressure. Based on method of preparation, there is obtained it-endomethylenetetrahydrothalimidobutyldimethylethylacidimidatosilane. The identity of the product is further confirmed by infrared spectrum.
  • R is selected from monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals
  • R is selected from divalent hydrocarbon radicals nad halogenated divalent hydrocarbon radicals
  • R" is an aliphaticlly unsaturated divalent organic radical selected from hydrocarbon radicals and halogenated hydrocarbon radicals
  • R is a lower alkyl radical such as methyl, ethyl, propyl, butyl, etc.
  • a is an integer equal to from 1 to 3 inclusive
  • b is a whole number equal to 0 to 2 inclusive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

ORGANOSILANES ARE PROVIDED HAVING AT LEAST ONE CHEMICALLY-COMBINES ALIPHATICALLY UNSATURATED IMIDO ORGANIC RADICAL, SUCH AS A MATEIMIDO-SUBSTITUTED ORGANOSILANE AND A METHOD FOR MAKING THESE MATERIALS. FOR EXAMPLE, REACTION CAN BE EFFECTED BETWEEN AN ALIPHATICALLY UNSATURATED DISCARBOXYLIC ACID ANHYDRIDE AND AN AMINOORGANOALKOXYSILANE. IN CERTAIN INSTANCES, AMIDO ACID PRECURSORS OF SUCH UNSATURATED IMIDO-SUBSTITUTED ORGANOSILANES ALSO CAN BE MADE. THE ALIPHATICALLY UNSATURATED IMIDO-SUBSTITUTED ORGANOSILANES OF THE PRESENT INVENTION CAN BE EMPLOYED TO IMPART IMPROVED SURFACE CHARACTERISTICS TO CELLULOSIC SUBSTRATES AND TO MAKE ALIPHATICALLY UNSATURATED IMIDO-SUBSTITUTED ORGANOPOLYSILOXANES.

