US3471921A - Method of connecting a steel blank to a tungsten bit body - Google Patents
Method of connecting a steel blank to a tungsten bit body Download PDFInfo
- Publication number
- US3471921A US3471921A US594839A US3471921DA US3471921A US 3471921 A US3471921 A US 3471921A US 594839 A US594839 A US 594839A US 3471921D A US3471921D A US 3471921DA US 3471921 A US3471921 A US 3471921A
- Authority
- US
- United States
- Prior art keywords
- temperature
- blank
- steel
- sintered
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title description 39
- 239000010959 steel Substances 0.000 title description 39
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title description 17
- 238000000034 method Methods 0.000 title description 16
- 229910052721 tungsten Inorganic materials 0.000 title description 9
- 239000010937 tungsten Substances 0.000 title description 9
- 239000000203 mixture Substances 0.000 description 19
- 239000010432 diamond Substances 0.000 description 16
- 239000000843 powder Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- 238000005219 brazing Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 229910000679 solder Inorganic materials 0.000 description 8
- 229910003460 diamond Inorganic materials 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010956 nickel silver Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 241000581364 Clinitrachus argentatus Species 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3006—Ag as the principal constituent
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/46—Drill bits characterised by wear resisting parts, e.g. diamond inserts
Definitions
- a steel blank is connected to a tungsten bit body by bonding the contact planes of the body and the blank together at a temperature that is less than the critical temperature of the steel blank so as to avoid the tremendous volume changes that occur in steel at this temperature.
- the present invention relates to drill bits employed in drilling oil and gas wells and pertains more particularly to a method of connecting a steel blank to a bit body consisting of a mass of sintered tungsten (e.g., tungsten powder and/or tungsten carbide powder).
- the present invention relates to a manner of providing the sintered body of a diamond bit for use in deep well drilling, with a steel tool joint, sub or shank which is suitable for connecting the sintered bit body to a drill string.
- Diamond bits are manufactured by filling a graphite mold of the bit body, with tungsten powder and/or the desired places within the mold.
- a steel blank which is later provided with a screw thread so as to act as a sub or shank, is placed in the mass of powder filling the mold, after which the mold with the powder and the blank is placed in a suit able furnace.
- a binder material such as german silver, is placed on the top of the powder, and the furnace is heated to sintering temperature which is about 1l30 C., and, of course, well below the temperature at which the diamonds would be adversely aifected.
- the binder material liquefies and flows into the pore space of the powder material, as well as between the powder material and the wall of the steel blank. Cooling down of the mold with its contents causes solidification of the binder material, thereby forming an integral mass of the powder material containing the diamonds, to which mass the steel blank is attached. A screw thread is thereafter cut on the blank, thereby converting it into a sub or tool joint pin which is suitable to be connected to the lower end of a drill collar.
- a possible solution for the above problem is the use of a number of small metal plugs, provided with internal screw threads, which plugs are sintered together with the powder, and allow the application of a flange connected to a sub, which flange is provided with openings carrying bolts for connecting this flange to the sintered bit body. Since the dimensions of these plugs are small compared to the dimensions of the sintered mass, cracking of the sintered mass does not occur during cooling. Although this construction is very useful for testing diamond bits in the laboratory, it is unsuitable for field use on account of the use of the bolt connections.
- the invention is concerned with connecting a steel blank member to a tungsten bit body member consisting of a mass of sintered tungsten powder and/or tungsten carbide powder, by such a method as to obtain a strong bond between the steel blank and the sintered mass, without distortion or cracking of the sintered mass or breaking of the bond between the steel blank and the sintered mass.
- the method of connecting a steel blank to a tungsten bit body consists in bonding the contact planes of the mass and the blank together at a temperature which is less than 723 C., the lower. critical temperature of the steel blank.
- Critical temperatures also called critical points, of steel are those temperatures at which structural changes take place in the steel while it is in the solid condition. These critical temperatures vary with the rate of heating or cooling of the steel and with different alloys.
- the lower critical temperature for a steel is that point at which pearlite begins to change into austenite. This lower critical temperature occurs about 723 C. for some pure iron-carbon alloys.
- the structural change of the steel from pearlite to austenite and vice-versa is accompanied by a volume change of very specific nature. This volume change may be as much as 1.6% over certain temperature ranges.
- the bond may be obtained by the application of a bonding composition such as a resin composition which cures at a temperature below 723 C., or by a brazing composition, which has a melting range below 723 C.
- a bonding composition such as a resin composition which cures at a temperature below 723 C.
- a brazing composition which has a melting range below 723 C.
- the body may be obtained by the application of a bonding composition or agent having an eifective bonding temperature that is less than the lower critical temperature of the steel member.
- Effective bonding temperature as used herein is that temperature to which the bonding composition must be raised during the course of establishing an elfective bond.
- the bonding composition may be either a resin composition that cures at a temperature below the lower critical temperature of the steel member or a brazing or soldering composition having a melting point below said critical temperature.
- FIGURE 1 is a section through the assembled tool bit
- FIGURE 2 is a section through the bit body as molded.
- the bit body includes a sintered mass 1 carrying the diamonds 2 and has been formed by means of a mold 3.
- the mold consists of graphite, and may be formed by turning a solid block of graphite on a lathe and cutting a negative form of the desired bit design in the block.
- the required number of diamonds 2 are then distributed according to a desired pattern in the mold, whereafter the mold is filled with powder material, such as tungsten powder or tungsten carbide, suitable to be bonded together by a binder material.
- powder material such as tungsten powder or tungsten carbide
- the outer wall 4 of the mass 1 may be formed by tungsten carbide powder, whereas the interior layer is constituted by tungsten powder.
- An annular channel 6 may be formed in the tungsten powder mass 5 by placing a graphite ring 6a of the dimensions corresponding to the channel 6 in the mass of tungsten powder 5.
- an amount of suitable binder material such as german silver consisting of 65 vol. percent copper, 18 vol. percent nickel and 17 vol. percent zinc, is placed on top of the tungsten carbide powder 4 and/or tungsten powder 5.
- a suitable sintering furnace in which the mold is heated in a neutral atmosphere to a temperature higher than the melting temperature of the binder material.
- the binder material sweeps through the pore space of the powdered masses 4 and 5 and is evenly distributed thereover.
- the binder solidifies, thereby strongly bonding the powder particles of the mass 1 to an integral unit. Since the diamonds 2 are for the greater part enclosed by the sintered particles, these diamonds are firmly retained in the sintered mass 1.
- the graphite mold 3, as well as the ring in the channel 6, if present, is removed from the body 1 (e.g., by destroying). Thereafter the body 1 is placed on a lathe and the form and dimensions of the channel 6 are brought into accordance with the lower end of the metal blank 7 by means of a cutting tool.
- the metal blank 7 comprises a lower part 8 which is preferably of a cross-section which is substantially of the same shape as the cross-section of the body 1.
- the clearance between the blank 7 and the body 1 has been calculated such that at brazing temperature, it has a clearance suitable for brazing (e.g., about 0.1 millimeter).
