US3554291A - Level and slope control for surfacing machines - Google Patents
Level and slope control for surfacing machines Download PDFInfo
- Publication number
- US3554291A US3554291A US681522A US3554291DA US3554291A US 3554291 A US3554291 A US 3554291A US 681522 A US681522 A US 681522A US 3554291D A US3554291D A US 3554291DA US 3554291 A US3554291 A US 3554291A
- Authority
- US
- United States
- Prior art keywords
- leveling element
- chassis
- machine
- support structure
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
- E02F3/844—Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
- E02F3/847—Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams
Definitions
- ABSTRACT A level and slope control for road graders and similar surfacing machines is described in which one or more very narrow electromagnetic beams are projected along the path to be graded, and photoelectric sensors on the grading machine are utilized to receive and detect positional information from the light beams and to generate correction signals which both adjust the position of the surfacing blade and steer the machine in the desired direction.
- the present invention relates to surfacingmachines and equipment, and more particularly concerns an automatic control apparatus for regulating the grade and cross slope of a road grader or similar earthmoving machine.
- surfacing machines having ground engaging blades for earth moving and road grading it is often important to achieve very accurate control over the angle and height of the blade as the machine passes over the surface to be graded. This is especially true in the final cuts of the grading operation where the finished grade must be accurate to within a fraction of an inch in order ,to provide the proper crown of a road, for example, or to create a desired drainage pattern.
- the angle to be cut along a-fore-and-aft path with respect to the grading vehicle is known as the grade
- the anglealong'a lateral transverse axis to thexrnachine is known as the cross-slope, or simply as the slope .ln addition, on most machines the angleof the bladewith respect to the directionof travel can also be adjusted, and a like adjustment can' be made to change the vertical angle of the blade with respect to the ground. The latter adjustments change theangle of attack of the cutting edge of theblade with'respect to the ground to suit various operating conditions.
- grade stakes used in such an operation must be placed very closely together so that the machine operator mayeasily observe them and thereby work to the desired level or grade between the stakes.
- Such procedures generally result in the grading operation proceeding ata very slow rate in comparison to the rate at which the machine itself was capableof operating, principally because of the operators need to carefully'and slowly adjust the operation of his machine to conform to the level and slope set by the grade stakes.
- system of the present invention be suitable for multiple use in which both ends of the ground engaging blade of the leveling. apparatus may be indepen dently controlled. Alternatively, it is intended that the system be useful in conjunction with other forms of control apparatus, including pendulum-operated cross slope detection means. In order to make the system wholly automatic, automatic,-it is contemplatedthat the system include steering correction means which enable the machine to follow the electromagnetic beam automatically without intervention by the operator.
- Amore detailed object is to provide such a system in which the leveling and steeringoperations :are carried out sequentially, so that theground engaging element is-first adjusted vertically to the desired position, and then the direction of the vehicle is adjusted by steering correction so that the more-im portant grade and cross slope adjustments are always accomplished first.
- a proportioned response is contemplated in which the corrective control reaction is proportioned to the relative degree of deviation of the blade from the desired path as determined by the beam.
- a further refinement in this respect is the provisionof a compensating system which takes into account the widely varying positions of the'ground engaging element in its mounting structure so that the control system will operate-accurately withoutregard to changes in the mounting position of the blade in the machine.
- FIG. 1 is a perspective view. of a self-propelled surfacing machine, specifically agrader, which embodies the present invention for automatic steeringand grader blade attitudeaeontrol;
- FIG. 2 is an enlarged, fragmentary perspective wiew -to better illustrate the support means forthegradcr bladejshown in FIG. 1;
- FIG. 4 is a simplified schematic' diagramof a representative form of theautomatic control system.
- the scraper blade 11 is suspended from the chassis 10 in a manner which allows it to be moved over a wide range of adjustment. Adjustment during operation is achieved by a pair of hydraulic cylinders consisting of a right cylinder 17 and a left cylinder 18, as seen from the operators compartment, each of which is pivoted to the chassis 10 directly above the blade 11.
- the cylinders 17, 18 each terminate in a ball joint 20 on a blade mounting ring 21 carried beneath the arched central portion of the chassis 10.
- the blade 11 is suspended from the chassis 10 in a manner which allows a wide degree of freedom in positioning the blade with respect to the ground.
- the operating plane of the blade 11 is determined by a mounting ring 21 to which the blade is attached.
- the blade 11 may be made pivotable or shiftable with respect to the mounting ring 21, the ring is always determinative of the plane in which the cutting surface will lie.
- the cutting angle of the blade 11 with respect to the ground may be varied by a hydraulic blade circle reverse cylinder (not shown) linking the drawbar yoke 22 and the mounting ring 21.
- Another possible adjustment is accomplished by making the blade 11 shiftable longitudinally with respect to the mounting ring 21 so that the blade may be extended beyond the track of the vehicle for certain grading operation. This is accomplished by another hydraulic cylinder (not shown) located behind the blade 11.
- the mounting ring 21 to which the blade 11 is secured is in turn carried by the chassis 10 by means of a yoke or drawbar 22.
- the latter is a triangular structure having a ball joint 23 at one end which connects to the forward portion of the chassis 10.