Description

United States Patent M 3,576,031 AMIDE ACID AND llVIIDO-SUBSTITUTED ORGANOSILANES Fred F. Holub and Milton L. Evans, Schenectady, N.Y., assignors to General Electric Company No Drawing. Filed May 5, 1969, Ser. No. 821,969 Int. Cl. C07f 7/10 US. Cl. 260-4482 2 Claims ABSTRACT OF THE DISCLOSURE Organosilanes are provided having at least one chemically-combined aliphatically unsaturated imido organic radical, such as a maleimido-substituted organosilane and a method for making these materials. For example, reaction can be effected between an aliphatically unsaturated dicarboxylic acid anhydride and an aminoorganoalkoxysilane. In certain instances, amido acid precursors of such unsaturated imido-substituted organosilanes also can be made. The aliphatically unsaturated imido-substituted organosilanes of the present invention can be employed to impart improved surface characteristics to cellulosic substrates and to make aliphatically unsaturated imido-substituted organopolysiloxanes.
The present invention relates to organosilanes having at least one aliphatically unsaturated imidoorganic radical and methods for making these materials.
The aliphatically unsaturated imido-substituted organosilanes of the present invention have the formula,
where R is selected from monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and eyanoalkyl radicals, R is selected from divalent hydrocarbon radicals and halogenated divalent hydrocarbon radicals, Y is a hydrolyzable radical and M is an aliphatically unsaturated imido radical of the formula,
where R" is an aliphatically unsaturated divalent organic radical selected from hydrocarbon radicals and halogenated hydrocarbon radicals, a is an integer equal to from 1 to 3 inclusive and b is a whole number equal to 0 to 2 inclusive and the sum of a+b is equal to 1 to 3 inclusive.
Radicals included by R of Formula 1 are, for example: aryl radicals such as phenyl, chlorophenyl, naphthyl, tolyl, xylyl, etc.; alkly radicals such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, etc.; alkenyl radicals such as vinyl, allyl, propenyl, etc.; cycloaliphatic radicals such as cyclopentyl, cyclohexyl, cvycloheptyl, cyclohexenyl, etc.; cyanoalkyl radicals such as cyanoethyl, cyanopropyl, cyanobutyl, etc. Radicals included by R are for example: arylene radicals such as phenylene, xylylene, naphthylene, anthrylene, etc.; halogenated aryl radicals such as chlorophenylene, bromophenylene, chloronaphthylene, etc.; arylenealkylene radicals such as ethylenephenylene, ethylenexylylene, propylenephenylene, etc.; alkylene radicals such as methylene, ethylene, propylene,
3,576,031 Patented Apr. 20, 1971 butylene, pentylene, etc. Radicals included by R" are, for example:
etc., where G is selected from hydrogen, halogen and methyl. Radicals included by Y are, for example: halogen radicals such as chloro, bromo, iodo, fluoro, etc.; alkoxyl and aryloxy radicals such as methoxy, ethoxy, propoxy, butoxy, phenoxy, etc.; amido radicals such as methylamido, ethylamido, propylamido, etc.; imidato radicals such as ethyl acetimidato, methylpropionimidato, etc.; aminoxy radicals such as N,N-diethylaminoxy, N,ethyl- N,methyldiaminoxy, dipropyl N-aminoxy, etc.; amino radicals such as methylamino, dimethylamino, ethylamino, diethylamino, propylamino, etc.; acyloxy radicals such as formoxy, acetoxy, propionoxy, etc. Radicals included by R, R, R" and Y, can be all the same, or any two or more of the aforementioned radicals respectively.
Included by the imido-substituted organosilanes of Formula 1 are, for example:
'y-maleimidopropyldimethylmethoxysilane, a-tetrahydrophthalimidobutylphenyldimethoxysilane, ('y-maleimidopropyl) (ethylacetimidato)dimethylsilane, 'y-endomethylenetetrahydrophthalimidopropyltolyldichlorosilane, 'y-maleimidopropyltriethoxysilane, -maleimidophenyltriethoxysilane, 'y-tetrahydrophthalimidopropyl, bis-(diethylaminoxy) ethoxysilane, -maleimidopropyldimethylchlorosilane, fi-maleimidobutyl(acetamido)dimethoxysilane, 6-endomethylenetetrahydrophthalimidobutyl, bis (ethylacetimidato)isopropoxysilane, 'y-maleimidopropyltriacetoxysilane, etc.
The imido-substituted organosilanes of Formula 1 can be utilized to treat various cellulosic substrates to improve the surface characteristics thereto. They also can be employed as coupling agents on glass fibers to provide for glass fiber-organic polymer composites. In addition, the imido-substituted organosilanes can be used to make organopolysilanes polymers as taught in our copending application, filed concurrently herewith and assigned to the same assignee as the present invention.
One method for making the imido-substituted organosilanes of Formula 1, is by effecting reaction between an aminoorganoalkoxysilane of the formula,
and an aliphatiially unsautrated anhydride of the formula,
3 where R, R', R", Y, a and b are as defined above and R is a lower alkyl radical such as methyl, ethyl, propyl, butyl, etc. A temperatures below 60 C., and preferably C. to 40 C., the corersponding amide-acid is obtained, as shown by the following formula,
where R, R", R', a and b are as previously defined. These amide-acids can be employed as primers for coating organic polymers onto various substrates. In addition, these amide-acid substituted organosilanes can be employed as curling agents for room temperature vulcanizing composition.
Another method which can be utilized to make the imido-substituted organosilanes of Formula 1, is by effecting addition between a silicon hydride of the formula,