- the upper part 9 of the blank 7 has an external screw thread 10, which enables the body 1 to be connected by screwing action to a drill collar or drill string suitable so that it can be lowered into a borehole and be rotated therein under a load sufiiciently high to have the diamonds 2 exert a scraping action on the bottom of this hole for increasing the depth thereof.
- the screw thread 10 is not cut into the blank 7 until after the latter has been connected to the body 1.
- a suitable brazing composition is formed by a silver solder comprising 50 vol. percent silver, 18 vol. percent cadmium, 16.5 vol. percent zinc and 15.5 vol. percent copper. Since the flow point of this solder is about 635 C., a furnace temperature between 635 C. and 723 C. is sufiicient to heat the solder to a temperature above its melting range. The space around the contact planes which are to be bonded by the solder is filled with nitrogen gas to decrease the danger of carbonisation of the steel.
- a bonding composition such as a resin which will cure at a temperature lower than 723 C., the lower critical temperature of the steel member, and sufiiciently adhere to the blank as well as to the body to withstand the forces which are exerted in the bond between the contact planes of the bit components when the bit is in operation in drilling a hole in an underground formation.
- a bonding composition such as a resin which will cure at a temperature lower than 723 C., the lower critical temperature of the steel member, and sufiiciently adhere to the blank as well as to the body to withstand the forces which are exerted in the bond between the contact planes of the bit components when the bit is in operation in drilling a hole in an underground formation.
- a bonding composition such as a resin which will cure at a temperature lower than 723 C., the lower critical temperature of the steel member, and sufiiciently adhere to the blank as well as to the body to withstand the forces which are exerted in the bond between the contact planes of the bit components when the
- the method of claim 1 including the step of: adding diamonds to the surface of said sintered tungsten bit, said diamond inclusions having at least a portion thereof exposed. 3. The method of claim 1 including the further step of: exposing at least the mating portions of said members with an inert gas during at least said heating step. 4. The method of claim 1 wherein the step of providing said bonding composition comprises employing a resin which will cure at a temperature of less than the critical temperature of said steel member.
- step of providing said bonding composition comprises employing a.
- brazing solder having a melting point which is lower than the critical temperature of said steel member.
- step of applying heat to said bonding composition comprises applying heat to at least one of said members.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Description
Oct. 14, 1969 R. FEENSTRA 3,471,921
METHOD OF CONNECTING A STEEL BLANK TO A TUNGSTEN BIT BODY Filed NOV. 16, 1966 I a '-'-f 3\ FIG. I
INVENTOR:
ROBIJN FEENSTRA HIS AGENT United States Patent US. Cl. 29473.ll 6 Claims ABSTRACT OF THE DISCLOSURE A steel blank is connected to a tungsten bit body by bonding the contact planes of the body and the blank together at a temperature that is less than the critical temperature of the steel blank so as to avoid the tremendous volume changes that occur in steel at this temperature.
The present invention relates to drill bits employed in drilling oil and gas wells and pertains more particularly to a method of connecting a steel blank to a bit body consisting of a mass of sintered tungsten (e.g., tungsten powder and/or tungsten carbide powder). In particular, the present invention relates to a manner of providing the sintered body of a diamond bit for use in deep well drilling, with a steel tool joint, sub or shank which is suitable for connecting the sintered bit body to a drill string.
Diamond bits are manufactured by filling a graphite mold of the bit body, with tungsten powder and/or the desired places within the mold. To connect the mass to the drill string, a steel blank, which is later provided with a screw thread so as to act as a sub or shank, is placed in the mass of powder filling the mold, after which the mold with the powder and the blank is placed in a suit able furnace. A binder material, such as german silver, is placed on the top of the powder, and the furnace is heated to sintering temperature which is about 1l30 C., and, of course, well below the temperature at which the diamonds would be adversely aifected.
At sintering temperature, the binder material liquefies and flows into the pore space of the powder material, as well as between the powder material and the wall of the steel blank. Cooling down of the mold with its contents causes solidification of the binder material, thereby forming an integral mass of the powder material containing the diamonds, to which mass the steel blank is attached. A screw thread is thereafter cut on the blank, thereby converting it into a sub or tool joint pin which is suitable to be connected to the lower end of a drill collar.
It has been found, however, that due to the difference in the expansion coefficients of the sintered mass and the steel blank the sintered mass will be liable to crack during the cooling period. In addition, this weakens the bond between the blank and the sintered mass, and it also distorts the sintered mass which will adversely affect the cutting properties of the diamonds carried by the sintered mass.
A possible solution for the above problem is the use of a number of small metal plugs, provided with internal screw threads, which plugs are sintered together with the powder, and allow the application of a flange connected to a sub, which flange is provided with openings carrying bolts for connecting this flange to the sintered bit body. Since the dimensions of these plugs are small compared to the dimensions of the sintered mass, cracking of the sintered mass does not occur during cooling. Although this construction is very useful for testing diamond bits in the laboratory, it is unsuitable for field use on account of the use of the bolt connections.
"ice
It has also been proposed to sinter the powder in the mold together with the diamonds, but without the steel blank. After the sintering process is over and the sintered mass has cooled down, the steel blank is brazed with copper to the sintered mass by heating the whole assembly to a temperature which is lower than the sintering temperature. This will result, depending on the construction of the blank and the sintered mass, in cracking of the sintered mass or breaking of the bond between the blank and the sintered mass. If the blank is placed in a groove arranged in the sintered mass, even both phenomena may occur.
Accordingly, the invention is concerned with connecting a steel blank member to a tungsten bit body member consisting of a mass of sintered tungsten powder and/or tungsten carbide powder, by such a method as to obtain a strong bond between the steel blank and the sintered mass, without distortion or cracking of the sintered mass or breaking of the bond between the steel blank and the sintered mass.
According to the invention, the method of connecting a steel blank to a tungsten bit body consists in bonding the contact planes of the mass and the blank together at a temperature which is less than 723 C., the lower. critical temperature of the steel blank. Critical temperatures, also called critical points, of steel are those temperatures at which structural changes take place in the steel while it is in the solid condition. These critical temperatures vary with the rate of heating or cooling of the steel and with different alloys. The lower critical temperature for a steel is that point at which pearlite begins to change into austenite. This lower critical temperature occurs about 723 C. for some pure iron-carbon alloys. The structural change of the steel from pearlite to austenite and vice-versa is accompanied by a volume change of very specific nature. This volume change may be as much as 1.6% over certain temperature ranges.
The bond may be obtained by the application of a bonding composition such as a resin composition which cures at a temperature below 723 C., or by a brazing composition, which has a melting range below 723 C. In other words, the body may be obtained by the application of a bonding composition or agent having an eifective bonding temperature that is less than the lower critical temperature of the steel member. Effective bonding temperature as used herein is that temperature to which the bonding composition must be raised during the course of establishing an elfective bond. The bonding composition may be either a resin composition that cures at a temperature below the lower critical temperature of the steel member or a brazing or soldering composition having a melting point below said critical temperature.