- the ball joint 23 allows complete freedom of articulation of the yoke 22 with respect to the chassis, allowing the mounting ring 21 to swing from side to side, to move up and down, and to rotate about a longitudinal axis extending through the ball joint 23. The entire tractive effort of the machine is thus exerted through the ball joint 23 and in turn through the yoke 22 and blade mounting ring 21 to the blade 11.
- a locating link 25 is provided at the rear of the yoke 22.
- the link 25 has another ball joint 26 at one end which may be attached to one or the other of two mounting points 27 located on each side of the yoke 22.
- the locating link 25 is selectively positioned by a locating hydraulic cylinder 28 which operates in conjunction with the two hydraulic cylinders 17, 18 previously mentioned to locate the blade 11 in a desired position.
- the locating link is articulated about a pivot 29 in order to allow a range of adjustment in the new position.
- the locating link 25 is attached to the particular locating ball joint 26 opposite the side on which the grading operation is to be performed.
- the locating hydraulic cylinder 28 is then actuated to shift the locating link 25 toward the desired side, thereby bringing the yoke 22 with it.
- This establishes the final position of the mounting ring 21 with respect to the chassis 10, with the mounting ring then being rotatable about an axis determined by a line extending between the forward ball joint 23 and the locating link pivot 29.
- the hydraulic cylinders 17, 18 are actuated in unison if it is desired to raise or lower the mounting ring 21 through a path of travel determined by the yoke 22 and locating link ball joint 26, or to rotate the mounting ring 21 about an axis determined by the ball joint 23 and the locating link pivot 29 as previously mentioned.
- a means is provided whereby the position of the blade 11 with respect to the chassis 10 is adjusted by an automatic control system which uses as its reference a collimated beam of light projected along the path of desired blade travel.
- a beam is preferably generated by a laser unit, this term being an acronym for Light Amplification by Stimulated Emission of Radiation.
- Such a beam is characterized by its very great intensity and almost total lack of dispersion or diffusion from a straight line path. Within the distances contemplated in the present application the dispersion or widening of the light beam from such a source is negligible and the beam approximates a straight line over its entire useful path of travel.
- a laser beam generating unit 30 is set up on a tripod mount 30a or similar support, and located with respect to the grade line by ordinary surveying means, such as a plumb line 30b.
- the laser unit 30 is supplied by a source of electrical energy (not shown) which may comprise a field generating unit or the like.
- a beam generation unit 30 which consists of a laser it will be appreciated that any similarly intense, highly collimated electromagnetic beam would also be satisfactory in carrying out the invention.
- the properties of the laser unit described make it preferable for use in the present application.
- the beam from the laser unit 30 is received by a sensing unit 31 carried by one end of the blade 11.
- the sensing unit 31 consists generally of a broad plate having a plurality of sensitive areas which respond to the impingement of the laser beam by generating an electrical output voltage. This voltage is then used to control the various hydraulic cylinders which effect positional changes in the blade 11.
- directional changes in the vehicle itself are accomplished by means of a control circuit which effects steering changes in the vehicle through a steering hydraulic control cylinder 32 which is operatively connected to the front wheels 16 of the grader.
- the sensing unit 31 is provided with photovoltaic surface areas, each of which is responsive to a particular direction of deviation of the blade 11 from the desired path of travel as determined by a shift in the impingement of the laser beam. Deviation in a vertical direction is indicated by an upper sensing surface 35 and a lower sensing surface 36. Lateral deviation is detected by a left sensing surface 37 and a right sensing surface 38. while the correct path of travel is indicated by the impingement of the laser beam on a central or null surface 40.
- the cross-sectional area of the laser beam is relatively small as compared with the surface area of the various sensitive photovoltaic elements 35, 36, 37, 38.
- the error signal generated by the sensing unit 31 is translated into movement of the blade 11 by a system of electrically actuated control valves which govern the movement of the various hydraulic cylinders.
- the control cylinders 17, 18 may be controlled simultaneously in order to effect an overall raising or lowering of the blade 11, but in the illustrated embodiment an additional feature is included by which the cross slope of the blade is kept constant relative to the true vertical. More specifically, in one fonn of the present invention the position of the blade 11 relative to true horizontal transversely of the machine is detected by a pendulum sensor 41 which in the illustrative embodiment is mounted on the yoke 22. This sensor 41, illustrated schematically in FIG.
- the error resulting from shifting the position of the blade 11 with respect to the chassis 10 is compensated by the provision of a blade circle potentiometer 43 and a yoke position potentiometer 45. As shown in FIG. 4, these two potentiometers are connected inseries with the output of the pendulum potentiometer 42 so that the net output of the three potentiometers 42, 43, 45 is used for positional information of the blade 11 rather than the output of the pendulum sensor potentiometer 42 alone.
- the potentiometer 45 In the case of the yoke position potentiometer 45,.thisinstrument is arranged with a suitable actuating means to indicate vertical angularity change 'of the yoke 22 and its attached blade mounting ring 21 with respect to the chassis 10.
- the potentiometer 45 supplies a signal that is representative of the position of the blade 11 relative to true horizontal longitudinally of the machine. This signal is simply added to or reduced from the output of the pendulum sensor potentiometer 42 in order to generate a corrective signal corresponding to the angular position of the blade 11 with respect to the true horizontal transversely of the machine.
