[go: up one dir, main page]

US3466170A - Process for improving grain structure of aluminum silicon alloys - Google Patents

Process for improving grain structure of aluminum silicon alloys Download PDF

Info

Publication number
US3466170A
US3466170A US608754A US3466170DA US3466170A US 3466170 A US3466170 A US 3466170A US 608754 A US608754 A US 608754A US 3466170D A US3466170D A US 3466170DA US 3466170 A US3466170 A US 3466170A
Authority
US
United States
Prior art keywords
alloys
alloy
percent
addition
modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US608754A
Other languages
English (en)
Inventor
Eckhard Dunkel
Wolfgang Thiele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Application granted granted Critical
Publication of US3466170A publication Critical patent/US3466170A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • Al-Si alloys which have a small strontium content and good technological properties have become known as materials for the construction of highly stressed pistons and cylinder heads.
  • Al-Si alloy melts which have been modified with calcium do exhibit a modification effect, which is less than that attained with sodium but of longer duration.
  • Al-Si alloys which have been modified with calcium have very serious drawbacks.
  • the calcium addition promotes the tendency of the eutectic Al-Si alloys to oxidize to a great degree and the alloys which have been treated with calcium have an unattractive appearance because of their dirty gray surface color (normally treated Al-Si alloys exhibit a metallic lustre) and in addition exhibit a most undesirable oxide skin formation near the gates of castings which in foundry practice is called elephant skin.
  • the decisive disadvantage of calcium modified Al-Si alloys is to be seen in that only very rapidly solidified cast parts, for instance, in chill molded castings with a wall thickness of 3 mm. exhibit a pseudo modified structure whereas a lamellar structure occurs at locations of local overheating. The slower the solidification takes place the greater the occurrence of zones of lamellar structure which results in the increased occurrence of shrinkage faults which are typical for lamellar structures. These shrinkage faults are extremely disadvantageous and cannot be avoided by the usual supply measures.
  • Al-Si alloy melts which have been modified with calciurn, the modification effects are retained with one remelting procedure, but here again the oxidic influences are increased.
  • the invention therefore relates to a process achieving a long lasting modification effect in Al-Si alloys by the introduction of an alkaline earth metal in a small quantity into Al-Si alloy melts.
  • this is effected by adding strontium and barium individually or in combination in a quantity of 0.001 to 2.0 wt. percent, preferably, 0.05 to 0.2 wt. percent, to Al-Si alloy melts with 5 to 14 wt. percent of Si and if desired contents of Mg and/or Zn/or Cu and the remainder Al and in addition may contain the usual impurities.
  • the effect of the Sr and/or Ba addition according to the invention can be assisted by the addition of Be in a quantity of 0.001 to 2.0 wt. percent, preferably, 0.05 to 0.2 wt. percent.
  • the beryllium addition can be simultaneous with or before or after the addition of the Sr and/ or Ba. Whereas beryllium by itself has no modification effect in Al-Si aloys nor has a noticeable or noteworthy effect on the oxidation of Sr and Ba free Al-Si alloys, the simultaneous presence of Be and Sr and/or Ba provides a synergistic effect. The oxidation of Sr is hindered by Be so that no Sr is lost in the melt and the modification effect is maintained for a still longer period of time.
  • the process according to the invention has a number of advantages.
  • the modification elfect achieved with Sr and/or Ba, if desired, in conjunction with Be, is retained over a long period of time.