The invention may be carried into practice in various ways, but one specific embodiment will now be described by way of example with reference to the accompanying drawing which shows a longitudinal section of a diamond drill bit which is suitable to drill deep wells through hard rocks.
FIGURE 1 is a section through the assembled tool bit; and
FIGURE 2 is a section through the bit body as molded.
The bit body includes a sintered mass 1 carrying the diamonds 2 and has been formed by means of a mold 3. The mold consists of graphite, and may be formed by turning a solid block of graphite on a lathe and cutting a negative form of the desired bit design in the block.
The required number of diamonds 2 are then distributed according to a desired pattern in the mold, whereafter the mold is filled with powder material, such as tungsten powder or tungsten carbide, suitable to be bonded together by a binder material. If desired, the outer wall 4 of the mass 1 may be formed by tungsten carbide powder, whereas the interior layer is constituted by tungsten powder. An annular channel 6 may be formed in the tungsten powder mass 5 by placing a graphite ring 6a of the dimensions corresponding to the channel 6 in the mass of tungsten powder 5.
After the mold 3 has been filled with the required amounts of tungsten 5 and tungsten carbide 4, an amount of suitable binder material, such as german silver consisting of 65 vol. percent copper, 18 vol. percent nickel and 17 vol. percent zinc, is placed on top of the tungsten carbide powder 4 and/or tungsten powder 5. Thereafter the mold 3 with its contents is placed in a suitable sintering furnace in which the mold is heated in a neutral atmosphere to a temperature higher than the melting temperature of the binder material. When applying german silver as a binder, the sintering temperature of 1130 C. will be suflicient since the melting range of this binder is 1120 C.
On melting, the binder material sweeps through the pore space of the powdered masses 4 and 5 and is evenly distributed thereover. During the cooling period following the heating period in the furnace, the binder solidifies, thereby strongly bonding the powder particles of the mass 1 to an integral unit. Since the diamonds 2 are for the greater part enclosed by the sintered particles, these diamonds are firmly retained in the sintered mass 1.
After the sintered mass 1 has cooled down to ambient temperature, the graphite mold 3, as well as the ring in the channel 6, if present, is removed from the body 1 (e.g., by destroying). Thereafter the body 1 is placed on a lathe and the form and dimensions of the channel 6 are brought into accordance with the lower end of the metal blank 7 by means of a cutting tool.
The metal blank 7 comprises a lower part 8 which is preferably of a cross-section which is substantially of the same shape as the cross-section of the body 1. The clearance between the blank 7 and the body 1 has been calculated such that at brazing temperature, it has a clearance suitable for brazing (e.g., about 0.1 millimeter).
The upper part 9 of the blank 7 has an external screw thread 10, which enables the body 1 to be connected by screwing action to a drill collar or drill string suitable so that it can be lowered into a borehole and be rotated therein under a load sufiiciently high to have the diamonds 2 exert a scraping action on the bottom of this hole for increasing the depth thereof. The screw thread 10 is not cut into the blank 7 until after the latter has been connected to the body 1.
After the blank 7 has been placed in the channel 6, and the body 1 and the blank 7 have been put into a heating furnace and have been heated to a temperature lower than 723 C., the critical temperature of the steel blank, a very small clearance will remain between the outer wall of the blank 7 and the inner wall of the channel 6. An amount of low temperature brazing composition is placed at one side of the blank 7 just above the clearance between the blank 7 and the channel 6. The brazing composition, on melting, flows into the clearance and fills it completely.
A suitable brazing composition is formed by a silver solder comprising 50 vol. percent silver, 18 vol. percent cadmium, 16.5 vol. percent zinc and 15.5 vol. percent copper. Since the flow point of this solder is about 635 C., a furnace temperature between 635 C. and 723 C. is sufiicient to heat the solder to a temperature above its melting range. The space around the contact planes which are to be bonded by the solder is filled with nitrogen gas to decrease the danger of carbonisation of the steel.
By gradually cooling down the furnace to ambient temabove 723 C., its lower critical temperature, this temperature being the bottom temperature of a temperature range over which pearlite is converted into austenite when the temperature of the steel is raised, and over which austenite is converted into pearlite when the temperature of the steel is lowered.
These conversions from pearlite to austenite and viceversa are accompanied by volume changes of a very specific nature. Thus, on cooling down steel over the temperature range of maximum 910 C. to 723 C., an increase of volume of 1.6% will occur. Since the shrinking action of the sintered mass, however, is quite normal when cooling it down from a high temperature, it will become apparent that in a construction such as the present diamond bit, in which the steel blank and the sintered body have a very'close fit, undesired stresses will occur when cooling this construction over the above-mentioned temperature range of 910 C. to 723 C., in particular when a bond has already been formed between the steel blank and the sintered-body.
It will be clear that, by applying methods in which the bond between the contact planes of the steel blank and the sintered body is formed at a temperature lower than 723 C., the lower critical temperature of the steel member, no problems regarding overstressing of the construction will occur. One of the methods which makes use of a low-temperature brazing solder has already been described above. It will be appreciated that the invention is not restricted to the particular type of solder or bonding composition used in the above explanation of the invention, but that any other type of brazing solder or bonding composition may be used which has a flow point or melting range which is lower than 723 C., the lower critical temperature of the steel member, and is capable of forming a sufiiciently strong bond between the available areas of the contact planes of the blank and the body.
Another way of obtaining a bond between the blank and the body without creating undesired stresses within these components of the bit in the use of a bonding composition such as a resin which will cure at a temperature lower than 723 C., the lower critical temperature of the steel member, and sufiiciently adhere to the blank as well as to the body to withstand the forces which are exerted in the bond between the contact planes of the bit components when the bit is in operation in drilling a hole in an underground formation. One example of such resins is a glycidyl polyether of 2,2-bis(4-hydroxyphenyl)propane, known under the tradename of Epon resins, which can be cured, depending on the curing agent and the curing period, at any temperature between room temperature and 200 C.
It will be obvious that various modifications may be made in the method and apparatus according to the invention and that the specific details of the method and apparatus as described herein are merely illustrative.
I claim as my invention:
1. Method of minimizing dilferential expansion and contraction between a steel blank member and a sintered tungsten earth drill bit member while permanently bonding said members together, comprising the steps of:
forming one of said members with a recessed portion;
forming the other of said members with a portion dimensioned to mate with said recessed portion in spaced relationship at maximum bonding temperature;
placing said portion of said other member within said recessed portion; maintaining said portions in spaced relation at said maximum bonding temperature;
providing a bonding composition having an efiective bonding temperature that is less than the minimum critical temperature of said steel member;
placing said bonding composition in the space formed upon the mating of said members;
applying heat to said bonding composition at a temperature 'sufficient to bring said bonding composition substantially to its effective bonding temperature; and cooling said members to ambient temperature to effect a permanent bond between said members, thereby minimizing the stressing of said members, and eliminating the cracking and distortion of said bit member and the weakening of said bond. 2. The method of claim 1 including the step of: adding diamonds to the surface of said sintered tungsten bit, said diamond inclusions having at least a portion thereof exposed. 3. The method of claim 1 including the further step of: exposing at least the mating portions of said members with an inert gas during at least said heating step. 4. The method of claim 1 wherein the step of providing said bonding composition comprises employing a resin which will cure at a temperature of less than the critical temperature of said steel member.