- the blade circle potentiometer 43 is used to generate a further'correction signal which is depen-- dent on the rotation position of the blade 11 and mounting ring 21 in respect to the yoke 22. This is done because rotation of the blade 11 will effect a change-in the true cross slope cut by the grader, making compensation necessary in the control system. I 1 1
- the specific mechanical mounting (not shown) of the potentiometers 43 and 45 may beaffected in a variety of ways.
- the potentiometer 43 is to provide a signal representative of the rotational position of the blade 11 and mounting ring 21 with respect to the yoke 22, it-may suitably be driven by the rotational motion relative to the yoke 22 of the mounting ring 21.
- the potentiometer 45 is to provide a signal representative of the vertical angularity of the blade 11, it may suitably be driven by the vertical movementof the neck of the ball joint 23 as indicated in FIG. 2.
- the blade position compensation system has been described as comprising a pairof additional potentiometers 43, 45 connected in'series with the pendulum potentiometer 42. It will be appreciated that the pendulum sensor 41 could be mounted on either the blade mounting ring 21 or the yoke 22 without departing from the invention.
- the electrical output from the cross slope sensing system is directed to an electrically actuatedblade slope hydraulic control valve 46.
- the valve 46 has an electric actuator which is responsive to the output of the slope position sensor potentiometers, and also to the output of a slope selector potentiometer 47.
- the slope selector potentiometer 47 would be located in the cab of the grader so thatthe operator could simply dialin the desired cross slope to be graded. This would cause a signal to actuate the blade slope control valve 46.
- the unbalance will cause actuation of the control valve 46 and admit pressure fluid to one of the blade control hydraulic cylinders l7, 18.
- One end or the other of the blade 11 is thereby moved to a new position in which the cross slope actually cut by the grader (as indicated through the corrected output signal of the pendulum sensor potentiometer 42) is corrected, whereupon the signals fed to the electrically actuated blade slope control valve 46 are equalized and the system is brought back to neutral.
- the balance, of the blade slope hydraulic control valve 46 is shifted and the other blade cylinder 17 is operated until the balance is again restored and the blade 11 is returned to the proper cross slope.
- the cylinder 18 moves one end of the blade to the proper vertical position, and the cylinder 17 then follows automatically to maintain the proper cross slope.
- the operation of the blade height control system is governed by another electrically actuated control valve 48 which supplies pressure fluid to the blade control cylinder 18 as previously described.
- the blade height control valve 48 operates in a manner similar to that of the slope control valve 46, except that the electric actuators are connected to the electrical output of a corresponding portion of the sensing unit 31.
- the upper sensing surface 35 of the sensing unit 31 would be energized by the laser beam when the blade 11 is too low, and therefore this surface is connected through an amplifier 50 to that portion of the blade height control valve 48 which will admit fluid into the cylinder 18 which will raise the blade 11.
- the lower surface 36 is connected through an amplifier 51 to the opposite side of the blade height control vvalve 48 to effect a lowering of the blade 11 when the laser beam falls too low on the sensing unit 31.
- the correction of the blade height and cross slope is accomplished prior to any steering correction, whereby the more important blade positioning function is always carried out prior to the steering correction.
- This result is achieved by positioning the steering correction control surfaces 37,. 38 in the relatively narrow horizontal band containing the riull surface 40;.
- the horizontal band including the steering correction surfaces 37, 38 and null surface 40 functions as a null band forvertical corrections of the blade 11, and steering corrections are not initiated until the laser beam is in this region.
- the steering control sections 37, 38 of the sensing unit 31 act through their associated amplifiers 52, 53 which in turn supply actuating signals to an electrically ac. tuated steering control valve 44 similar to the control valves 46, 48 previously described.
- an electrical signal is supplied through the amplifier 52 to that portion of the steering control valve 44 which turns the wheel 16 of the vehicle to the left, thereby bringing the path of travel back to the desired line.
- the blade positioning means of the present invention need not be restricted to the embodiment disclosed, but may be used in other ways.
- an additional laser unit 60 can be used to project a beam generally parallel to the beam of the first laser unit 30.
- the blade 11 is then equipped with an additional sensing unit 61 to correctively control the cylinder 18 in a manner similar to the previously described manner in which the sensing unit 31 is used in conjunction with the first laser beam to correctively control the cylinder 17. In this manner both ends of the blade 11 are independently controlled to achieve the desired blade position along the entire path of vehicle travel. Only one laser sensing unit 31 is used to control steering when the second beam is used.
- a varying cross slope may be achieved with this apparatus by shifting one or the other of the laser beams so that they no longer lie in the same plane, but are still substantially equally spaced from each other at all points along their effective range. This distance will be dictated by the distance between the respective null points 40 of the two sensing units 31, 61.
- An important advantage of the laser beam in the present invention is the fact that its impingement on the sensing unit 31 is visible to the machine operator. In this way he can maintain a constant check on the operation of his machine, and can even find" the beam again in the event that the sensing unit 31 should shift out of the beam entirely. If desired, the operator can even use the beam as a visual guide for manual control of the machine.
