US3571605A - Intervalometer for an illumination system - Google Patents
Intervalometer for an illumination system Download PDFInfo
- Publication number
- US3571605A US3571605A US3571605DA US3571605A US 3571605 A US3571605 A US 3571605A US 3571605D A US3571605D A US 3571605DA US 3571605 A US3571605 A US 3571605A
- Authority
- US
- United States
- Prior art keywords
- switch
- shift register
- pulse
- output
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 14
- 238000010304 firing Methods 0.000 claims abstract description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 230000001960 triggered effect Effects 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 3
- 230000000977 initiatory effect Effects 0.000 claims description 3
- 239000000872 buffer Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000007123 defense Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000004880 explosion Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42D—BLASTING
- F42D1/00—Blasting methods or apparatus, e.g. loading or tamping
- F42D1/04—Arrangements for ignition
- F42D1/045—Arrangements for electric ignition
- F42D1/05—Electric circuits for blasting
- F42D1/055—Electric circuits for blasting specially adapted for firing multiple charges with a time delay
Definitions
- This invention relates to intervalometers, and more particularly to an intervalometer for a battlefield illumination system.
- the present invention is an electronic intervalometer for a battlefield illumination system.
- the system provides an electrical impulse to fire a flare and also controls the time intervals for the firing of subsequent flares.
- the essential components of the system are an intrusion switch latch, an interval clock, a pulse generator, a one-shot multivibrator, a delay circuit and a shift register. In operation, when the intrusion switch latch is triggered, an initial flare is fired; thereafter, flares will be fired automatically at predetermined intervals until the supply of flares is exhausted or the sequence is interrupted.
- the illumination system is a flare package which was designed for use with base perimeter defense systems and can be interfaced with those systems. It can also be used without intrusion detection systems; for example, by a sentry in an outpost. When connected to intrusion equipment it can be left unattended.
- the firing sequence can be manually interrupted in case of a false alarm confirmed, saving the remaining flares. it can also be fired manually, in case the operator suspects an intrusion without an alarm given.
- the apparatus is completely self-contained.
- An object of the present invention is to provide an intervalometer for an illumination system wherein an electrical impulse fires a flare and also controls the time interval for firing subsequent flares.
- Another object of the present invention is to provide an intervalometer for an illumination system in which the firing sequence for flares can be manually interrupted.
- Yet another object of the present invention is to provide an intervalometer for an illumination system which permits initiation and sequencing for a ground-based ordnance dispenser.
- FIG. ll shows a preferred embodiment of the flare firing intervalometer system of the present invention
- FIG. 2 shows a diagram in block form of the shift register of MG. 1;
- FIG. 3 shows a schematic diagram of the components of Fit ⁇ . 1 excluding the shift register and firing circuits
- EEG. 4 shows a schematic diagram of one of the twelve firing circuits.
- FIG. 1 there is shown logic power switch 59.
- power from power source 51 is supplied to one-shot multivibrator 52, one-shot multivibrator delay 53, and shift register 54.
- the purpose of oneshot multivibrator delay 53 is to hold the output of one-shot multivibrator 52 to prevent it from triggering shift register 54 during the supply voltage (power) turn-on time.
- the second step is to close firing circuit power switch 55. This supplies power from power source 56 to 12 firing circuits represented by block 57.
- Switch 50 is closed before switch 55 to prevent the firing circuits from being triggered by a transient output from shift register 54 which could occur during supply voltage (power) turn-on.
- Sequence interrupt switch 58 is a normally closed switch, and local firing switch 59 is normally open. Switch 53 and switch 59 are held in their normal positions by switch covers.
- Intrusion switch latch 60 which is a silicon controlled switch (SCS), PNPN device, acts as a blocking diode until it is triggered, then it acts as a holding relay.
- SCS silicon controlled switch
- PNPN device acts as a blocking diode until it is triggered, then it acts as a holding relay.
- the output number one of shift register 54 goes from O to 9 volts which triggers firing circuit number one which is contained in block 57.