5. The method of claim 3 wherein the step of providing said bonding composition comprises employing a.
brazing solder having a melting point which is lower than the critical temperature of said steel member.
6. The method of claim 1 wherein the step of applying heat to said bonding composition comprises applying heat to at least one of said members.
References Cited JOHN F. CAMPBELL, Primary Examiner J. L. CLINE, Assistant Examiner US. Cl. X.R.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB5467565 | 1965-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3471921A true US3471921A (en) | 1969-10-14 |
Family
ID=10471744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US594839A Expired - Lifetime US3471921A (en) | 1965-12-23 | 1966-11-16 | Method of connecting a steel blank to a tungsten bit body |
Country Status (3)
Country | Link |
---|---|
US (1) | US3471921A (en) |
FR (1) | FR1505262A (en) |
NL (1) | NL6617928A (en) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3599316A (en) * | 1969-12-15 | 1971-08-17 | Continental Can Co | Method of joining cemented carbide to steel |
US3885637A (en) * | 1973-01-03 | 1975-05-27 | Vladimir Ivanovich Veprintsev | Boring tools and method of manufacturing the same |
US3894674A (en) * | 1972-12-07 | 1975-07-15 | Theodore C Weill | Process for applying a protective wear surface to a wear part |
US3900149A (en) * | 1971-01-04 | 1975-08-19 | Paton Boris E | Method of producing anti-skid studs for vehicle tires |
US4136813A (en) * | 1976-04-06 | 1979-01-30 | Lucas Industries Limited | Joining a pair of parts |
EP0312487A1 (en) * | 1987-10-13 | 1989-04-19 | Eastman Teleco Company | Earth boring drill bit with matrix displacing material |
US5090491A (en) * | 1987-10-13 | 1992-02-25 | Eastman Christensen Company | Earth boring drill bit with matrix displacing material |
US5839329A (en) * | 1994-03-16 | 1998-11-24 | Baker Hughes Incorporated | Method for infiltrating preformed components and component assemblies |
US6073518A (en) * | 1996-09-24 | 2000-06-13 | Baker Hughes Incorporated | Bit manufacturing method |
US6082461A (en) * | 1996-07-03 | 2000-07-04 | Ctes, L.C. | Bore tractor system |
US6200514B1 (en) | 1999-02-09 | 2001-03-13 | Baker Hughes Incorporated | Process of making a bit body and mold therefor |
US6209420B1 (en) | 1994-03-16 | 2001-04-03 | Baker Hughes Incorporated | Method of manufacturing bits, bit components and other articles of manufacture |
US6454030B1 (en) | 1999-01-25 | 2002-09-24 | Baker Hughes Incorporated | Drill bits and other articles of manufacture including a layer-manufactured shell integrally secured to a cast structure and methods of fabricating same |
US20040245022A1 (en) * | 2003-06-05 | 2004-12-09 | Izaguirre Saul N. | Bonding of cutters in diamond drill bits |
US20060032335A1 (en) * | 2003-06-05 | 2006-02-16 | Kembaiyan Kumar T | Bit body formed of multiple matrix materials and method for making the same |
US20060231293A1 (en) * | 2005-04-14 | 2006-10-19 | Ladi Ram L | Matrix drill bits and method of manufacture |
US20070056777A1 (en) * | 2005-09-09 | 2007-03-15 | Overstreet James L | Composite materials including nickel-based matrix materials and hard particles, tools including such materials, and methods of using such materials |
US20070056776A1 (en) * | 2005-09-09 | 2007-03-15 | Overstreet James L | Abrasive wear-resistant materials, drill bits and drilling tools including abrasive wear-resistant materials, methods for applying abrasive wear-resistant materials to drill bits and drilling tools, and methods for securing cutting elements to a drill bit |
US20070102202A1 (en) * | 2005-11-10 | 2007-05-10 | Baker Hughes Incorporated | Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits |
US20080029310A1 (en) * | 2005-09-09 | 2008-02-07 | Stevens John H | Particle-matrix composite drill bits with hardfacing and methods of manufacturing and repairing such drill bits using hardfacing materials |
US20080073125A1 (en) * | 2005-09-09 | 2008-03-27 | Eason Jimmy W | Abrasive wear resistant hardfacing materials, drill bits and drilling tools including abrasive wear resistant hardfacing materials, and methods for applying abrasive wear resistant hardfacing materials to drill bits and drilling tools |
US20080083568A1 (en) * | 2006-08-30 | 2008-04-10 | Overstreet James L | Methods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures |
US20080101977A1 (en) * | 2005-04-28 | 2008-05-01 | Eason Jimmy W | Sintered bodies for earth-boring rotary drill bits and methods of forming the same |
US20080135304A1 (en) * | 2006-12-12 | 2008-06-12 | Baker Hughes Incorporated | Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods |
US20080163723A1 (en) * | 2004-04-28 | 2008-07-10 | Tdy Industries Inc. | Earth-boring bits |
US20080202814A1 (en) * | 2007-02-23 | 2008-08-28 | Lyons Nicholas J | Earth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same |
US20090031863A1 (en) * | 2007-07-31 | 2009-02-05 | Baker Hughes Incorporated | Bonding agents for improved sintering of earth-boring tools, methods of forming earth-boring tools and resulting structures |
US20090308662A1 (en) * | 2008-06-11 | 2009-12-17 | Lyons Nicholas J | Method of selectively adapting material properties across a rock bit cone |
US20100000798A1 (en) * | 2008-07-02 | 2010-01-07 | Patel Suresh G | Method to reduce carbide erosion of pdc cutter |
US20100006345A1 (en) * | 2008-07-09 | 2010-01-14 | Stevens John H | Infiltrated, machined carbide drill bit body |
US20100044114A1 (en) * | 2008-08-22 | 2010-02-25 | Tdy Industries, Inc. | Earth-boring bits and other parts including cemented carbide |
US7776256B2 (en) | 2005-11-10 | 2010-08-17 | Baker Huges Incorporated | Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies |
US7802495B2 (en) | 2005-11-10 | 2010-09-28 | Baker Hughes Incorporated | Methods of forming earth-boring rotary drill bits |
US7841259B2 (en) | 2006-12-27 | 2010-11-30 | Baker Hughes Incorporated | Methods of forming bit bodies |
US20100303566A1 (en) * | 2007-03-16 | 2010-12-02 | Tdy Industries, Inc. | Composite Articles |
US20100307838A1 (en) * | 2009-06-05 | 2010-12-09 | Baker Hughes Incorporated | Methods systems and compositions for manufacturing downhole tools and downhole tool parts |
US20100326739A1 (en) * | 2005-11-10 | 2010-12-30 | Baker Hughes Incorporated | Earth-boring tools comprising silicon carbide composite materials, and methods of forming same |
