US3494087A - Framing of joists in buildings - Google Patents
Framing of joists in buildings Download PDFInfo
- Publication number
- US3494087A US3494087A US608910A US3494087DA US3494087A US 3494087 A US3494087 A US 3494087A US 608910 A US608910 A US 608910A US 3494087D A US3494087D A US 3494087DA US 3494087 A US3494087 A US 3494087A
- Authority
- US
- United States
- Prior art keywords
- intermediate layer
- joists
- framing
- load
- floor construction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/18—Separately-laid insulating layers; Other additional insulating measures; Floating floors
- E04F15/20—Separately-laid insulating layers; Other additional insulating measures; Floating floors for sound insulation
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/04—Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/18—Separately-laid insulating layers; Other additional insulating measures; Floating floors
Definitions
- the present invention has reference to an improved framing of joists having and intermediate layer of a soft material specially shaped for giving a good sound insulation and having a low weight, while providing a two-stage shock-absorbing or compressibility factor under predetermined loads wherein the intermediate layer is of a construction and form whereby the initial compression of said layer is greater for given smaller loads applied thereto than the subsequent or second stage compression for given greater loads applied thereto.
- Framings of joists for house building purposes may in the same way as walls be shaped either as a single or double construction.
- a weight of the same of at least 350-400 kg./m. if the requirements of a noise insulation should be fulfilled in Sweden.
- the weight of the framing of joists can be reduced in different degrees according to the type of construction.
- the layer situated between the upper construction portion, i.e. the floor proper, and the lower portion which often comprises a supporting portion is then of great importance.
- the purpose aimed at from the point of view of noise insulation is in this case that the intermediate layer should be as soft as possible.
- the intermediate layer may in the practice be formed so soft that only the requirements on sound insulation will influence the dimensioning.
- the layer often comprises only an air layer.
- the intermediate layer must be apt to absorb vertical stresses entered into the framing of the joists without causing the floor covering, e.g. a linoleum floorcloth, to burst or be damaged in any other way when these forces must be taken into consideration when dimensioning the softness of the intermediate layer.
- the present invention has reference to a framing of joists which is composed of a supporting lower portion and an overlaying fioor construction comprising e.g. a thin concrete slab and an intermediate layer of an elastic material.
- the main feature of the invention is to be seen therein that the resilient device between the floor construction and the lower portion is shaped in such a way that the downward deflection or compressibility-as seen from the original positionfor a certain charge or load increase will be considerably greater for small loads on the floor construction than for high ones.
- the springing or resistance between the floor construction and the lower portion will be so soft that the noise insulation requirements can be fulfilled in spite of a very low weight of the framing of joists. At small loads, say 50 kg./rn.
- the springing can be made many times greater than at loads above this value.
- the springing may be eg about 1 millimeter but for a further load of 50 kg./m. only 0.1 millimeter.
- FIG. 1 is a side elevation of a joint between two concrete cassettes in a framing of joists provided with a device according to the invention
- FIG. 2 shows on an enlarged scale on the one hand a side elevation and on the other hand a vertical section through one of the cassettes
- FIG. 3 shows a similar section but when the floor construction is exposed to load
- FIG. 4 shows a section similar to the one in FIG. 2 but according to another embodiment of the invention
- FIG. 5 is a plan view of one corner of the resilient intermediate layer shown in FIG. 2,
- FIG. 6 is a similar view of an intermediate layer but according to another embodiment
- FIG. 7 shows on an enlarged scale a vertical section through one side of the framing of joists with a resilient intermediate layer according to a further embodiment
- FIG. 8 shows on an enlarged scale a vertical section through the upper left hand corner of the embodiment shown in FIG. 2.
- the framing of joists shown in the drawings is shown to comprise a number of elements 1, 2 arranged close to each other and being carried at their ends by a cross beam, a wall or a similar supporting element 3.
- a tightening or tieing means comprising an elastic material, e.g. synthetic resin, in the shape of a hose 5 which from one end has been filled with a curing mass 6, e.g. concrete or synthetic resin.
- Each element 1, 2 comprises a bowl-shaped concrete cassette 7, a thin layer 9 011 its upper smoothed border 8 of any soft, resilient material such as cork, foamed plastics, rubber or the like and a thin concrete slab 10 covering the cassette or any other suitable floor construction.
- the slab 10 is self-supporting between the four side walls 11 of the cassette and rests on the resilient intermediate layer "9.
- the intermediate layer 9 is provided with a ridge or bulge 12 extending in the longitudinal direction.