- a self-propelled surfacing machine having a chassis, ground engaging support means for said chassis, steering means for said support means, a ground engaging leveling element carried by said chassis, and power means connected between said chassis and said leveling element for adjusting the vertical position of said leveling element relative to said chassis; an automatic control system for steering said machine along a predetermined path while maintaining said leveling element along a predetermined grade by following a collimated electromagnetic beam projected along said path and parallel to said grade by a remotely stationed transmitter; said control system comprising the combination of:
- a beam target mounted on said leveling element and having a target area that is large relative to the cross-sectional area of said beam, said target area including a central null region positioned to intercept said beam under nominal operating conditions, vertically spaced sensing regions responsive to impingement of said beam thereon for supplying a first control signal, and horizontally spaced sensing regions responsive to impingement of said beam thereon for generating a second control signal; said vertically and horizontally spaced sensing regions having sensitivities which vary outwardly from said central null region so that said first and second control signals have magnitudes that are respectively proportional to the vertical and horizontal deviation of said beam from said central null region;
- first control means coupled between said target and said power means and proportionally responsive to the magnitude of said first control signal for correctively actuating said power means to maintain said leveling element along said grade;
- second control means coupled between said target and said steering means and proportionally responsive to the magnitude of said second control signal for correctively actuating said steering means to steer said machine along said path.
- a self-propelled surfacing machine having a chassis, ground engaging support means for said chassis, steering means for said support means, a support structure pivotably mounted on said chassis for rotational movement about its own longitudinal axis and vertical movement relative to said chassis, a ground engaging leveling element pivotably mounted on said support structure for rotation about an axis perpendicular to the longitudinal axis of said support structure, first power means connected between said chassis and said leveling element for varying the vertical position of said leveling element relative to said chassis, and second power means connected between said chassis and said leveling element for varying the angle of said leveling element transversely of said chassis; an automatic control system for maintaining said leveling element along a predetermined grade with a predetermined slope by following a collimated electromagnetic beam projected along a predetermined path of travel for said machine and parallel to said grade by a remotely stationed transmitter; said control system comprising the combination of:
- a beam target mounted on said leveling element and having a target area which is large relative to the cross-sectional area of said beam, said target area including a null region positioned to intercept said beam under nominal operating conditions and vertically spaced sensing regions which are responsive to impingement of said beam thereon for supplying a first control signal;
- first control means coupled between said target and said first power means for correctively actuating said first power means in response to said first control signal to thereby return said leveling element to said grade;
- reference means mounted on said machine for providing a reference signal indicative of the predetermined slope for said leveling element
- detector means for supplying a second control signal indicative of the actual slope of said leveling element, said detector means including the series connected combination of a first gravity-operated potentiometer mounted on said support structure for providing a signal representative of the angle between said grade and true horizontal transversely of the machine, a second potentiometer coupled between said support structure and said chassis for operation in response to vertical movement of said support structure relative to said chassis for providing a signal representative of the angle between said leveling element and true horizontal longitudinally of said machine, and a third potentiometer coupled between said leveling element and said support structure for operation in response to rotation of said leveling element about said perpendicular axis for providing a signal representative of the rotational position of said leveling element; and
- second control means coupled to said reference means, said detector means and said second power means for correctively actuating said second power means in response to an imbalance between said reference signal and said second control signal to thereby return said leveling element to said predetermined slope.
- a self-propelled surfacing machine having a chassis, ground engaging support means for said chassis, steering means for said support means, a ground engaging leveling element pivotably mounted on said chassis, first power means connected between said chassis and said leveling element for varying the vertical position of said leveling element relative to said chassis, and second power means connected between said chassis and said leveling element for varying the angle of said leveling element transversely of said chassis; an automatic control system for maintaining said leveling element along a predetermined grade with a predetermined slope by following a collimated electromagnetic beam projected along a predetermined path of travel for said machine and parallel to said grade by a remotely stationed transmitter; said control system comprising the combination of:
- beam target mounted on said leveling element and having a target area which is large relative to the cross-sectional area of said beam, said target area including a null region positioned to intercept said beam under nominal operating conditions, vertically spaced sensing regions which are responsive to impingement of said beam thereon for supplying a first control signal and a pair of horizontally spaced sensing regions one on either side of said null region for supplying a second control signal in response to the impingement of said beam on either-of them;
- first control means coupled between said target and said first power means for correctively actuating said first power means in response to said first control signal to thereby return said leveling element to said grade;
- a second control means coupled between said target means and said steering means for correctively actuating said steering means in response-to said second control signal to maintain said machine along said predetermined path of travel;
- reference means mounted on said machine for providing a reference signal indicative of the predetermined slope for said leveling element
- detector means coupled to said leveling element for supplying a third control signal indicativeof the actual slope of said leveling element
- third control means coupled to said reference means, saiddetector means and said second power means for correctively actuating said second power means in response to an imbalance between said reference signal and said third control signal to thereby return said leveling element to said predetermined slope.
- said leveling element is mounted on a support structure for rotation about an axis perpendicular to the longitudinal axis of said support structure, said support structure is pivotably mounted on said chassis for vertical movement relative to said chassis and for rota tional movement about the longitudinal axis of said support structure; and said detector means includes the series-connected combination of a first gravity-operated potentiometer mounted on said support structure for providing a signal representative of the angle between said leveling element and true horizontal transversely of the machine, a second potentiometer coupled between said support structure and said chassis for operation in response to vertical movement of said support structure relative to said chassis for providing a signal representative of the angle between said.