US7913779B2 (en) | 2005-11-10 | 2011-03-29 | Baker Hughes Incorporated | Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits |
US8007922B2 (en) | 2006-10-25 | 2011-08-30 | Tdy Industries, Inc | Articles having improved resistance to thermal cracking |
US8221517B2 (en) | 2008-06-02 | 2012-07-17 | TDY Industries, LLC | Cemented carbide—metallic alloy composites |
US8272816B2 (en) | 2009-05-12 | 2012-09-25 | TDY Industries, LLC | Composite cemented carbide rotary cutting tools and rotary cutting tool blanks |
US8308096B2 (en) | 2009-07-14 | 2012-11-13 | TDY Industries, LLC | Reinforced roll and method of making same |
US8312941B2 (en) | 2006-04-27 | 2012-11-20 | TDY Industries, LLC | Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods |
US8318063B2 (en) | 2005-06-27 | 2012-11-27 | TDY Industries, LLC | Injection molding fabrication method |
US8322465B2 (en) | 2008-08-22 | 2012-12-04 | TDY Industries, LLC | Earth-boring bit parts including hybrid cemented carbides and methods of making the same |
US20130092453A1 (en) * | 2011-10-14 | 2013-04-18 | Charles Daniel Johnson | Use of tungsten carbide tube rod to hard-face pdc matrix |
US8440314B2 (en) | 2009-08-25 | 2013-05-14 | TDY Industries, LLC | Coated cutting tools having a platinum group metal concentration gradient and related processes |
US8490674B2 (en) | 2010-05-20 | 2013-07-23 | Baker Hughes Incorporated | Methods of forming at least a portion of earth-boring tools |
US8512882B2 (en) | 2007-02-19 | 2013-08-20 | TDY Industries, LLC | Carbide cutting insert |
US8647561B2 (en) | 2005-08-18 | 2014-02-11 | Kennametal Inc. | Composite cutting inserts and methods of making the same |
US8770324B2 (en) | 2008-06-10 | 2014-07-08 | Baker Hughes Incorporated | Earth-boring tools including sinterbonded components and partially formed tools configured to be sinterbonded |
US8790439B2 (en) | 2008-06-02 | 2014-07-29 | Kennametal Inc. | Composite sintered powder metal articles |
US8800848B2 (en) | 2011-08-31 | 2014-08-12 | Kennametal Inc. | Methods of forming wear resistant layers on metallic surfaces |
US8905117B2 (en) | 2010-05-20 | 2014-12-09 | Baker Hughes Incoporated | Methods of forming at least a portion of earth-boring tools, and articles formed by such methods |
US8978734B2 (en) | 2010-05-20 | 2015-03-17 | Baker Hughes Incorporated | Methods of forming at least a portion of earth-boring tools, and articles formed by such methods |
US9016406B2 (en) | 2011-09-22 | 2015-04-28 | Kennametal Inc. | Cutting inserts for earth-boring bits |
US9027674B2 (en) | 2011-06-22 | 2015-05-12 | Halliburton Energy Services, Inc. | Custom shaped blank |
US9428822B2 (en) | 2004-04-28 | 2016-08-30 | Baker Hughes Incorporated | Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components |
US9643236B2 (en) | 2009-11-11 | 2017-05-09 | Landis Solutions Llc | Thread rolling die and method of making same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA773813B (en) * | 1977-06-24 | 1979-01-31 | De Beers Ind Diamond | Abrasive compacts |
DE3030010C2 (en) * | 1980-08-08 | 1982-09-16 | Christensen, Inc., 84115 Salt Lake City, Utah | Rotary drill bit for deep drilling |
CN104399992B (en) * | 2014-10-20 | 2017-01-18 | 四川川庆石油钻采科技有限公司 | Manufacturing method of double-cutting impregnated insert |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1977845A (en) * | 1928-12-22 | 1934-10-23 | Cleveland Twist Drill Co | Cutting and forming tool, implement, and the like and method of making same |
US2457156A (en) * | 1946-01-12 | 1948-12-28 | Jones John Paul | Method of manufacturing diamond studded tools |
US2582231A (en) * | 1949-02-05 | 1952-01-15 | Wheel Trueing Tool Co | Abrasive tool and method of making same |
US3279049A (en) * | 1963-12-05 | 1966-10-18 | Chromalloy Corp | Method for bonding a sintered refractory carbide body to a metalliferous surface |
US3284174A (en) * | 1962-04-16 | 1966-11-08 | Ind Fernand Courtoy Bureau Et | Composite structures made by bonding ceramics, cermets, alloys, heavy alloys and metals of different thermal expansion coefficient |
US3294186A (en) * | 1964-06-22 | 1966-12-27 | Tartan Ind Inc | Rock bits and methods of making the same |
US3372464A (en) * | 1965-10-22 | 1968-03-12 | Pan American Petroleum Corp | Method of bonding carbide to steel |
-
1966
- 1966-11-16 US US594839A patent/US3471921A/en not_active Expired - Lifetime
- 1966-12-21 FR FR88260A patent/FR1505262A/en not_active Expired
- 1966-12-21 NL NL6617928A patent/NL6617928A/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1977845A (en) * | 1928-12-22 | 1934-10-23 | Cleveland Twist Drill Co | Cutting and forming tool, implement, and the like and method of making same |
US2457156A (en) * | 1946-01-12 | 1948-12-28 | Jones John Paul | Method of manufacturing diamond studded tools |
US2582231A (en) * | 1949-02-05 | 1952-01-15 | Wheel Trueing Tool Co | Abrasive tool and method of making same |
US3284174A (en) * | 1962-04-16 | 1966-11-08 | Ind Fernand Courtoy Bureau Et | Composite structures made by bonding ceramics, cermets, alloys, heavy alloys and metals of different thermal expansion coefficient |
US3279049A (en) * | 1963-12-05 | 1966-10-18 | Chromalloy Corp | Method for bonding a sintered refractory carbide body to a metalliferous surface |
US3294186A (en) * | 1964-06-22 | 1966-12-27 | Tartan Ind Inc | Rock bits and methods of making the same |
US3372464A (en) * | 1965-10-22 | 1968-03-12 | Pan American Petroleum Corp | Method of bonding carbide to steel |
Cited By (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3599316A (en) * | 1969-12-15 | 1971-08-17 | Continental Can Co | Method of joining cemented carbide to steel |
US3900149A (en) * | 1971-01-04 | 1975-08-19 | Paton Boris E | Method of producing anti-skid studs for vehicle tires |
US3894674A (en) * | 1972-12-07 | 1975-07-15 | Theodore C Weill | Process for applying a protective wear surface to a wear part |
US3885637A (en) * | 1973-01-03 | 1975-05-27 | Vladimir Ivanovich Veprintsev | Boring tools and method of manufacturing the same |
US4136813A (en) * | 1976-04-06 | 1979-01-30 | Lucas Industries Limited | Joining a pair of parts |
EP0312487A1 (en) * | 1987-10-13 | 1989-04-19 | Eastman Teleco Company | Earth boring drill bit with matrix displacing material |
US5090491A (en) * | 1987-10-13 | 1992-02-25 | Eastman Christensen Company | Earth boring drill bit with matrix displacing material |