- Block 57 includes 12 separate firing circuits, each receives a separate input from shift register 54.
- the first squib in the flare package is ignited by the number one firing circuit.
- the silicon controlled switch also provides power to interval clock 62. Thirty seconds after one-shot multivibrator 52 is triggered by initial pulse generator 61, oneshot multivibrator 52 is triggered by interval clock 62.
- One shot multivibrator 52 then triggers shift register 54 to its second output, which triggers the second firing circuit in block 57 and fires the second squib. This process will continue until 12 flares have been fired. Shift register 5d will continue to cycle and the intervalometer should be turned off after the 12 flares have been fired.
- the firing can be stopped by momentarily opening switch 58. This commutates the silicon controlled switch and cuts off power to interval clock 62 and initial pulse generator 61. When switch 58 is closed again, the silicon controlled switch will remain turned off until switch 59 is closed again, or terminals 590 and 59d are shorted. The memory is held by shift register 54 as long as switch 50 remains closed.
- the silicon controlled switch will turn on, causing a flare to be fired immediately by the same sequence as previously explained.
- the flares will continue to fire at 30-second intervals until the flares are exhausted, or the sequence is interrupted.
- FIG. 2 is a block diagram of shift register 54 of FIG. I, it is comprised of l2-bit shift register 76) and two gated buffers 71 and '72.
- Shift register 70 is a General Instrument Serial-In Parallel-Out MEM 3012SP.
- the buffers are General Instrument 6 channel multiplexers, type MEM 2009.
- Supply voltage for shift register 70 enters pin N.
- Supply voltages for buffers ill and 72 enter pin C and ground is pin X.
- the outputs of the shift register are at zero potential at the beginning of the operation.
- the shift register takes the data input and shifts it to the first output, pin 7a of the shift register, pin lb of the output.
- the reading of the output is approximately -8 volts.
- the gated bufier takes this output and lowers the potential at pins 14 to 9 of the buffers and pin 8a of the shift register to less than 2 volts. This is the purpose of the gated buffer, that is, to keep one bit at a time in the shift register.
- the voltage readings are Location: Reading Pin K (output 1b) 8 volts (approx.). Pin C (below resistor 73)-- 23. volts. Above resistor 73 1. 15 volts to 2. 5
- the leading bit moves along and is read at 2b through 12b according to the clock pulse.
- FIG. 3 there is shown a schematic diagram and the interconnections of the components of FIG. 1 with the exception of firing circuits 57 and shift register 54.
- the schematic of interval clock 62 is shown as 62a, of initial pulse generator 61 as 61a, intrusion switch latch 60 as 6011, of oneshot multivibrator 52 as 52a, and of one-shot multivibrator delay 53 as 53a.
- R. shown in schematic 62a is a variable resistor. The nominal 30-second interval can be adjusted by means of R over an adjustment range of i 6 seconds.
- FIG. 4 there is shown the schematic of one of the 12 identical firing circuits included in block 57.
- the shift register output triggers the circuit through point B.
- the step waveform is current limited by resistor R and differentiated by capacitor C,,.
- the differentiated pulse turns transistor 0,, a 2N4305, on, and the transistor conducts and produces a waveform which has a period of approximately milliseconds.
- the system of the present invention will fire a flare every 30 seconds after the first immediately fired flare, for a total of 12 flares.
- the sequence can be interrupted at any time by operating a switch. After the sequence has been interrupted, the system will fire a flare immediately when started again, and also to resume firing at 30-second intervals. This interrupt and restart ability is immediate, even if the 30-second cycle has not passed since the previous flare was fired.