- a third potentiometer coupled between said leveling element and said support structure for operation in response to rotation of said leveling element about said perpendicular axis for providing a signal representative of the rotational position of said leveling element.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Soil Working Implements (AREA)
- Operation Control Of Excavators (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68152267A | 1967-11-08 | 1967-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3554291A true US3554291A (en) | 1971-01-12 |
Family
ID=24735624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US681522A Expired - Lifetime US3554291A (en) | 1967-11-08 | 1967-11-08 | Level and slope control for surfacing machines |
Country Status (6)
Country | Link |
---|---|
US (1) | US3554291A (xx) |
BE (1) | BE723359A (xx) |
DE (2) | DE6805888U (xx) |
FR (1) | FR1591333A (xx) |
GB (1) | GB1205109A (xx) |
NL (1) | NL6815775A (xx) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3659949A (en) * | 1970-04-20 | 1972-05-02 | Technidyne Inc | Laser beam systems and apparatus for detecting and measuring parametric deviations between surfaces and the like |
US3708232A (en) * | 1970-09-16 | 1973-01-02 | R Walsh | Read-out means for locating and positioning objects with respect to a laser beam reference |
US3727332A (en) * | 1971-11-22 | 1973-04-17 | W Zimmer | Laser guidance system for grade control |
JPS4870303A (xx) * | 1971-12-27 | 1973-09-22 | ||
US3786871A (en) * | 1971-07-26 | 1974-01-22 | Grad Line | Grader control |
US3791452A (en) * | 1971-03-17 | 1974-02-12 | Grad Line | Control system for road grader |
JPS4932404A (xx) * | 1972-07-24 | 1974-03-25 | ||
US3873226A (en) * | 1973-07-11 | 1975-03-25 | Laserplane Corp | Laser beam control system for road paving machines |
US3887012A (en) * | 1973-12-03 | 1975-06-03 | Caterpillar Tractor Co | Automatic levelling system for earth working blades and the like |
US3914064A (en) * | 1971-03-01 | 1975-10-21 | Raymond A Gurries | Mounting arrangement for sidewalk building equipment or the like |
USRE28979E (en) * | 1971-03-17 | 1976-09-28 | Grad-Line, Inc. | Control system for road grader |
US4041623A (en) * | 1975-09-22 | 1977-08-16 | Miller Formless Co., Inc. | Grade cutting machine |
US4260281A (en) * | 1976-11-08 | 1981-04-07 | Michael P. Breston | Method and apparatus for stabilizing a fill slope |
JPS5712808B1 (xx) * | 1971-03-17 | 1982-03-12 | ||
JPS5869939A (ja) * | 1981-10-22 | 1983-04-26 | Komatsu Ltd | 建設機械におけるブレ−ドの制御装置 |
US4808026A (en) * | 1987-11-27 | 1989-02-28 | Power Curbers, Inc. | Construction apparatus with earth trimmer |
US4820041A (en) * | 1986-11-12 | 1989-04-11 | Agtek Development Co., Inc. | Position sensing system for surveying and grading |
US4823366A (en) * | 1987-02-17 | 1989-04-18 | White Consolidated Industries, Inc. | Material conveying equipment with control for paving materials using ultrasonic waves |
US4924374A (en) * | 1988-06-09 | 1990-05-08 | Spectra Physics | Method for automatic position control of a tool |
US5044820A (en) * | 1989-03-23 | 1991-09-03 | Abg-Werke Gmbh | Road-finishing apparatus with improved control over laying beam |
US5108220A (en) * | 1990-07-13 | 1992-04-28 | Allen Engineering Corporation | Light weight, fast steering riding trowel |
US5184293A (en) * | 1988-06-09 | 1993-02-02 | Spectra Physics | Apparatus for automatic depth control for earth moving and grading |
US5235511A (en) * | 1988-06-09 | 1993-08-10 | Spectra-Physics, Inc. | Method for automatic depth control for earth moving and grading |
US5327345A (en) * | 1991-02-15 | 1994-07-05 | Laser Alignment, Inc. | Position control system for a construction implement such as a road grader |
US6168348B1 (en) | 1998-01-16 | 2001-01-02 | Southern Laser, Inc. | Bi-directional surface leveling system |
US6227761B1 (en) * | 1998-10-27 | 2001-05-08 | Delaware Capital Formation, Inc. | Apparatus and method for three-dimensional contouring |
US6508606B1 (en) * | 2000-09-15 | 2003-01-21 | Miller Spreader Company | Curb forming apparatus |
US6612774B1 (en) * | 1999-05-11 | 2003-09-02 | Rick Dulin | Method and apparatus for compacting road shoulders |
US20050265785A1 (en) * | 1998-10-27 | 2005-12-01 | Delaware Capital Formation, Inc. | Apparatus and method for three-dimensional contouring |
US20070235201A1 (en) * | 2006-03-31 | 2007-10-11 | Imed Gharsalli | Machine with automated linkage positioning system |
US20070284121A1 (en) * | 2006-03-10 | 2007-12-13 | Deere & Company, A Delaware Corporation | Method and apparatus for retrofitting work vehicle with blade position sensing and control system |