  • the effect for instance is retained for at least 2 hours and up to 10 hours and in some instances can be retained beyond this range depending upon the quantity of the addition and the temperature at which the molten Al-Si alloys are maintained. It is possible thereby to process large charges of Al-Si alloys either continuously or discontinuously without the necessity of interrupting the processing of the charge to permit further additions of modifying agents.
  • Al-Si alloys which have been treated according to the invention can, with especial advantage, also be subjected to degasifying agents or other smelt purifying agents for the production of pore free castings, as such Al-Si alloy melts can be treated with inert or reactive gases for the purpose of eliminating a harmful gas content without the fine grained nature of the alloy being lost on casting.
  • Al-Si alloys which have been treated according to the invention are especially well suited for use as construction materials for the production of highly stressed parts which require a high elongation, for example, parts which have an elongation over 10%, a tensile strength of over 19 kg./mm. and a yield point of over 9 kg./mm.
  • Al-Si alloys treated according to the invention can also be used in the construction of parts requiring a high tensile strength and high yield point and must have a tensile strength of over 36 kg./mm. a yield point of 32 kg./mrn. with an elongation of 3%.
  • Al-Si alloys such as, for example, one of 7 wt.
  • the Al-Si alloys treated according to the invention especially when they have been subjected to age hardening, have good further processing properties. They therefore are suited for parts which must be subjected to a fine finishing operation involving a shaving removal action, such as, for example, valve housings and armature parts, the valve seats of which must exhibit a smooth surface.
  • Tablets consisting of a mixture of 67% SrCO and 33% Mg powder were introduced into 8.5 kg. of a melt 5 of an Al-Si alloy containing 12% Si at 700 C.
  • the strontium content of the mixture introduced was 0.3%.
  • Samples cast at 720 C. after the treated melt had been held for 4 hours at 720 C. exhibited a very good modified structure.
  • Example 3 In order to ascertain the flow qualities and Al-Si alloy with 9.7% Si and the usual impurities was prepared. Three samples of the same quantity were cast into a special mold according to Ph. Schneider at 720 C. and the length of the spiral of the alloy cast measured.
  • the first sample which was given no modification treatment, resulted in a spiral casting 103 cm. long.
  • the second sample which was treated with an A1 prealloy containing 5% of strontium to provide a 0.1% content in the melt resulted in a spiral casting 104 cm. long.
  • the third sample which was treated with a usual commercial Na modification salt resulted in a spiral casting 81 cm. long.
  • Example 4 Tensile Yield Brinell strength, point, Elongation, hardness, kg/mm. lrgJmm. percent kgJmmfl Sand mold 25. 8 24. 0.5 106 Chill mold 30.6 25.4 3.4 107
  • Example 5 0.10% metallic strontium were alloyed with an alloy of the composition Percent Zn 9.7 Mg 0.36 Al Remainder at 760 C. The molten alloy was held at this temperature for 4 hours and was then cast in chill molds. After 12 days cold hardening the rods thus obtained had the following mechanical properties Tensile strength "kg/mm? 30.6
  • Example 6 0.10% metallic strontium were alloyed with an alloy of the composition Percent Si 8.6
  • the rods were free of oxide skins.
  • a process for attaining a long lasting modification effect in aluminum silicon alloy-s comprising forming a melt containing aluminum and from 5 to 14 wt. percent silicon, and adding to said melt strontium or barium salts mixed with a finely divided reducing metal selected from the group consisting of aluminum and magnesium.
  • strontium or barium comprising from 0.001 to 2.0 wt. percent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
US608754A 1966-01-13 1967-01-12 Process for improving grain structure of aluminum silicon alloys Expired - Lifetime US3466170A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEM67990A DE1255928B (de) 1966-01-13 1966-01-13 Verfahren zur Erzielung eines langanhaltenden Veredelungseffektes in Aluminium-Silicium-Legierungen