( a S i-mb) where X is a halogen radical, such as chloro, bromo, iodo and fluoro, and an imido-substituted aliphtaically unsaturated organic material of the formula,
( O H R" \NQC RIV=CRWZ where R" is as previously defined, Q is a divalent organic radical included by R, as previously defined, and R is selected from hydrogen and monovalent a kyl radicals, for example, methyl, ethyl, propyl, etc. Some of the imidosubstituted aliphatically unsaturated materials and a method for making them are taught by Prell, Pat. 2,524,- 136.
There are included by the aminorganoalkoxysilane of Formula 3, y-aminopmpyltriethoxysilane, e-aminobutyldimethylmethoxysilane, 'y-aminopropylmethyldiethoxysilane, -aminopropyldimethylmethoxysilane, 'y-aminopropylphenylmethylethoxysilane, and p-aminophenyltriethoxysilane.
Among the aliphatically unsaturated anhydride of Formula 4, there are included, maleic anhydride, tetrahydrophathalic anhydride, endomethylenetetrahydrophthalic anhydride, citraconic anhydride, itaconic anhydride, hexachloroendomethylenetetrahydrophthalic anhydride, etc.
The silicon hydrides of Formula 5 are well known and include, for example, dimethylchlorosilane, trichloro silane, diphenylchlorosilane, methylchlorosilane, methyldichlorosilane, phenyldichlorosilane, etc.
Included by the imido-substituted aliphatically unsaturated materials are p-maleimido-styrene, o-tetrahydrophthalimidobutene-l, 'y-endometihylenetetrahydrophthalimidopropene-l, etc. These aliphatically unsaturated imido organic materials can be made by eifecting reaction between the corresponding olefinically unsaturated organic amine and the aliphatically unsaturated anhydride of Formula 4.
Reaction between the aminoorganoalkoxysilane of Formula 3, and the aliphatically unsaturated anhydride of Formula 4 can be performed in the presence or absence of an organic solvent depending upon the nature of the reactants. Temperature between 60 C. to 200 C. can be employed. Reaction times of as little as two minutes or up to four hours or more, will depend on such factors as the reactants employed, conditions utilized, presence or absence of solvents, dehydrating agents, etc. A suitable organic solvent has in particular instances been found to facilitate the removal of water formed during the anhydride-amine condensation which can be azeotroped from the mixture. A suitable o ganic sol ent is any solvent in- 4 ert to the reactants water from the mixture. For example, there are included organic solvents, such as N,N-dimethylformamide, toluene, benzene, pyridine, etc.
When effecting addition between the imido-substituted aliphatically unsaturated organic material of Formula 6, and silicon hydride of Formula 5, a platinum catalyst can be employed such as platinum metal on a finely divided inert carrier, chloroplatinic acid, a platinum-olefin complex as taught in Ashby, Pat. 3,159,601, assigned to the same assignee as the present invention, etc. Addition can be effected at a temperature between 20 C. to 200 C.
In order that those skilled in the art will be able to understand how to practice the invention, the following examples are given by Way of illustration and not by Way of limitation: all parts are by Weight.
EXAMPLE 1 A mixture of 4.4 parts of 'y-aminopropyltriethoxysilane, 1.96 parts of maleic anhydride, about 60 parts of hexane and 0.1 part of pyridine was refluxed. Reflux was continued until all of the water formed during the reaction was evolved. The mixture was then stripped of hexane under reduced pressure. A soft white so id was obtained. Based on method of preparation, the product was 'y-maleimidopropyltriethoxysilane. Its identity was confimied by its infrared and NMR spectra.
EXAMPLE 2 An equal molar mixture of maleic anhydride and 'yaminopropyltriethoxysilane was stirred while maintaining the temperature below 40 C. The mixture was prepared by slowly adding the maleic anhydride to the 'y-aminopropyltriethoxysilane. Exothermic heat of reaction was removed with external cooling. After an hour of stirring, the mixture was allowed to cool to room temperature. There was obtained a slightly viscous liquid. Based on method of preparation and its infrared spectrum, the product was an amide-acid of the formula,
A mixture of 7 parts of the above amide-acid, 100 parts of a silanol terminated polydimethylsiloxane having a viscosity of about 3,000 centipoises of 25 C. and 0.23 part of zirconium pentanedionate is prepared under anhydrous conditions. The mixture is poured onto an aluminum substrate and allowed to cure under atmospheric conditions. After 24 hours a tack-free elastomer is obtained Which has valuable insulating properties.
EXAMPLE 3 A suspension of N-allylmaleimide and toluene was prepared containing 0.0028 part of platinum in the form of a chlorolatinic acid-octyl alcohol complex. A mixture of 27.4 parts of N-allylmaleimide, 100 parts of toluene and the platium catalyst was heated with stirring to C. There was then added 2.19 parts of dimethylchlorosilane to the resulting suspension. An exothermic reaction resulted during the addition, while the temperature was maintained between C. to C. The mixture was then stirred for an additional hour. The mixture was then stripped of toluene under reduced pressure. There was obtained a quantitative yield of y-maleimidopropyldimethylchlorosilane based on method of preparation. The identity of the product was further confirmed by its infrared spectrum.