US20090169300A1 (en) * | 2007-12-27 | 2009-07-02 | Allen J Dewayne | Hydraulic riding trowel with automatic load sensing system |
US20110222966A1 (en) * | 2010-03-09 | 2011-09-15 | Allen Engineering Corporation | Hydraulic riding trowels with automatic load sensing |
US20140248109A1 (en) * | 2013-03-01 | 2014-09-04 | Lift-U, Division Of Hogan Mfg., Inc. | Ramp assembly with tilt sensor |
US9290891B1 (en) * | 2013-11-20 | 2016-03-22 | Buck Wayne Caswell | Laser guide apparatus, system and method for asphalt paving equipment |
US10100537B1 (en) | 2017-06-20 | 2018-10-16 | Allen Engineering Corporation | Ventilated high capacity hydraulic riding trowel |
US10287745B1 (en) | 2016-04-13 | 2019-05-14 | Abi Attachments, Inc. | Work machines including automatic grading features and functions |
US10287744B1 (en) | 2016-04-13 | 2019-05-14 | Abi Attachments, Inc. | Work machines including automatic grading features and functions |
US20210301478A1 (en) * | 2020-03-27 | 2021-09-30 | Caterpillar Paving Products Inc. | Methods and systems for determining an angle of attack and a cross slope of a paving machine |
US12024852B2 (en) | 2016-04-13 | 2024-07-02 | Abi Attachments, Inc. | Work machines including automatic grading features and functions |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3645039C2 (de) * | 1986-03-19 | 1993-12-16 | Heinz Langhorst | Vorrichtung zur Lageregelung einer an einem Fahrzeug zu befestigenden Planierschaufel |
GB8904211D0 (en) * | 1989-02-24 | 1989-04-12 | Johnson David M | Curve computer |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2864452A (en) * | 1956-11-05 | 1958-12-16 | Guntert & Zimmerman Const Div | Supporting and level control mechanism for concrete slab laying machines |
US2916836A (en) * | 1955-06-24 | 1959-12-15 | Karl J Stewart | Photoelectric automatic blade level control |
US3026638A (en) * | 1960-01-28 | 1962-03-27 | Sanders Associates Inc | Automatic blade slope control system |
US3046681A (en) * | 1960-05-23 | 1962-07-31 | Honeywell Regulator Co | Control apparatus |
US3156989A (en) * | 1960-11-30 | 1964-11-17 | Duane E Atkinson | Blade control system with reactive pickup |
US3221425A (en) * | 1962-07-31 | 1965-12-07 | Thomas Tom | Valve control |
US3229391A (en) * | 1964-03-11 | 1966-01-18 | Caterpillar Tractor Co | Automatic blade control for a road grader with a blade simulator mounted in a ball and socket connection |
US3285148A (en) * | 1963-03-01 | 1966-11-15 | Barber Greene Co | Grade control system on bituminous pavers |
US3296722A (en) * | 1965-03-29 | 1967-01-10 | Gurries Mfg Co | Automatic control system for construction vehicles |
US3321248A (en) * | 1965-03-09 | 1967-05-23 | Hughes Tool Co | Tunneling machine guidance by impingement of laser beam on pair of machine carried targets |
US3346976A (en) * | 1964-09-16 | 1967-10-17 | Gurries Mfg Co | Level control mechanism for road building machines |
US3364356A (en) * | 1964-05-01 | 1968-01-16 | R B Pullin & Company Ltd | Optical guidance apparatus for guiding a movable object along a straight path |
-
1967
- 1967-11-08 US US681522A patent/US3554291A/en not_active Expired - Lifetime
-
1968
- 1968-11-05 BE BE723359D patent/BE723359A/xx unknown
- 1968-11-06 GB GB52515/68A patent/GB1205109A/en not_active Expired
- 1968-11-06 NL NL6815775A patent/NL6815775A/xx unknown
- 1968-11-07 DE DE6805888U patent/DE6805888U/de not_active Expired
- 1968-11-07 DE DE19681807653 patent/DE1807653A1/de active Pending
- 1968-11-07 FR FR1591333D patent/FR1591333A/fr not_active Expired
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2916836A (en) * | 1955-06-24 | 1959-12-15 | Karl J Stewart | Photoelectric automatic blade level control |
US2864452A (en) * | 1956-11-05 | 1958-12-16 | Guntert & Zimmerman Const Div | Supporting and level control mechanism for concrete slab laying machines |
US3026638A (en) * | 1960-01-28 | 1962-03-27 | Sanders Associates Inc | Automatic blade slope control system |
US3046681A (en) * | 1960-05-23 | 1962-07-31 | Honeywell Regulator Co | Control apparatus |
US3156989A (en) * | 1960-11-30 | 1964-11-17 | Duane E Atkinson | Blade control system with reactive pickup |
US3221425A (en) * | 1962-07-31 | 1965-12-07 | Thomas Tom | Valve control |
US3285148A (en) * | 1963-03-01 | 1966-11-15 | Barber Greene Co | Grade control system on bituminous pavers |
US3229391A (en) * | 1964-03-11 | 1966-01-18 | Caterpillar Tractor Co | Automatic blade control for a road grader with a blade simulator mounted in a ball and socket connection |
US3364356A (en) * | 1964-05-01 | 1968-01-16 | R B Pullin & Company Ltd | Optical guidance apparatus for guiding a movable object along a straight path |
US3346976A (en) * | 1964-09-16 | 1967-10-17 | Gurries Mfg Co | Level control mechanism for road building machines |