- An electronic intervalometer for an illumination system comprising an initial pulse generator providing a single initiating pulse output upon receiving actuating power, an interval clock providing a pulse output at preselected time intervals also after receiving actuating power, a one-shot multivibrator receiving said pulse outputs from said initial pulse generator and interval clock, said one-shot multivibrator providing a pulse output for each pulse input, a shift register having an input connected to the output of said one-shot multivibrator, and further having a multiplicity of outputs, each of said shift register outputs providing a firing pulse in sequence in accordance with the receipt of an input pulse, a multiplicity of flare firing circuits each havin an in ut corresponding to an associate output from said sh1 regis er, a first power source, a first switch, connected to said first power source and upon closing thereof operating to supply actuating power to said one-shot multivibrator, and said shift register, a silicon controlled switch acting as a blocking diode until triggered then acting as a holding relay,
- An electronic intervalometer as described in claim 1 further including a second power source, and a fourth switch, said fourth switch upon closing thereof supplying power to said flare firing circuits.
- An electronic intervalometer as described in claim 2 further including means to delay the output pulse from said one-shot multivibrator to said shift register to hold the output of said one-shot multivibrator to prevent triggering said shift register during tum-on time of said power.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
An electrical intervalometer for a battlefield illumination system wherein an electronic impulse fires a flare and also controls the time interval for the firing of subsequent flares with the further ability of interrupting the firing sequence and then resuming firing at the aforementioned time intervals.
Description
United States Patent [72] Inventors James J. Dobmn;
Michael J. Capparelli, Jr.; John R. Miller, Rome; Dennk II. Majlrowski, Grllflss AFB, N.Y.
Aug. 25, 1969 Mar. 23, 1971 Thell nitedstates o f America as represented by the Secretary of the Air Force [21 1 Appl. No. [22] Filed [45] Patented [73] Assignee [54] INTERVALOMETER FOR AN ILLUMINATION SYSTEM 3 Claims, 4 Drawing Figs.
[52] US. Cl. 307/41, 102/702, 307/133, 317/80 [51] Int. Cl. H02j 3/06 [50] Field ofSearch 317/80,
148.5 (B); 323/22 (SCR); 89/l.8l4, 1.812; 181/1 (0), 0.5 (XC); 307/133, 41
[56] References Cited UNITED STATES PATENTS 3,099,962 8/1963 Smith 317/1485X 3,312,869 4/1967 Werner 317/80 3,316,451 4/1967 Silberman 317/80 3,453,496 7/1969 Wright et a1. 89/l.8l4X 3,504,189 3/1970 McHenry 307/41 Primary Examiner-J. D. Miller Assistant Examiner-Ulysses Weldon Attorneys-Harry A. Herbert, Jr. and George Fine ABSTRACT: An electrical intervalometer for a battlefield illumination system wherein an electronic impulse fires a flare and also controls the time interval for the firing of subsequent flares with the further ability of interrupting the firing sequence and then resuming firing at the aforementioned time intervals.
ENTEEKVALOMETER FOR AN ILLUMINATION SYSTEM BACKGROUND OF THE INVENTION This invention relates to intervalometers, and more particularly to an intervalometer for a battlefield illumination system.
There has been in the past limitations relating to base perimeter defenses. in one version of an illumination system there were utilized powder initiators for starting the sequence of flares and powder fusing for timing. The system had to be started manually and the interrupt ability was limited. It was necessary to have an operator near the flare package, which emitted a flash and an explosion when a flare was launched. This could pinpoint its location in the dark and could possibly draw hostile fire. There was also a remote danger of an explosion if a malfunction occurred and all of the propellants ignited at once. 'Also, in the prior art, there are systems which perform a similar function. However, these systems utilize electromechanical devices and powder trains. The present invention is an all-electronic system making it possible to be keyed in electronically with any variety of security devices or area defense systems.
SUMMARY OF THE INVENTION The present invention is an electronic intervalometer for a battlefield illumination system. In particular, the system provides an electrical impulse to fire a flare and also controls the time intervals for the firing of subsequent flares. The essential components of the system are an intrusion switch latch, an interval clock, a pulse generator, a one-shot multivibrator, a delay circuit and a shift register. In operation, when the intrusion switch latch is triggered, an initial flare is fired; thereafter, flares will be fired automatically at predetermined intervals until the supply of flares is exhausted or the sequence is interrupted.