- the width b (FIG. 8) and the height h of this ridge 12 is chosen in such a way that the desired softness is obtained for a certain load, e.g. 50 kg./m.
- a certain load e.g. 50 kg./m.
- the height of the ridge 12 is chosen small, about 1 millimeter. The value is chosen such that detrimental remaining deformations cannot occur in the intermediate layer.
- the slab 1 0' is on its under side provided with a bulge 13 situated close to the outer border and extending along said border.
- the dimensions of this bulge are chosen in such a way that at the predetermined low load, e.g. about 50 kg./m. the bulge 13 will be pushed practically completely down into the elastic intermediate layer 9 and at an increasing load the slab 10" will rest in flat shape against the whole upper side of the intermediate layer.
- bulge 12 An analogous result can be obtained if instead the lower side of the intermediate layer 9 is provided with said bulge 12.
- One or several bulges may be provided and these bulges can be formed by providing notches in the upper or/and lower surfaces of the layer. At a certain low load the slab rests against only the upwardly extending bulges against the upper border of the cassettes 7 and resiliency will then be very soft, At a greater load the bulges are pressed into the intermediate layer and the slab will then rest against the whole width of the intermediate layer or this layer with the whole of its width against the upper border of the cassettes.
- the embodiment shown in FIG. 6 is provided with bulges comprising abutment 14 of a low height, e.g. l millimeter.
- the transverse dimensions of the abutments 14 and their mutual distance are chosen in such a way that the abutments at the low load in question will be pressed practically completely into the intermediate layer 9 and at an exceeding of this load the slab 10 will rest on the whole of the upper side of the intermediate layer.
- the intermediate layer 9 comprises a strip of cork or cardboard and there is on one or both sides of this strip attached a layer of grains of sand with a size of the grains of about 1 millimeter in diameter.
- the sand grains may with advantage be attached to the intermediate layer 9 by means of a bituminous binding agent.
- the distance between the grains is chosen in the same way as described in the aforegoing in connection with the abutments 14 on the intermediate layer 9 according to FIG. 6.
- FIG. 1 there is shown on the concrete slab 10 of the elements 1 and Z a linoleum floorcloth 16. Due to the rather low springing down at high loadsthere is as a rule a question of a resiliency in downwards direction of about 1 millimeter-there is no risk that the fioorclothing will burst at the joint between the elements.
- a framing of joists comprising a primarily supporting lower portion, a floor construction, an elastic intermediate layer supporting said floor construction on said lower portion, and resilient means between said floor construction and said lower portion so shaped that the downward give of said floor construction, as seen from the original position, for a certain load increase will be considerably greater for smaller loads on the floor construction than for higher loads, and wherein there are provided projections between said floor construction and lower portion having surfaces carrying said floor construction when under small loads, and said projections being compressed into the rest of said elastic intermediate layer at a certain load increase.
- FRANK L. ABBOTT Primary Examiner J. L. RIDGILL, JR., Assistant Examiner iU.S. Cl. X.R. 52-414
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Floor Finish (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE917/66A SE314790B (da) | 1966-01-25 | 1966-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3494087A true US3494087A (en) | 1970-02-10 |
Family
ID=20257299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US608910A Expired - Lifetime US3494087A (en) | 1966-01-25 | 1967-01-12 | Framing of joists in buildings |
Country Status (7)
Country | Link |
---|---|
US (1) | US3494087A (da) |
DE (1) | DE1683059A1 (da) |
DK (1) | DK133705B (da) |
FI (1) | FI44160B (da) |
FR (1) | FR1509430A (da) |
NO (1) | NO121175B (da) |