US6581671B2 (en) | 1994-03-16 | 2003-06-24 | Baker Hughes Incorporated | System for infiltrating preformed components and component assemblies |
US6209420B1 (en) | 1994-03-16 | 2001-04-03 | Baker Hughes Incorporated | Method of manufacturing bits, bit components and other articles of manufacture |
US6354362B1 (en) | 1994-03-16 | 2002-03-12 | Baker Hughes Incorporated | Method and apparatus for infiltrating preformed components and component assemblies |
US5839329A (en) * | 1994-03-16 | 1998-11-24 | Baker Hughes Incorporated | Method for infiltrating preformed components and component assemblies |
US6082461A (en) * | 1996-07-03 | 2000-07-04 | Ctes, L.C. | Bore tractor system |
US6089123A (en) * | 1996-09-24 | 2000-07-18 | Baker Hughes Incorporated | Structure for use in drilling a subterranean formation |
US6073518A (en) * | 1996-09-24 | 2000-06-13 | Baker Hughes Incorporated | Bit manufacturing method |
US6655481B2 (en) | 1999-01-25 | 2003-12-02 | Baker Hughes Incorporated | Methods for fabricating drill bits, including assembling a bit crown and a bit body material and integrally securing the bit crown and bit body material to one another |
US6454030B1 (en) | 1999-01-25 | 2002-09-24 | Baker Hughes Incorporated | Drill bits and other articles of manufacture including a layer-manufactured shell integrally secured to a cast structure and methods of fabricating same |
US6200514B1 (en) | 1999-02-09 | 2001-03-13 | Baker Hughes Incorporated | Process of making a bit body and mold therefor |
US20040245022A1 (en) * | 2003-06-05 | 2004-12-09 | Izaguirre Saul N. | Bonding of cutters in diamond drill bits |
US20060032335A1 (en) * | 2003-06-05 | 2006-02-16 | Kembaiyan Kumar T | Bit body formed of multiple matrix materials and method for making the same |
US7997358B2 (en) | 2003-06-05 | 2011-08-16 | Smith International, Inc. | Bonding of cutters in diamond drill bits |
US7625521B2 (en) | 2003-06-05 | 2009-12-01 | Smith International, Inc. | Bonding of cutters in drill bits |
US8109177B2 (en) * | 2003-06-05 | 2012-02-07 | Smith International, Inc. | Bit body formed of multiple matrix materials and method for making the same |
US10167673B2 (en) | 2004-04-28 | 2019-01-01 | Baker Hughes Incorporated | Earth-boring tools and methods of forming tools including hard particles in a binder |
US8172914B2 (en) | 2004-04-28 | 2012-05-08 | Baker Hughes Incorporated | Infiltration of hard particles with molten liquid binders including melting point reducing constituents, and methods of casting bodies of earth-boring tools |
US7954569B2 (en) | 2004-04-28 | 2011-06-07 | Tdy Industries, Inc. | Earth-boring bits |
US8403080B2 (en) | 2004-04-28 | 2013-03-26 | Baker Hughes Incorporated | Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components |
US8007714B2 (en) | 2004-04-28 | 2011-08-30 | Tdy Industries, Inc. | Earth-boring bits |
US8087324B2 (en) | 2004-04-28 | 2012-01-03 | Tdy Industries, Inc. | Cast cones and other components for earth-boring tools and related methods |
US9428822B2 (en) | 2004-04-28 | 2016-08-30 | Baker Hughes Incorporated | Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components |
US20080163723A1 (en) * | 2004-04-28 | 2008-07-10 | Tdy Industries Inc. | Earth-boring bits |
US20080302576A1 (en) * | 2004-04-28 | 2008-12-11 | Baker Hughes Incorporated | Earth-boring bits |
US20080127781A1 (en) * | 2005-04-14 | 2008-06-05 | Ladi Ram L | Matrix drill bits and method of manufacture |
US7398840B2 (en) | 2005-04-14 | 2008-07-15 | Halliburton Energy Services, Inc. | Matrix drill bits and method of manufacture |
US7784381B2 (en) | 2005-04-14 | 2010-08-31 | Halliburton Energy Services, Inc. | Matrix drill bits and method of manufacture |
US20060231293A1 (en) * | 2005-04-14 | 2006-10-19 | Ladi Ram L | Matrix drill bits and method of manufacture |
US20100288821A1 (en) * | 2005-04-14 | 2010-11-18 | Ladi Ram L | Matrix Drill Bits and Method of Manufacture |
US20080101977A1 (en) * | 2005-04-28 | 2008-05-01 | Eason Jimmy W | Sintered bodies for earth-boring rotary drill bits and methods of forming the same |
US8318063B2 (en) | 2005-06-27 | 2012-11-27 | TDY Industries, LLC | Injection molding fabrication method |
US8808591B2 (en) | 2005-06-27 | 2014-08-19 | Kennametal Inc. | Coextrusion fabrication method |
US8637127B2 (en) | 2005-06-27 | 2014-01-28 | Kennametal Inc. | Composite article with coolant channels and tool fabrication method |
US8647561B2 (en) | 2005-08-18 | 2014-02-11 | Kennametal Inc. | Composite cutting inserts and methods of making the same |
US9200485B2 (en) | 2005-09-09 | 2015-12-01 | Baker Hughes Incorporated | Methods for applying abrasive wear-resistant materials to a surface of a drill bit |
US8388723B2 (en) | 2005-09-09 | 2013-03-05 | Baker Hughes Incorporated | Abrasive wear-resistant materials, methods for applying such materials to earth-boring tools, and methods of securing a cutting element to an earth-boring tool using such materials |
US20070056777A1 (en) * | 2005-09-09 | 2007-03-15 | Overstreet James L | Composite materials including nickel-based matrix materials and hard particles, tools including such materials, and methods of using such materials |
US7703555B2 (en) | 2005-09-09 | 2010-04-27 | Baker Hughes Incorporated | Drilling tools having hardfacing with nickel-based matrix materials and hard particles |
US20080073125A1 (en) * | 2005-09-09 | 2008-03-27 | Eason Jimmy W | Abrasive wear resistant hardfacing materials, drill bits and drilling tools including abrasive wear resistant hardfacing materials, and methods for applying abrasive wear resistant hardfacing materials to drill bits and drilling tools |
US20080029310A1 (en) * | 2005-09-09 | 2008-02-07 | Stevens John H | Particle-matrix composite drill bits with hardfacing and methods of manufacturing and repairing such drill bits using hardfacing materials |
US8758462B2 (en) | 2005-09-09 | 2014-06-24 | Baker Hughes Incorporated | Methods for applying abrasive wear-resistant materials to earth-boring tools and methods for securing cutting elements to earth-boring tools |
US7597159B2 (en) | 2005-09-09 | 2009-10-06 | Baker Hughes Incorporated | Drill bits and drilling tools including abrasive wear-resistant materials |
US20100132265A1 (en) * | 2005-09-09 | 2010-06-03 | Baker Hughes Incorporated | Abrasive wear-resistant materials, methods for applying such materials to earth-boring tools, and methods of securing a cutting element to an earth-boring tool using such materials |