The illumination system is a flare package which was designed for use with base perimeter defense systems and can be interfaced with those systems. It can also be used without intrusion detection systems; for example, by a sentry in an outpost. When connected to intrusion equipment it can be left unattended. The firing sequence can be manually interrupted in case of a false alarm confirmed, saving the remaining flares. it can also be fired manually, in case the operator suspects an intrusion without an alarm given. The apparatus is completely self-contained.
An object of the present invention is to provide an intervalometer for an illumination system wherein an electrical impulse fires a flare and also controls the time interval for firing subsequent flares.
Another object of the present invention is to provide an intervalometer for an illumination system in which the firing sequence for flares can be manually interrupted.
Yet another object of the present invention is to provide an intervalometer for an illumination system which permits initiation and sequencing for a ground-based ordnance dispenser.
The various features of novelty which characterize this invention are pointed out with particularity in the claims annoted to and forming part of this specification. For a better understanding of the invention, however, its advantages and specific objects obtained with its use, reference should be had to the accompanying drawings and description matter in which is illustrated a preferred embodiment of the invention.
DESCRIPTION OF THE DRAWINGS FIG. ll shows a preferred embodiment of the flare firing intervalometer system of the present invention;
FIG. 2 shows a diagram in block form of the shift register of MG. 1;
FIG. 3 shows a schematic diagram of the components of Fit}. 1 excluding the shift register and firing circuits; and
EEG. 4 shows a schematic diagram of one of the twelve firing circuits.
DESCRIPTION OF THE PREFERRED EMBODIMENT Now referring in detail to FIG. 1, there is shown logic power switch 59. Upon closing switch 50, power from power source 51 is supplied to one-shot multivibrator 52, one-shot multivibrator delay 53, and shift register 54. The purpose of oneshot multivibrator delay 53 is to hold the output of one-shot multivibrator 52 to prevent it from triggering shift register 54 during the supply voltage (power) turn-on time.
The second step is to close firing circuit power switch 55. This supplies power from power source 56 to 12 firing circuits represented by block 57. Switch 50 is closed before switch 55 to prevent the firing circuits from being triggered by a transient output from shift register 54 which could occur during supply voltage (power) turn-on. Sequence interrupt switch 58 is a normally closed switch, and local firing switch 59 is normally open. Switch 53 and switch 59 are held in their normal positions by switch covers.
With switches 50 and 55 closed, power is supplied to oneshot multivibrator 52, one-shot multivibrator delay 53, shift register 54, and firing circuits 57. The system is in a standby mode at this point. Intrusion switch latch 60, which is a silicon controlled switch (SCS), PNPN device, acts as a blocking diode until it is triggered, then it acts as a holding relay. When intrusion switch terminals 59a and 59b are shorted either by a remote device connected across to terminals 59c and 59d or by closing local firing switch 59, silicon controlled switch turns on. Power is then supplied to initial pulse generator 61 and interval clock 62. Initial pulse generator 61 triggers oneshot multivibrator 52 which triggers shift register 54 to its first output. The output number one of shift register 54 goes from O to 9 volts which triggers firing circuit number one which is contained in block 57. Block 57 includes 12 separate firing circuits, each receives a separate input from shift register 54. The first squib in the flare package is ignited by the number one firing circuit. The silicon controlled switch also provides power to interval clock 62. Thirty seconds after one-shot multivibrator 52 is triggered by initial pulse generator 61, oneshot multivibrator 52 is triggered by interval clock 62. One shot multivibrator 52 then triggers shift register 54 to its second output, which triggers the second firing circuit in block 57 and fires the second squib. This process will continue until 12 flares have been fired. Shift register 5d will continue to cycle and the intervalometer should be turned off after the 12 flares have been fired.
If it is necessary to interrupt the sequence at any time, the firing can be stopped by momentarily opening switch 58. This commutates the silicon controlled switch and cuts off power to interval clock 62 and initial pulse generator 61. When switch 58 is closed again, the silicon controlled switch will remain turned off until switch 59 is closed again, or terminals 590 and 59d are shorted. The memory is held by shift register 54 as long as switch 50 remains closed.