SE (1) | SE314790B (da) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403414A (en) * | 1991-09-18 | 1995-04-04 | Corston; Charles | Method and apparatus for construction of flooring to prevent squeaks |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US498344A (en) * | 1893-05-30 | Floor | ||
US926773A (en) * | 1908-04-27 | 1909-07-06 | Peter Weinkauf | Building material. |
US1937186A (en) * | 1933-01-16 | 1933-11-28 | Herbert J R Barrett | Wall construction |
GB472499A (en) * | 1936-03-27 | 1937-09-24 | Alister Gladstone Macdonald | Improvements in or relating to buildings |
GB554818A (en) * | 1942-09-19 | 1943-07-20 | Charles Bernard Mathews | Improvements in and relating to the construction of flooring |
US2425567A (en) * | 1945-12-15 | 1947-08-12 | Cecil S Robinson | Vibration absorption device |
US2746097A (en) * | 1954-07-19 | 1956-05-22 | Jr Arthur M Tofani | Soundproof building construction |
US2962183A (en) * | 1957-11-14 | 1960-11-29 | Gen Motors Corp | Refrigerator cabinet |
CA730018A (en) * | 1966-03-15 | Hamilton Kent Manufacturing Co. | Vibration pad | |
US3332646A (en) * | 1965-11-19 | 1967-07-25 | Louise C Kellett | Machine pad |
-
1966
- 1966-01-25 SE SE917/66A patent/SE314790B/xx unknown
-
1967
- 1967-01-06 NO NO166298A patent/NO121175B/no unknown
- 1967-01-10 DE DE19671683059 patent/DE1683059A1/de active Pending
- 1967-01-12 US US608910A patent/US3494087A/en not_active Expired - Lifetime
- 1967-01-24 FI FI0188/67A patent/FI44160B/fi active
- 1967-01-25 DK DK44367AA patent/DK133705B/da unknown
- 1967-01-25 FR FR8798A patent/FR1509430A/fr not_active Expired
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US498344A (en) * | 1893-05-30 | Floor | ||
CA730018A (en) * | 1966-03-15 | Hamilton Kent Manufacturing Co. | Vibration pad | |
US926773A (en) * | 1908-04-27 | 1909-07-06 | Peter Weinkauf | Building material. |
US1937186A (en) * | 1933-01-16 | 1933-11-28 | Herbert J R Barrett | Wall construction |
GB472499A (en) * | 1936-03-27 | 1937-09-24 | Alister Gladstone Macdonald | Improvements in or relating to buildings |
GB554818A (en) * | 1942-09-19 | 1943-07-20 | Charles Bernard Mathews | Improvements in and relating to the construction of flooring |
US2425567A (en) * | 1945-12-15 | 1947-08-12 | Cecil S Robinson | Vibration absorption device |
US2746097A (en) * | 1954-07-19 | 1956-05-22 | Jr Arthur M Tofani | Soundproof building construction |
US2962183A (en) * | 1957-11-14 | 1960-11-29 | Gen Motors Corp | Refrigerator cabinet |
US3332646A (en) * | 1965-11-19 | 1967-07-25 | Louise C Kellett | Machine pad |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403414A (en) * | 1991-09-18 | 1995-04-04 | Corston; Charles | Method and apparatus for construction of flooring to prevent squeaks |
Also Published As
Publication number | Publication date |
---|---|
FI44160B (da) | 1971-06-01 |
NO121175B (da) | 1971-01-25 |
DK133705C (da) | 1976-11-22 |
DK133705B (da) | 1976-07-05 |
FR1509430A (fr) | 1968-01-12 |
SE314790B (da) | 1969-09-15 |
DE1683059A1 (de) | 1970-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5619832A (en) | Arrangement in a protective membrane, especially for floors | |
US6145260A (en) | Wall reinforcing and waterproofing system and method of fabrication | |
US4004385A (en) | Building structure using concrete blocks | |
US20110107691A1 (en) | Modular acoustic configuration for creating a floor with improved acoustic insulation performances, and method for implementing same | |
WO1986002686A1 (en) | A floor structure | |
KR100718698B1 (ko) | 건축물의 층간소음 저감재 | |
US3494087A (en) | Framing of joists in buildings | |
JP2703274B2 (ja) | 吸音性構成部材およびその製造方法 | |
KR100718700B1 (ko) | 건축물의 층간소음 저감재 | |
KR102249058B1 (ko) | 조립식 벽체 | |
KR200423540Y1 (ko) | 건축물의 층간소음 저감재 | |
KR102074317B1 (ko) | 소음과 진동 방지형 건물 구조체 | |
JP7284676B2 (ja) | 床構造 | |
US2211667A (en) | Joists and structural connections thereto | |
EP0496903A1 (en) | Heat-insulation and water-proofing brick bond | |
JPH0435589B2 (da) | ||
KR200425187Y1 (ko) | 건축물의 층간소음 저감재 | |
JPH0565669B2 (da) | ||
KR102486336B1 (ko) | 컨테이너 전용 단열유닛 | |
KR102541093B1 (ko) | 바닥 충격음 차단 패널 조립체 및 그 조립체를 이용한 바닥 충격음 차단 구조 | |
EP1528170A1 (en) | Floor system, prefabricated element and process for manufacturing the prefabricated element | |
JP3219132B2 (ja) | 木造建築物の土台下スペーサー | |
JPH0236743B2 (da) | ||
KR102484945B1 (ko) | 바닥 충격음 차단 패널 조립체 및 그 조립체를 이용한 바닥 충격음 차단 구조 | |
JPH1068196A (ja) | 棟構造の固定装置 |