EXAMPLE 4 -Aminophenyltriethoxysilane is prepared by the method of Fleming, Pat. 2,386,452. There is added two parts of pyridine to a mixture of 25 parts of the p-aminophenyltriethoxysilane and parts of anhydrous toluene. To the resulting mixture, there is added a solution of 25 parts of toluene and 9.8 parts of maleic anhydride. The mixt re is allowed to exotherm and then refluxed vigorously. Water of reaction is continuously moved by azeotropic distillation. After the water of reaction has been completely removed, the mixture is stripped of solvent under reduced pressure. There is obtained maleimidophenyltriethoxy silane based on method of preparation. The identity of the product is confirmed by its infrared spectrum.
EXAMPLE There are added 33 parts of endomethylenetetrahydr phthalic anhydride to a mixture of 30 parts of -aminopropylmethyldimethoxysilane, 150 parts of anhydrous toluene, and two parts of pyridine. An exothermic reaction occurs immediately. The mixture is refluxed until all f the water formed during the reaction is removed. The mixture is then stripped of toluene under reduced pressure. Based on method of preparation, the product is q -endomethylenetetrahydrophthalimidopropylmethyldimethoxysilane. Its identity is further confirmed by its infrared spectrum.
A mixture of 100 parts of a silanol terminated polydimethylsiloxane having an average of about 18 chemically-combined dimethylsiloxy units, parts of the above silane, and 0.1 part of stannous octoate is heated at 80 C. for about 10 hours. The viscosity of the mixture gradually increases. A product is Obtained having a significantly higher molecular weight than the aforementioned silanolterminated polydimethylsiloxane. Based on method of preparation, the product is a high molecular weight silanol terminated polydimethylsiloxane consisting essentially f chemically-combined blocks of polydimethylsiloxane joined together by -endomethylenetetrahydrophthalimidopropylmethylsiloxy units.
EXAMPLE 6 There was added a solution of 33 parts of endomethylenetetrahydrophthalic anhydride and 50 parts of anhydrous toluene to a mixture of 32 parts of 5aminobutyldimethylmethoxysilane, 150 parts of anhydrous toluene and two parts of pyridine. An exothermic reaction resulted. The mixture was brought to reflux to effect the complete separation of water formed during the reaction. The mixture was then stripped of solvent under reduced pressure. There was obtained a brown, slightly viscous, liquid. Based on method of preparation, the product was o-endomethylenetetrahydrophthalimidobutyldimethylmethoxysilane. Its identity was further confirmed by its infrared spectrum.
EXAMPLE 7 A mixture of the 6-endomethylenetetrahydropthalirnidobutyldimethylmethoxysilane of Example 5, and acetylchloride is heated at about 50 C. for four days. The mixture is then stripped of by-product methylacetate, and excess acetylchloride under reduced pressure. Based on method of preparation, there is obtained S-endomethylenetetrahydrophthalimidobutyldimethylchlorosilane. Its identity is confirmed by its infrared spectrum.
6 EXAMPLE 8 There are added 8.7 parts of ethylacetirnidate to a mixture of 17 parts of the 5-endomethylenetetrahydrO- phthalimidobutyldimethylchlorosilane of Example 6, parts of dry toluene and 10 parts of triethylamine. The mixture is refluxed for two hours. The mixture is filtered and stripped of solvent under reduced pressure. Based on method of preparation, there is obtained it-endomethylenetetrahydrothalimidobutyldimethylethylacidimidatosilane. The identity of the product is further confirmed by infrared spectrum.
Although the above examples are limited to only a few of the very many imido-substituted organosilanes in the present invention and to methods of making them, it should be understood that the present invention is directed to a much broader class of such materials and methods which are set forth with greater particularity in the foregoing description.
We claim:
1. An aliphatically unsaturated amide-acid silane of the formula,
where R is selected from monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, R is selected from divalent hydrocarbon radicals nad halogenated divalent hydrocarbon radicals, R" is an aliphaticlly unsaturated divalent organic radical selected from hydrocarbon radicals and halogenated hydrocarbon radicals, R is a lower alkyl radical such as methyl, ethyl, propyl, butyl, etc., a is an integer equal to from 1 to 3 inclusive, and b is a whole number equal to 0 to 2 inclusive.
2. An aliphatically unsaturated amine-acid silane in accordance with claim 1, of the formula,
References Cited UNITED STATES PATENTS 3,288,754 11/1966 Green 260448.2NX 3,444,128 5/1969 Wu 260448.2NX
JAMES E. POER, Primary Examiner P. F. SHAVER, Assistant Examiner US. Cl. X.R.
@2 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 576, 031 Dat d April 20, 1971 Inventor(s) FRED F. HOLUB and MILTON L. EVANS It is certified that error appears in the aboveidentified patent and that said Letters Patent are hereby corrected as shown below:
Please cancel the formula appearing on Column 6, line 2.
of the subject Patent, and substitute the following formula COH (SEAL) Attest:
EDWARD M.FLETCHER, JR. ROBERT GOTTSCHALK Attesting Officer Acting Commissioner of Patent
US821969A 1969-05-05 1969-05-05 Amide acid and imido-substituted organosilanes Expired - Lifetime US3576031A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82196969A 1969-05-05 1969-05-05