If, after having been interrupted, the intrusion switch is shorted, or switch 59 is closed, the silicon controlled switch will turn on, causing a flare to be fired immediately by the same sequence as previously explained. The flares will continue to fire at 30-second intervals until the flares are exhausted, or the sequence is interrupted.
Now referring to FIG. 2, which is a block diagram of shift register 54 of FIG. I, it is comprised of l2-bit shift register 76) and two gated buffers 71 and '72. Shift register 70 is a General Instrument Serial-In Parallel-Out MEM 3012SP. The buffers are General Instrument 6 channel multiplexers, type MEM 2009.
Supply voltage for shift register 70 enters pin N. Supply voltages for buffers ill and 72 enter pin C and ground is pin X.
W hen the system is first turned on, that is, when switch 50 of FIG. ll has been closed and the alarm has not been tripped, the readings are:
Pin 0-24 volts (approx) Buffers pins 9 to 14, and shift register pin fia-ZB volts (approx).
If the potential at pin 8a of the shift register is to 2 volts, no data input will result. if the potential exceeds 2 volts, in the negative direction, a data input will result. For the shift register to begin operating a data input voltage must be present at the time a clock pulse is applied at lead 100 of the shift register.
The outputs of the shift register are at zero potential at the beginning of the operation. When the first clock pulse occurs, the shift register takes the data input and shifts it to the first output, pin 7a of the shift register, pin lb of the output. The reading of the output is approximately -8 volts. The gated bufier takes this output and lowers the potential at pins 14 to 9 of the buffers and pin 8a of the shift register to less than 2 volts. This is the purpose of the gated buffer, that is, to keep one bit at a time in the shift register.
Occasionally, some gates in the buffer differ in drain-tosource resistance (R and allow the potential at pin 8a of the shift register to exceed -2 volts. This allows another hit to enter the shift register and follow the first bit. The second bit will not interfere with the operation of the intervalometer, since the first bit is the one that will fire the flares.
After the first clock pulse, the voltage readings are Location: Reading Pin K (output 1b) 8 volts (approx.). Pin C (below resistor 73)-- 23. volts. Above resistor 73 1. 15 volts to 2. 5
v0 ts.
After the second clock pulse, the leading bit moves along and is read at 2b through 12b according to the clock pulse.
Now referring to FIG. 3, there is shown a schematic diagram and the interconnections of the components of FIG. 1 with the exception of firing circuits 57 and shift register 54. The schematic of interval clock 62 is shown as 62a, of initial pulse generator 61 as 61a, intrusion switch latch 60 as 6011, of oneshot multivibrator 52 as 52a, and of one-shot multivibrator delay 53 as 53a. R. shown in schematic 62a is a variable resistor. The nominal 30-second interval can be adjusted by means of R over an adjustment range of i 6 seconds.
Referring to FIG. 4, there is shown the schematic of one of the 12 identical firing circuits included in block 57. The shift register output triggers the circuit through point B. The trigger at the anode gate of silicon controlled switch Qa, a 3N81, turns on the silicon controlled switch. The step waveform is current limited by resistor R and differentiated by capacitor C,,. The differentiated pulse turns transistor 0,, a 2N4305, on, and the transistor conducts and produces a waveform which has a period of approximately milliseconds. The
pulse travels through limiting resistor R, out through point E, through a cable to the squib and returns through a common line to point D. It is noted that any conventional pulse controlled firing circuit with the proper current capacity may be utilized.
The system of the present invention will fire a flare every 30 seconds after the first immediately fired flare, for a total of 12 flares. The sequence can be interrupted at any time by operating a switch. After the sequence has been interrupted, the system will fire a flare immediately when started again, and also to resume firing at 30-second intervals. This interrupt and restart ability is immediate, even if the 30-second cycle has not passed since the previous flare was fired.