US9506297B2 (en) | 2005-09-09 | 2016-11-29 | Baker Hughes Incorporated | Abrasive wear-resistant materials and earth-boring tools comprising such materials |
US20070056776A1 (en) * | 2005-09-09 | 2007-03-15 | Overstreet James L | Abrasive wear-resistant materials, drill bits and drilling tools including abrasive wear-resistant materials, methods for applying abrasive wear-resistant materials to drill bits and drilling tools, and methods for securing cutting elements to a drill bit |
US8002052B2 (en) | 2005-09-09 | 2011-08-23 | Baker Hughes Incorporated | Particle-matrix composite drill bits with hardfacing |
US7997359B2 (en) | 2005-09-09 | 2011-08-16 | Baker Hughes Incorporated | Abrasive wear-resistant hardfacing materials, drill bits and drilling tools including abrasive wear-resistant hardfacing materials |
US20110138695A1 (en) * | 2005-09-09 | 2011-06-16 | Baker Hughes Incorporated | Methods for applying abrasive wear resistant materials to a surface of a drill bit |
US20110142707A1 (en) * | 2005-11-10 | 2011-06-16 | Baker Hughes Incorporated | Methods of forming earth boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum based alloy matrix materials |
US20100263935A1 (en) * | 2005-11-10 | 2010-10-21 | Baker Hughes Incorporated | Earth boring rotary drill bits and methods of manufacturing earth boring rotary drill bits having particle matrix composite bit bodies |
US8230762B2 (en) | 2005-11-10 | 2012-07-31 | Baker Hughes Incorporated | Methods of forming earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials |
US7913779B2 (en) | 2005-11-10 | 2011-03-29 | Baker Hughes Incorporated | Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits |
US20100326739A1 (en) * | 2005-11-10 | 2010-12-30 | Baker Hughes Incorporated | Earth-boring tools comprising silicon carbide composite materials, and methods of forming same |
US9192989B2 (en) | 2005-11-10 | 2015-11-24 | Baker Hughes Incorporated | Methods of forming earth-boring tools including sinterbonded components |
US20160023327A1 (en) * | 2005-11-10 | 2016-01-28 | Baker Hughes Incorporated | Methods of forming earth-boring tools including sinterbonded components |
US9700991B2 (en) * | 2005-11-10 | 2017-07-11 | Baker Hughes Incorporated | Methods of forming earth-boring tools including sinterbonded components |
US20070102202A1 (en) * | 2005-11-10 | 2007-05-10 | Baker Hughes Incorporated | Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits |
US8309018B2 (en) | 2005-11-10 | 2012-11-13 | Baker Hughes Incorporated | Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies |
US8074750B2 (en) | 2005-11-10 | 2011-12-13 | Baker Hughes Incorporated | Earth-boring tools comprising silicon carbide composite materials, and methods of forming same |
US20100276205A1 (en) * | 2005-11-10 | 2010-11-04 | Baker Hughes Incorporated | Methods of forming earth-boring rotary drill bits |
US7776256B2 (en) | 2005-11-10 | 2010-08-17 | Baker Huges Incorporated | Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies |
US20110094341A1 (en) * | 2005-11-10 | 2011-04-28 | Baker Hughes Incorporated | Methods of forming earth boring rotary drill bits including bit bodies comprising reinforced titanium or titanium based alloy matrix materials |
US7802495B2 (en) | 2005-11-10 | 2010-09-28 | Baker Hughes Incorporated | Methods of forming earth-boring rotary drill bits |
US7784567B2 (en) | 2005-11-10 | 2010-08-31 | Baker Hughes Incorporated | Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits |
US8312941B2 (en) | 2006-04-27 | 2012-11-20 | TDY Industries, LLC | Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods |
US8789625B2 (en) | 2006-04-27 | 2014-07-29 | Kennametal Inc. | Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods |
US20080083568A1 (en) * | 2006-08-30 | 2008-04-10 | Overstreet James L | Methods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures |
US8104550B2 (en) | 2006-08-30 | 2012-01-31 | Baker Hughes Incorporated | Methods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures |
US8007922B2 (en) | 2006-10-25 | 2011-08-30 | Tdy Industries, Inc | Articles having improved resistance to thermal cracking |
US8697258B2 (en) | 2006-10-25 | 2014-04-15 | Kennametal Inc. | Articles having improved resistance to thermal cracking |
US8841005B2 (en) | 2006-10-25 | 2014-09-23 | Kennametal Inc. | Articles having improved resistance to thermal cracking |
US20080135304A1 (en) * | 2006-12-12 | 2008-06-12 | Baker Hughes Incorporated | Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods |
US7775287B2 (en) | 2006-12-12 | 2010-08-17 | Baker Hughes Incorporated | Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods |
US7841259B2 (en) | 2006-12-27 | 2010-11-30 | Baker Hughes Incorporated | Methods of forming bit bodies |
US8176812B2 (en) | 2006-12-27 | 2012-05-15 | Baker Hughes Incorporated | Methods of forming bodies of earth-boring tools |
US8512882B2 (en) | 2007-02-19 | 2013-08-20 | TDY Industries, LLC | Carbide cutting insert |
US20080202814A1 (en) * | 2007-02-23 | 2008-08-28 | Lyons Nicholas J | Earth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same |
US8137816B2 (en) | 2007-03-16 | 2012-03-20 | Tdy Industries, Inc. | Composite articles |
US20100303566A1 (en) * | 2007-03-16 | 2010-12-02 | Tdy Industries, Inc. | Composite Articles |
US8268452B2 (en) | 2007-07-31 | 2012-09-18 | Baker Hughes Incorporated | Bonding agents for improved sintering of earth-boring tools, methods of forming earth-boring tools and resulting structures |
US20090031863A1 (en) * | 2007-07-31 | 2009-02-05 | Baker Hughes Incorporated | Bonding agents for improved sintering of earth-boring tools, methods of forming earth-boring tools and resulting structures |
US8221517B2 (en) | 2008-06-02 | 2012-07-17 | TDY Industries, LLC | Cemented carbide—metallic alloy composites |
US8790439B2 (en) | 2008-06-02 | 2014-07-29 | Kennametal Inc. | Composite sintered powder metal articles |
US8770324B2 (en) | 2008-06-10 | 2014-07-08 | Baker Hughes Incorporated | Earth-boring tools including sinterbonded components and partially formed tools configured to be sinterbonded |
US10144113B2 (en) | 2008-06-10 | 2018-12-04 | Baker Hughes Incorporated | Methods of forming earth-boring tools including sinterbonded components |
US20090308662A1 (en) * | 2008-06-11 | 2009-12-17 | Lyons Nicholas J | Method of selectively adapting material properties across a rock bit cone |