US3321248A (en) * | 1965-03-09 | 1967-05-23 | Hughes Tool Co | Tunneling machine guidance by impingement of laser beam on pair of machine carried targets |
US3296722A (en) * | 1965-03-29 | 1967-01-10 | Gurries Mfg Co | Automatic control system for construction vehicles |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3659949A (en) * | 1970-04-20 | 1972-05-02 | Technidyne Inc | Laser beam systems and apparatus for detecting and measuring parametric deviations between surfaces and the like |
US3708232A (en) * | 1970-09-16 | 1973-01-02 | R Walsh | Read-out means for locating and positioning objects with respect to a laser beam reference |
US3914064A (en) * | 1971-03-01 | 1975-10-21 | Raymond A Gurries | Mounting arrangement for sidewalk building equipment or the like |
JPS5712808B1 (xx) * | 1971-03-17 | 1982-03-12 | ||
US3791452A (en) * | 1971-03-17 | 1974-02-12 | Grad Line | Control system for road grader |
USRE28979E (en) * | 1971-03-17 | 1976-09-28 | Grad-Line, Inc. | Control system for road grader |
US3786871A (en) * | 1971-07-26 | 1974-01-22 | Grad Line | Grader control |
US3727332A (en) * | 1971-11-22 | 1973-04-17 | W Zimmer | Laser guidance system for grade control |
JPS4870303A (xx) * | 1971-12-27 | 1973-09-22 | ||
JPS5519333B2 (xx) * | 1971-12-27 | 1980-05-26 | ||
JPS561413B2 (xx) * | 1972-07-24 | 1981-01-13 | ||
JPS4932404A (xx) * | 1972-07-24 | 1974-03-25 | ||
US3873226A (en) * | 1973-07-11 | 1975-03-25 | Laserplane Corp | Laser beam control system for road paving machines |
US3887012A (en) * | 1973-12-03 | 1975-06-03 | Caterpillar Tractor Co | Automatic levelling system for earth working blades and the like |
US4041623A (en) * | 1975-09-22 | 1977-08-16 | Miller Formless Co., Inc. | Grade cutting machine |
US4260281A (en) * | 1976-11-08 | 1981-04-07 | Michael P. Breston | Method and apparatus for stabilizing a fill slope |
JPS5869939A (ja) * | 1981-10-22 | 1983-04-26 | Komatsu Ltd | 建設機械におけるブレ−ドの制御装置 |
JPH0260813B2 (xx) * | 1981-10-22 | 1990-12-18 | Komatsu Mfg Co Ltd | |
US4820041A (en) * | 1986-11-12 | 1989-04-11 | Agtek Development Co., Inc. | Position sensing system for surveying and grading |
US4823366A (en) * | 1987-02-17 | 1989-04-18 | White Consolidated Industries, Inc. | Material conveying equipment with control for paving materials using ultrasonic waves |
US4808026A (en) * | 1987-11-27 | 1989-02-28 | Power Curbers, Inc. | Construction apparatus with earth trimmer |
US4924374A (en) * | 1988-06-09 | 1990-05-08 | Spectra Physics | Method for automatic position control of a tool |
US5184293A (en) * | 1988-06-09 | 1993-02-02 | Spectra Physics | Apparatus for automatic depth control for earth moving and grading |
US5235511A (en) * | 1988-06-09 | 1993-08-10 | Spectra-Physics, Inc. | Method for automatic depth control for earth moving and grading |
US5044820A (en) * | 1989-03-23 | 1991-09-03 | Abg-Werke Gmbh | Road-finishing apparatus with improved control over laying beam |
US5108220A (en) * | 1990-07-13 | 1992-04-28 | Allen Engineering Corporation | Light weight, fast steering riding trowel |
US5327345A (en) * | 1991-02-15 | 1994-07-05 | Laser Alignment, Inc. | Position control system for a construction implement such as a road grader |
US5430651A (en) * | 1991-02-15 | 1995-07-04 | Laser Alignment, Inc. | Position control system for a construction implement such as a road grader |
US6168348B1 (en) | 1998-01-16 | 2001-01-02 | Southern Laser, Inc. | Bi-directional surface leveling system |
USRE39834E1 (en) | 1998-10-27 | 2007-09-11 | Michigan Technological University | Apparatus and method for three-dimensional contouring |
US20050147467A1 (en) * | 1998-10-27 | 2005-07-07 | Delaware Capital Formation, Inc., a corporation of the State of Delaware | Apparatus and method for three-dimensional contouring |
US20050265785A1 (en) * | 1998-10-27 | 2005-12-01 | Delaware Capital Formation, Inc. | Apparatus and method for three-dimensional contouring |
US7144191B2 (en) | 1998-10-27 | 2006-12-05 | Somero Enterprises, Inc. | Apparatus and method for three-dimensional contouring |
US6227761B1 (en) * | 1998-10-27 | 2001-05-08 | Delaware Capital Formation, Inc. | Apparatus and method for three-dimensional contouring |
US7399139B2 (en) | 1998-10-27 | 2008-07-15 | Somero Enterprises, Inc. | Apparatus and method for three-dimensional contouring |
US6612774B1 (en) * | 1999-05-11 | 2003-09-02 | Rick Dulin | Method and apparatus for compacting road shoulders |
US6508606B1 (en) * | 2000-09-15 | 2003-01-21 | Miller Spreader Company | Curb forming apparatus |
US20070284121A1 (en) * | 2006-03-10 | 2007-12-13 | Deere & Company, A Delaware Corporation | Method and apparatus for retrofitting work vehicle with blade position sensing and control system |