We claim:
1. An electronic intervalometer for an illumination system comprising an initial pulse generator providing a single initiating pulse output upon receiving actuating power, an interval clock providing a pulse output at preselected time intervals also after receiving actuating power, a one-shot multivibrator receiving said pulse outputs from said initial pulse generator and interval clock, said one-shot multivibrator providing a pulse output for each pulse input, a shift register having an input connected to the output of said one-shot multivibrator, and further having a multiplicity of outputs, each of said shift register outputs providing a firing pulse in sequence in accordance with the receipt of an input pulse, a multiplicity of flare firing circuits each havin an in ut corresponding to an associate output from said sh1 regis er, a first power source, a first switch, connected to said first power source and upon closing thereof operating to supply actuating power to said one-shot multivibrator, and said shift register, a silicon controlled switch acting as a blocking diode until triggered then acting as a holding relay, a second switch, normally closed, interconnecting said silicon switch with said first power source by way of said first switch, and a third switch, normally open, shorting said silicon controlled switch to ground upon closing thereof and thereupon operating to actuate said silicon switch to provide power to said initial pulse generator and said interval clock.
2. An electronic intervalometer as described in claim 1 further including a second power source, and a fourth switch, said fourth switch upon closing thereof supplying power to said flare firing circuits.
3. An electronic intervalometer as described in claim 2 further including means to delay the output pulse from said one-shot multivibrator to said shift register to hold the output of said one-shot multivibrator to prevent triggering said shift register during tum-on time of said power.
Claims (3)
1. An electronic intervalometer for an illumination system comprising an initial pulse generator providing a single initiating pulse output upon receiving actuating power, an interval clock providing a pulse output at preselected time intervals also after receiving actuating power, a one-shot multivibrator receiving said pulse outputs from said initial pulse generator and interval clock, said one-shot multivibrator providing a pulse output for each pulse input, a shift register having an input connected to the output of said one-shot multivibrator, and further having a multiplicity of outputs, each of said shift register outputs providing a firing pulse in sequence in accordance with the receipt of an input pulse, a multiplicity of flare firing circuits, each having an input corresponding to an associated output from said shift register, a first power source, a first switch, connected to said first power source and upon closing thereof operating to supply actuating power to said one-shot multivibrator, and said shift register, a silicon controlled switch acting as a blocking diode until triggered then acting as a holding relay, a second switch, normally closed, interconnecting said silicon switch with said first power source by way of said first switch, and a third switch, normally open, shorting said silicon controlled switch to ground upon closing thereof and thereupon operating to actuate said silicon switch to provide power to said initial pulse generator and said interval clock.
2. An electronic intervalometer as described in claim 1 further including a second power source, and a fourth switch, said fourth switch upon closing thereof supplying power to said flare firing circuits.
3. An electronic intervalometer as described in claim 2 further including means to delay the output pulse from said one-shot multivibrator to said shift register to hold the output of said one-shot multivibrator to prevent triggering said shift register during turn-on time of said power.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85281569A | 1969-08-25 | 1969-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3571605A true US3571605A (en) | 1971-03-23 |