Publications (1)

Publication Number Publication Date
US3576031A true US3576031A (en) 1971-04-20

Family

ID=25234741

Family Applications (1)

Application Number Title Priority Date Filing Date
US821969A Expired - Lifetime US3576031A (en) 1969-05-05 1969-05-05 Amide acid and imido-substituted organosilanes

Country Status (4)

Country Link
US (1) US3576031A (en)
DE (1) DE2020842A1 (en)
FR (1) FR2047342A5 (en)
IL (1) IL34416A0 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098796A (en) * 1975-06-13 1978-07-04 Novvo Industri A/S P-trimethylsilyloxyphenyl glycyloxyphthalimide
DE2934550A1 (en) * 1978-08-30 1980-03-06 Ciba Geigy Ag SILANES CONTAINING IMID GROUPS
US4210588A (en) * 1977-09-09 1980-07-01 Ciba-Geigy Corporation Silicon-modified imidyl-phthalic acid derivatives
US4246038A (en) * 1978-05-01 1981-01-20 General Electric Company Silicone abrasion resistant coatings for plastics
US4429064A (en) 1981-07-03 1984-01-31 Montedison S.P.A. Mica-reinforced polyolefin compositions comprising a maleammic silane modifier
US4499252A (en) * 1984-03-28 1985-02-12 Nitto Electric Industrial Co., Ltd. Process for producing polyimide precursor
US4581461A (en) * 1983-04-07 1986-04-08 National Starch And Chemical Corporation Maleated siloxane derivatives
US4609705A (en) * 1983-07-18 1986-09-02 General Electric Company Polyimide molding compositions
US4783222A (en) * 1986-10-17 1988-11-08 International Business Machines Corporation Glass fiber reinforced polyepoxide products and method for producing same
US6084106A (en) * 1994-10-21 2000-07-04 Thiokol Corporation Adhesion promoters and methods of their synthesis and use
WO2001096445A1 (en) * 2000-06-16 2001-12-20 Rhodia Chimie Novel organosilicon compounds comprising a multifunctional polyorganosiloxane bearing at least an activated imide-type double ethylene bond and methods for preparing same
WO2001096444A1 (en) * 2000-06-16 2001-12-20 Rhodia Chimie Novel multifunctionalised polyorganosiloxanes comprising groups derived from maleic acid and/or fumaric acid, and methods for preparing same
US20030065104A1 (en) * 1999-12-30 2003-04-03 Salvatore Pagano Rubber compositions for use in tires, comprising a (white filler/elastomer) coupling agent with an ester function
US20070123728A1 (en) * 2005-11-28 2007-05-31 Ben Patel Process for preparing unsaturated imidoalkoxysilanes