US8596373B2 (en) * | 2006-03-10 | 2013-12-03 | Deere & Company | Method and apparatus for retrofitting work vehicle with blade position sensing and control system |
US20070235201A1 (en) * | 2006-03-31 | 2007-10-11 | Imed Gharsalli | Machine with automated linkage positioning system |
US7647983B2 (en) * | 2006-03-31 | 2010-01-19 | Caterpillar Inc. | Machine with automated linkage positioning system |
US7690864B2 (en) | 2007-12-27 | 2010-04-06 | Allen Engineering Corporation | Hydraulic riding trowel with automatic load sensing system |
US20090169300A1 (en) * | 2007-12-27 | 2009-07-02 | Allen J Dewayne | Hydraulic riding trowel with automatic load sensing system |
US8360680B2 (en) | 2010-03-09 | 2013-01-29 | Allen Engineering Corporation | Hydraulic riding trowels with automatic load sensing |
US20110222966A1 (en) * | 2010-03-09 | 2011-09-15 | Allen Engineering Corporation | Hydraulic riding trowels with automatic load sensing |
US20140248109A1 (en) * | 2013-03-01 | 2014-09-04 | Lift-U, Division Of Hogan Mfg., Inc. | Ramp assembly with tilt sensor |
US9271883B2 (en) * | 2013-03-01 | 2016-03-01 | Lift-U, Division Of Hogan Mfg., Inc. | Ramp assembly with tilt sensor |
US9290891B1 (en) * | 2013-11-20 | 2016-03-22 | Buck Wayne Caswell | Laser guide apparatus, system and method for asphalt paving equipment |
US9447551B1 (en) | 2013-11-20 | 2016-09-20 | Buck Wayne Caswell | Laser guide apparatus, system and method for asphalt paving equipment |
US10287745B1 (en) | 2016-04-13 | 2019-05-14 | Abi Attachments, Inc. | Work machines including automatic grading features and functions |
US10287744B1 (en) | 2016-04-13 | 2019-05-14 | Abi Attachments, Inc. | Work machines including automatic grading features and functions |
US10487475B1 (en) | 2016-04-13 | 2019-11-26 | Absolute Innovations, Inc. | Work machines including automatic grading features and functions |
US10914051B2 (en) | 2016-04-13 | 2021-02-09 | Abi Attachments, Inc. | Work machines including automatic grading features and functions |
US12024852B2 (en) | 2016-04-13 | 2024-07-02 | Abi Attachments, Inc. | Work machines including automatic grading features and functions |
US10100537B1 (en) | 2017-06-20 | 2018-10-16 | Allen Engineering Corporation | Ventilated high capacity hydraulic riding trowel |
US20210301478A1 (en) * | 2020-03-27 | 2021-09-30 | Caterpillar Paving Products Inc. | Methods and systems for determining an angle of attack and a cross slope of a paving machine |
US11306447B2 (en) * | 2020-03-27 | 2022-04-19 | Caterpillar Paving Products Inc. | Methods and systems for determining an angle of attack and a cross slope of a paving machine |
Also Published As
Publication number | Publication date |
---|---|
DE1807653A1 (de) | 1969-06-19 |
DE6805888U (de) | 1973-02-15 |
FR1591333A (xx) | 1970-04-27 |
NL6815775A (xx) | 1969-05-12 |
GB1205109A (en) | 1970-09-16 |
BE723359A (xx) | 1969-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3554291A (en) | Level and slope control for surfacing machines | |
US8091256B2 (en) | Loader elevation control system | |
US4231700A (en) | Method and apparatus for laser beam control of backhoe digging depth | |
US3727332A (en) | Laser guidance system for grade control | |
US9624643B2 (en) | Blade tilt system and method for a work vehicle | |
CA1091456A (en) | Guidance device for drain tile laying machine | |
US7881845B2 (en) | Loader and loader control system | |
US4393606A (en) | Excavator with laser position indicator | |
US7293376B2 (en) | Grading control system | |
US3604512A (en) | Electrooptical control system for vehicles | |
US3606827A (en) | Concrete curb laying machine | |
US20190226176A1 (en) | Grading control system using machine linkages | |
CA3064719C (en) | Blade control below design | |
BR102016013614B1 (pt) | Motoniveladora de envolver solo | |
US10995472B2 (en) | Grading mode integration | |
US3791452A (en) | Control system for road grader | |
US20130087351A1 (en) | Dual Cylinders For Effecting Tilt And Pitch Functions Of A Dozer Blade | |
US3608643A (en) | Grading machines | |
US3490539A (en) | Surface preparation and grading machine including box planer assembly and grade/slope control mechanism therefor | |
US6672401B1 (en) | Towable box grader with electronically controlled continuously variable multi-axis blade system | |
US3346976A (en) | Level control mechanism for road building machines | |
US4028822A (en) | Manually operable depth control for trenchers | |
US3856089A (en) | Drawbar support for leveling circle frame on road graders | |
USRE28979E (en) | Control system for road grader | |
US3324583A (en) | Articulated grader |