Family
ID=25314286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3571605D Expired - Lifetime US3571605A (en) | 1969-08-25 | 1969-08-25 | Intervalometer for an illumination system |
Country Status (1)
Country | Link |
---|---|
US (1) | US3571605A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3700971A (en) * | 1971-01-29 | 1972-10-24 | Wahl Corp William | Electromechanical intervalometer, and method of using same |
US3750583A (en) * | 1971-03-04 | 1973-08-07 | Westinghouse Electric Corp | Electronic fuze system |
US3851589A (en) * | 1973-04-25 | 1974-12-03 | Texaco Inc | Electronic delay blaster |
US3862602A (en) * | 1970-05-14 | 1975-01-28 | Us Navy | Contact delay and self-destruct circuit |
US3934514A (en) * | 1972-05-29 | 1976-01-27 | Ici Australia Limited | Firing devices and processes |
US3999076A (en) * | 1974-01-23 | 1976-12-21 | Research Energy Of Ohio, Inc. | Blasting machine |
DE2916994A1 (en) * | 1978-04-26 | 1979-11-15 | Aeci Ltd | METHOD AND DEVICE FOR THE SUCCESSIVE IGNITION OF EXPLOSIVES |
DE2945122A1 (en) * | 1978-02-01 | 1980-05-22 | Ici Ltd | ELECTRIC DELAY DEVICE |
US4217717A (en) * | 1977-04-11 | 1980-08-19 | The United States Of America As Represented By The Secretary Of The Navy | Automatic weapon simulator |
US4217826A (en) * | 1978-08-18 | 1980-08-19 | The United States Of America As Represented By The Secretary Of The Navy | Time delay firing device |
US4227461A (en) * | 1978-09-08 | 1980-10-14 | The United States Of America As Represented By The Secretary Of The Navy | Dual output simultaneous firing circuit |
JPS57142498A (en) * | 1981-02-27 | 1982-09-03 | Asahi Chemical Ind | Delayed electric fuse |
US4496010A (en) * | 1982-07-02 | 1985-01-29 | Schlumberger Technology Corporation | Single-wire selective performation system |
US4527636A (en) * | 1982-07-02 | 1985-07-09 | Schlumberger Technology Corporation | Single-wire selective perforation system having firing safeguards |
US5284094A (en) * | 1989-10-10 | 1994-02-08 | Joanell Laboratories, Inc. | Pyrotechnic ignition apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3099962A (en) * | 1961-06-28 | 1963-08-06 | Chester L Smith | Electric timer and sequencing system for pyrotechnic flash items |
US3312869A (en) * | 1964-05-12 | 1967-04-04 | Werner Peder | Detonator apparatus for series firing of explosives |
US3316451A (en) * | 1964-12-07 | 1967-04-25 | Robert L Silberman | Intervalometer |
US3453496A (en) * | 1968-03-28 | 1969-07-01 | Us Army | Fire control intervalometer |
US3504189A (en) * | 1968-11-13 | 1970-03-31 | Ledex Inc | Sequence timing circuit |
-
1969
- 1969-08-25 US US3571605D patent/US3571605A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3099962A (en) * | 1961-06-28 | 1963-08-06 | Chester L Smith | Electric timer and sequencing system for pyrotechnic flash items |
US3312869A (en) * | 1964-05-12 | 1967-04-04 | Werner Peder | Detonator apparatus for series firing of explosives |
US3316451A (en) * | 1964-12-07 | 1967-04-25 | Robert L Silberman | Intervalometer |
US3453496A (en) * | 1968-03-28 | 1969-07-01 | Us Army | Fire control intervalometer |
US3504189A (en) * | 1968-11-13 | 1970-03-31 | Ledex Inc | Sequence timing circuit |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862602A (en) * | 1970-05-14 | 1975-01-28 | Us Navy | Contact delay and self-destruct circuit |
US3700971A (en) * | 1971-01-29 | 1972-10-24 | Wahl Corp William | Electromechanical intervalometer, and method of using same |
US3750583A (en) * | 1971-03-04 | 1973-08-07 | Westinghouse Electric Corp | Electronic fuze system |
US3934514A (en) * | 1972-05-29 | 1976-01-27 | Ici Australia Limited | Firing devices and processes |
US3851589A (en) * | 1973-04-25 | 1974-12-03 | Texaco Inc | Electronic delay blaster |