Publications (1)

Publication Number Publication Date
US3466170A true US3466170A (en) 1969-09-09

Family

ID=7312418

Family Applications (1)

Application Number Title Priority Date Filing Date
US608754A Expired - Lifetime US3466170A (en) 1966-01-13 1967-01-12 Process for improving grain structure of aluminum silicon alloys

Country Status (7)

Country Link
US (1) US3466170A (he)
BE (1) BE692488A (he)
DE (1) DE1255928B (he)
FR (1) FR1507664A (he)
GB (1) GB1169104A (he)
LU (1) LU52759A1 (he)
NL (1) NL6618414A (he)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811177A (en) * 1969-12-15 1974-05-21 Vaw Ver Aluminium Werke Ag Process for brazing workpieces of aluminum containing material
US3853547A (en) * 1973-05-25 1974-12-10 Reynolds Metals Co Brazing materials
DE2625939A1 (de) * 1975-06-11 1976-12-23 Kawecki Berylco Ind Strontiumhaltige grundzusammensetzung zur beigabe in eutektische und untereutektische silizium-aluminium-gusslegierungen
DE2719129A1 (de) * 1977-01-28 1978-08-10 Kawecki Berylco Ind Strontiumhaltige grundzusammensetzung zur beigabe in eutektische und untereutektische silizium-aluminium- gusslegierungen
US4185999A (en) * 1978-05-31 1980-01-29 Union Carbide Corporation Barium-strontium-silicon-aluminum master alloy
US4211827A (en) * 1979-03-15 1980-07-08 Swiss Aluminium Ltd. Al-Si-Sn Alloy clad composite
US4241148A (en) * 1969-12-15 1980-12-23 Vereinigte Aluminium-Werke Aktiengesellschaft Composite aluminum-containing workpieces
US4394348A (en) * 1979-10-15 1983-07-19 Interox Chemicals Ltd. Process for the preparation of aluminium alloys
JPS6263640A (ja) * 1986-09-27 1987-03-20 Japan Metals & Chem Co Ltd Al−Si系合金改質用Sr−Al母合金
US4899800A (en) * 1987-10-15 1990-02-13 Alcan International Limited Metal matrix composite with coated reinforcing preform
US5837070A (en) * 1994-06-13 1998-11-17 Pechiney Rhenalu Aluminum-silicon alloy sheet for use in mechanical, aircraft and spacecraft construction
US5882443A (en) * 1996-06-28 1999-03-16 Timminco Limited Strontium-aluminum intermetallic alloy granules
US6210460B1 (en) 1997-06-27 2001-04-03 Timminco Limited Strontium-aluminum intermetallic alloy granules
FR2808536A1 (fr) * 2000-05-08 2001-11-09 Kyusyu Mitsui Aluminum Co Ltd Procede de production d'une billette semi-fondue en alliage d'aluminium pour une utilisation comme unite de transport
EP1645647A1 (de) * 2004-10-08 2006-04-12 Trimet Aluminium AG Kaltaushärtende Aluminiumgusslegierung und Verfahren zur Herstellung eines Aluminiumgussteils
US20070243097A1 (en) * 2004-06-25 2007-10-18 Emmanuelle Sarrazin Process for Fabrication of Products Made of an Aluminium Alloy With High Toughness and High Fatigue Resistance
WO2009081157A1 (en) * 2007-12-24 2009-07-02 Foseco International Limited Improved modifying flux for molten aluminium
CN107815560A (zh) * 2017-10-11 2018-03-20 徐长勇 一种高质量合金铝棒制备工艺
CN109722555A (zh) * 2019-01-09 2019-05-07 北京科技大学广州新材料研究院 一种铸造铝合金晶粒细化变质方法
CN114096690A (zh) * 2019-07-08 2022-02-25 Lkr轻金属能力中心兰斯霍芬有限责任公司 具有精细尺度共晶结构,特别是纳米共晶结构的合金以及这种合金的生产