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098796A (en) * 1975-06-13 1978-07-04 Novvo Industri A/S P-trimethylsilyloxyphenyl glycyloxyphthalimide
US4210588A (en) * 1977-09-09 1980-07-01 Ciba-Geigy Corporation Silicon-modified imidyl-phthalic acid derivatives
US4246038A (en) * 1978-05-01 1981-01-20 General Electric Company Silicone abrasion resistant coatings for plastics
JPS63146891A (en) * 1978-08-30 1988-06-18 チバーガイギー アクチエンゲゼルシヤフト Imido group-containing silanes
US4271074A (en) * 1978-08-30 1981-06-02 Ciba-Geigy Corporation Silanes containing imide groups
US4364808A (en) * 1978-08-30 1982-12-21 Ciba-Geigy Corporation Photochemical preparation of silanes containing imide groups
DE2934550A1 (en) * 1978-08-30 1980-03-06 Ciba Geigy Ag SILANES CONTAINING IMID GROUPS
US4429064A (en) 1981-07-03 1984-01-31 Montedison S.P.A. Mica-reinforced polyolefin compositions comprising a maleammic silane modifier
US4581461A (en) * 1983-04-07 1986-04-08 National Starch And Chemical Corporation Maleated siloxane derivatives
US4609705A (en) * 1983-07-18 1986-09-02 General Electric Company Polyimide molding compositions
US4499252A (en) * 1984-03-28 1985-02-12 Nitto Electric Industrial Co., Ltd. Process for producing polyimide precursor
US4783222A (en) * 1986-10-17 1988-11-08 International Business Machines Corporation Glass fiber reinforced polyepoxide products and method for producing same
US6084106A (en) * 1994-10-21 2000-07-04 Thiokol Corporation Adhesion promoters and methods of their synthesis and use
US20030065104A1 (en) * 1999-12-30 2003-04-03 Salvatore Pagano Rubber compositions for use in tires, comprising a (white filler/elastomer) coupling agent with an ester function
US7078449B2 (en) * 1999-12-30 2006-07-18 Michelin Recherche Et Technique S.A. Rubber compositions for use in tires, comprising a (white filler/elastomer) coupling agent with an ester function
WO2001096445A1 (en) * 2000-06-16 2001-12-20 Rhodia Chimie Novel organosilicon compounds comprising a multifunctional polyorganosiloxane bearing at least an activated imide-type double ethylene bond and methods for preparing same
WO2001096444A1 (en) * 2000-06-16 2001-12-20 Rhodia Chimie Novel multifunctionalised polyorganosiloxanes comprising groups derived from maleic acid and/or fumaric acid, and methods for preparing same
FR2810327A1 (en) * 2000-06-16 2001-12-21 Rhodia Chimie Sa Organosilicon compounds, used for conveyor belts and shoe soles, comprise polyfunctional polyorganosiloxanes
FR2810328A1 (en) * 2000-06-16 2001-12-21 Rhodia Chimie Sa New multifunctional polyorganosiloxane, useful as coupling agent for fillers in elastomers, contains maleimide reactive groups
US20040023926A1 (en) * 2000-06-16 2004-02-05 Nathalie Guennouni Novel organosilicon compounds comprising a multifunctional polyorganosiloxane bearing at least one activated imide-type double ethylene bond and method for preparing same
US20070123728A1 (en) * 2005-11-28 2007-05-31 Ben Patel Process for preparing unsaturated imidoalkoxysilanes
US7442821B2 (en) * 2005-11-28 2008-10-28 Momentive Performance Materials Inc. Process for preparing unsaturated imidoalkoxysilanes

Also Published As

Publication number Publication date
IL34416A0 (en) 1970-06-17
FR2047342A5 (en) 1971-03-12
DE2020842A1 (en) 1970-11-19

Similar Documents

Publication Publication Date Title
US3755354A (en) Amide acid and imido-substituted organosilanes
US3576031A (en) Amide acid and imido-substituted organosilanes
US3558741A (en) Imido-substituted organopolysiloxane compositions
EP0112845A1 (en) Method for making silylnorbornane anhydrides.
US2901460A (en) Halosilane hydrolysis with tetrahydrofuran and water
US3294718A (en) Method for preparing block copolymers
US5049617A (en) Organopolysiloxane compound
JPH0791386B2 (en) Non-aqueous method for preparing silicone oligomer
US3297632A (en) Cyclic siloxane-containing polymers
US3435001A (en) Method for hydrolyzing organochlorosilanes
US3661833A (en) Fast curing organosiloxane resins
US3260699A (en) Process for making organopolysiloxanes
US3310578A (en) Substituted silanes
US3530092A (en) Process for preparing organosiliconnitrogen compounds
US3787439A (en) Imido-substituted organopolysiloxane compositions
US3701795A (en) Aliphatically unsaturated amic acid and silylated amic acid
US3595974A (en) Bis-silylphenyl carbonates
US3808248A (en) Silyl maleates and polysiloxane maleates
US2759959A (en) Allylphenyl organosilanes
US3586699A (en) Succinimidoalkylsilanes and siloxanes
US2507414A (en) Organo-silicon resins and process for making same
US3467685A (en) Preparation of organosiloxanes by the reaction of organosilicon hydrides with organosilanols
US3483241A (en) Organosulfonylalkylsilanes and methods for making them
US3773817A (en) Polysiloxane maleates
US3464955A (en) Carbalkoxyalkyl-containing organopolysiloxanes