US3999076A (en) * | 1974-01-23 | 1976-12-21 | Research Energy Of Ohio, Inc. | Blasting machine |
US4217717A (en) * | 1977-04-11 | 1980-08-19 | The United States Of America As Represented By The Secretary Of The Navy | Automatic weapon simulator |
US4409897A (en) * | 1978-02-01 | 1983-10-18 | Imperial Chemical Industries, Ltd. | Apparatus & method for selectively activating plural electrical loads at predetermined relative times |
DE2945122A1 (en) * | 1978-02-01 | 1980-05-22 | Ici Ltd | ELECTRIC DELAY DEVICE |
USRE33004E (en) * | 1978-02-01 | 1989-08-01 | Imperial Chemical Industries Plc | Apparatus and method for selectively activating plural electrical loads at predetermined relative times |
USRE32888E (en) * | 1978-02-01 | 1989-03-14 | Imperial Chemical Industries Plc | Apparatus and method for selectively activating plural electrical loads at predetermined relative times |
US4419933A (en) * | 1978-02-01 | 1983-12-13 | Imperial Chemical Industries Limited | Apparatus and method for selectively activating plural electrical loads at predetermined relative times |
US4324182A (en) * | 1978-02-01 | 1982-04-13 | Imperial Chemical Industries Limited | Apparatus and method for selectively activating plural electrical loads at predetermined relative times |
DE2916994A1 (en) * | 1978-04-26 | 1979-11-15 | Aeci Ltd | METHOD AND DEVICE FOR THE SUCCESSIVE IGNITION OF EXPLOSIVES |
US4314507A (en) * | 1978-04-26 | 1982-02-09 | Aeci Limited | Sequential initiation of explosives |
US4217826A (en) * | 1978-08-18 | 1980-08-19 | The United States Of America As Represented By The Secretary Of The Navy | Time delay firing device |
US4227461A (en) * | 1978-09-08 | 1980-10-14 | The United States Of America As Represented By The Secretary Of The Navy | Dual output simultaneous firing circuit |
JPS57142498A (en) * | 1981-02-27 | 1982-09-03 | Asahi Chemical Ind | Delayed electric fuse |
JPS6353479B2 (en) * | 1981-02-27 | 1988-10-24 | Asahi Chemical Ind | |
US4496010A (en) * | 1982-07-02 | 1985-01-29 | Schlumberger Technology Corporation | Single-wire selective performation system |
US4527636A (en) * | 1982-07-02 | 1985-07-09 | Schlumberger Technology Corporation | Single-wire selective perforation system having firing safeguards |
US5284094A (en) * | 1989-10-10 | 1994-02-08 | Joanell Laboratories, Inc. | Pyrotechnic ignition apparatus |
US5563366A (en) * | 1989-10-10 | 1996-10-08 | Joanell Laboratories, Inc. | Pyrotechnic ignition apparatus |
US6505558B1 (en) | 1989-10-10 | 2003-01-14 | Joanell Laboratories, Inc. | Pyrotechnic ignition apparatus and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3571605A (en) | Intervalometer for an illumination system | |
US3316451A (en) | Intervalometer | |
US4136617A (en) | Electronic delay detonator | |
US3748955A (en) | Circuit arrangement for rocket launchers | |
US3703145A (en) | Selective arming mode and detonation option ordnance fuze | |
KR950033411A (en) | Continuous blasting system | |
GB1251510A (en) | ||
GB1258327A (en) | ||
US4727809A (en) | Detonation safety mechanism | |
US3665860A (en) | Detector | |
US5520115A (en) | Timing and safety module to sequence events in missiles | |
US3439616A (en) | Solid state detonator firing circuit | |
US3153520A (en) | Inertially based sequence programmer | |
US3598056A (en) | Fuze | |
US3976012A (en) | Arrangement for automatic switching in electric fuses for projectiles | |
US3862602A (en) | Contact delay and self-destruct circuit | |
US3384017A (en) | Land mine control system | |
US3001477A (en) | Stabilized circuit for electrical relay fuze | |
US3638035A (en) | Primary and secondary shunt paths for dissipating an electrical charge | |
US2998776A (en) | Reliable battery power supply | |
US3787740A (en) | Delay timer | |
US3575114A (en) | Time delay antidisturbance faze | |
US3745877A (en) | Intervalometer for parachute flare launcher | |
US5886287A (en) | Guidance information analyzer | |
US2998773A (en) | Selectively variable timing fuze |