US20100000798A1 (en) * | 2008-07-02 | 2010-01-07 | Patel Suresh G | Method to reduce carbide erosion of pdc cutter |
US8261632B2 (en) | 2008-07-09 | 2012-09-11 | Baker Hughes Incorporated | Methods of forming earth-boring drill bits |
US20100006345A1 (en) * | 2008-07-09 | 2010-01-14 | Stevens John H | Infiltrated, machined carbide drill bit body |
US8322465B2 (en) | 2008-08-22 | 2012-12-04 | TDY Industries, LLC | Earth-boring bit parts including hybrid cemented carbides and methods of making the same |
US8858870B2 (en) | 2008-08-22 | 2014-10-14 | Kennametal Inc. | Earth-boring bits and other parts including cemented carbide |
US8459380B2 (en) | 2008-08-22 | 2013-06-11 | TDY Industries, LLC | Earth-boring bits and other parts including cemented carbide |
US8025112B2 (en) | 2008-08-22 | 2011-09-27 | Tdy Industries, Inc. | Earth-boring bits and other parts including cemented carbide |
US20100044114A1 (en) * | 2008-08-22 | 2010-02-25 | Tdy Industries, Inc. | Earth-boring bits and other parts including cemented carbide |
US8225886B2 (en) | 2008-08-22 | 2012-07-24 | TDY Industries, LLC | Earth-boring bits and other parts including cemented carbide |
US9435010B2 (en) | 2009-05-12 | 2016-09-06 | Kennametal Inc. | Composite cemented carbide rotary cutting tools and rotary cutting tool blanks |
US8272816B2 (en) | 2009-05-12 | 2012-09-25 | TDY Industries, LLC | Composite cemented carbide rotary cutting tools and rotary cutting tool blanks |
US20100307838A1 (en) * | 2009-06-05 | 2010-12-09 | Baker Hughes Incorporated | Methods systems and compositions for manufacturing downhole tools and downhole tool parts |
US8464814B2 (en) | 2009-06-05 | 2013-06-18 | Baker Hughes Incorporated | Systems for manufacturing downhole tools and downhole tool parts |
US8869920B2 (en) | 2009-06-05 | 2014-10-28 | Baker Hughes Incorporated | Downhole tools and parts and methods of formation |
US8317893B2 (en) | 2009-06-05 | 2012-11-27 | Baker Hughes Incorporated | Downhole tool parts and compositions thereof |
US8201610B2 (en) | 2009-06-05 | 2012-06-19 | Baker Hughes Incorporated | Methods for manufacturing downhole tools and downhole tool parts |
US9266171B2 (en) | 2009-07-14 | 2016-02-23 | Kennametal Inc. | Grinding roll including wear resistant working surface |
US8308096B2 (en) | 2009-07-14 | 2012-11-13 | TDY Industries, LLC | Reinforced roll and method of making same |
US8440314B2 (en) | 2009-08-25 | 2013-05-14 | TDY Industries, LLC | Coated cutting tools having a platinum group metal concentration gradient and related processes |
US9643236B2 (en) | 2009-11-11 | 2017-05-09 | Landis Solutions Llc | Thread rolling die and method of making same |
US8978734B2 (en) | 2010-05-20 | 2015-03-17 | Baker Hughes Incorporated | Methods of forming at least a portion of earth-boring tools, and articles formed by such methods |
US8905117B2 (en) | 2010-05-20 | 2014-12-09 | Baker Hughes Incoporated | Methods of forming at least a portion of earth-boring tools, and articles formed by such methods |
US9687963B2 (en) | 2010-05-20 | 2017-06-27 | Baker Hughes Incorporated | Articles comprising metal, hard material, and an inoculant |
US9790745B2 (en) | 2010-05-20 | 2017-10-17 | Baker Hughes Incorporated | Earth-boring tools comprising eutectic or near-eutectic compositions |
US8490674B2 (en) | 2010-05-20 | 2013-07-23 | Baker Hughes Incorporated | Methods of forming at least a portion of earth-boring tools |
US10603765B2 (en) | 2010-05-20 | 2020-03-31 | Baker Hughes, a GE company, LLC. | Articles comprising metal, hard material, and an inoculant, and related methods |
US9027674B2 (en) | 2011-06-22 | 2015-05-12 | Halliburton Energy Services, Inc. | Custom shaped blank |
US8800848B2 (en) | 2011-08-31 | 2014-08-12 | Kennametal Inc. | Methods of forming wear resistant layers on metallic surfaces |
US9016406B2 (en) | 2011-09-22 | 2015-04-28 | Kennametal Inc. | Cutting inserts for earth-boring bits |
US9435158B2 (en) * | 2011-10-14 | 2016-09-06 | Varel International Ind., L.P | Use of tungsten carbide tube rod to hard-face PDC matrix |
US20130092453A1 (en) * | 2011-10-14 | 2013-04-18 | Charles Daniel Johnson | Use of tungsten carbide tube rod to hard-face pdc matrix |
Also Published As
Publication number | Publication date |
---|---|
NL6617928A (en) | 1967-06-26 |
FR1505262A (en) | 1967-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3471921A (en) | Method of connecting a steel blank to a tungsten bit body | |
US3268274A (en) | Spiral blade stabilizer | |
US8047260B2 (en) | Infiltration methods for forming drill bits | |
US5090491A (en) | Earth boring drill bit with matrix displacing material | |
US5000273A (en) | Low melting point copper-manganese-zinc alloy for infiltration binder in matrix body rock drill bits | |
US5373907A (en) | Method and apparatus for manufacturing and inspecting the quality of a matrix body drill bit | |
CA2603422C (en) | Method for manufacturing a cutting pick | |
US4669522A (en) | Manufacture of rotary drill bits | |
US6089123A (en) | Structure for use in drilling a subterranean formation | |
CA1287343C (en) | Matrix bit with extended blades | |
US6375706B2 (en) | Composition for binder material particularly for drill bit bodies | |
US20040244540A1 (en) | Drill bit body with multiple binders | |
CA2466436A1 (en) | Bit body formed of multiple matrix materials and method for making the same | |
WO2008091793A2 (en) | Casting of tungsten carbide matrix bit heads and heating bit head portions with microwave radiation | |
GB2342876A (en) | Methods of manufacturing rotary drill bits | |
CN1514905A (en) | In-situ casting of well equipment | |
US4949598A (en) | Manufacture of rotary drill bits | |
US3131779A (en) | Erosion resistant nozzle assembly and method for forming | |
SA522433323B1 (en) | Drilling tool having pre-fabricated components | |
CN105849354A (en) | Vented blank for producing a matrix bit body | |
CN104955595B (en) | The discontinuous method of matrix of rotary drilling-head, the method for manufacturing it and reduction rotary drill bit | |
NO793434L (en) | INSERT FOR WORKPLACE AREAS AND MANUFACTURING PROCEDURES | |
CN110753779A (en) | Drill bit, method of manufacturing a body of a drill bit, metal matrix composite and method of manufacturing a metal matrix composite | |
US3776472A (en) | Tool assembly | |
US20230287756A1 (en) | Plug with composite ends and method of forming and using |