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039153B1 (en) * 1980-04-29 1984-10-24 Marston Palmer Ltd. A sheet of foil, clad sheet of aluminium and method of brazing using a strontium containing brazing alloy
SE8107535L (sv) * 1980-12-23 1982-06-24 Aluminum Co Of America Aluminiumlegering samt forfarande for dess framstellning
JPS6274043A (ja) * 1985-09-27 1987-04-04 Ube Ind Ltd 加圧鋳造用高力アルミニウム合金
EP0312294A1 (en) * 1987-10-14 1989-04-19 Alcan International Limited Modification of aluminium-silicon alloys in metal matrix composites
DE68922572T2 (de) * 1988-10-21 1995-09-07 Honda Motor Co Ltd Mit Siliziumkarbid verstärkter Verbundwerkstoff aus einer Leichtmetallegierung.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1657389A (en) * 1928-01-24 Alfbed geobge coopeb gwyeb and henby wilfbed lewis phillips
US2013926A (en) * 1930-08-23 1935-09-10 Pacz Aladar Modification of aluminum, aluminum alloys, and alloys containing aluminum
US3128176A (en) * 1961-06-14 1964-04-07 Martin Wayne Aluminum silicon casting alloys
US3199979A (en) * 1961-10-27 1965-08-10 William F Jobbins Inc Aluminum base casting alloys and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19324C (de) * ch. schröder in Frankfurt a. M Zeichenapparat
DE459408C (de) * 1921-01-29 1928-05-03 Aladar Pacz Verfahren zur Veredelung von Aluminium-Silicium-Legierungen
DE496856C (de) * 1928-03-17 1930-04-29 Metallgesellschaft Ag Aluminumlegierungen
FR723418A (fr) * 1930-10-03 1932-04-08 Anciens Ets Skoda Alliages d'aluminium pour pistons
AT136265B (de) * 1930-10-03 1934-01-25 Vormals Skodawerke Ag Aluminium-Silizium-Legierungen für Kolben und Zylinder von Motoren.
AT197586B (de) * 1956-06-04 1958-05-10 Metallgesellschaft Ag Verfahren zur Verbesserung der Natriumveredelung von eutektischen oder schwach untereutektischen Aluminium-Silizium-Gußlegierungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1657389A (en) * 1928-01-24 Alfbed geobge coopeb gwyeb and henby wilfbed lewis phillips
US2013926A (en) * 1930-08-23 1935-09-10 Pacz Aladar Modification of aluminum, aluminum alloys, and alloys containing aluminum
US3128176A (en) * 1961-06-14 1964-04-07 Martin Wayne Aluminum silicon casting alloys
US3199979A (en) * 1961-10-27 1965-08-10 William F Jobbins Inc Aluminum base casting alloys and method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811177A (en) * 1969-12-15 1974-05-21 Vaw Ver Aluminium Werke Ag Process for brazing workpieces of aluminum containing material
US4241148A (en) * 1969-12-15 1980-12-23 Vereinigte Aluminium-Werke Aktiengesellschaft Composite aluminum-containing workpieces
US3853547A (en) * 1973-05-25 1974-12-10 Reynolds Metals Co Brazing materials
DE2625939A1 (de) * 1975-06-11 1976-12-23 Kawecki Berylco Ind Strontiumhaltige grundzusammensetzung zur beigabe in eutektische und untereutektische silizium-aluminium-gusslegierungen
FR2314261A1 (fr) * 1975-06-11 1977-01-07 Kawecki Berylco Ind Procede et composition mere destines a modifier la composition eutectique d'alliages d'aluminium et de silicium
US4108646A (en) * 1975-06-11 1978-08-22 Kawecki Berylco Industries, Inc. Strontium-bearing master composition for addition to eutectic and hypo-eutectic silicon-aluminum casting alloys
DE2719129A1 (de) * 1977-01-28 1978-08-10 Kawecki Berylco Ind Strontiumhaltige grundzusammensetzung zur beigabe in eutektische und untereutektische silizium-aluminium- gusslegierungen
US4185999A (en) * 1978-05-31 1980-01-29 Union Carbide Corporation Barium-strontium-silicon-aluminum master alloy
US4211827A (en) * 1979-03-15 1980-07-08 Swiss Aluminium Ltd. Al-Si-Sn Alloy clad composite
US4394348A (en) * 1979-10-15 1983-07-19 Interox Chemicals Ltd. Process for the preparation of aluminium alloys
JPS6263640A (ja) * 1986-09-27 1987-03-20 Japan Metals & Chem Co Ltd Al−Si系合金改質用Sr−Al母合金
US4899800A (en) * 1987-10-15 1990-02-13 Alcan International Limited Metal matrix composite with coated reinforcing preform
US5837070A (en) * 1994-06-13 1998-11-17 Pechiney Rhenalu Aluminum-silicon alloy sheet for use in mechanical, aircraft and spacecraft construction
US5882443A (en) * 1996-06-28 1999-03-16 Timminco Limited Strontium-aluminum intermetallic alloy granules
US6132530A (en) * 1996-06-28 2000-10-17 Timminco Limited Strontium-aluminum intermetallic alloy granules
US6210460B1 (en) 1997-06-27 2001-04-03 Timminco Limited Strontium-aluminum intermetallic alloy granules
FR2808536A1 (fr) * 2000-05-08 2001-11-09 Kyusyu Mitsui Aluminum Co Ltd Procede de production d'une billette semi-fondue en alliage d'aluminium pour une utilisation comme unite de transport
US20070243097A1 (en) * 2004-06-25 2007-10-18 Emmanuelle Sarrazin Process for Fabrication of Products Made of an Aluminium Alloy With High Toughness and High Fatigue Resistance
EP1645647A1 (de) * 2004-10-08 2006-04-12 Trimet Aluminium AG Kaltaushärtende Aluminiumgusslegierung und Verfahren zur Herstellung eines Aluminiumgussteils
WO2009081157A1 (en) * 2007-12-24 2009-07-02 Foseco International Limited Improved modifying flux for molten aluminium
US8603214B2 (en) 2007-12-24 2013-12-10 Foseco International Limited Modifying flux for molten aluminium
CN107815560A (zh) * 2017-10-11 2018-03-20 徐长勇 一种高质量合金铝棒制备工艺
CN109722555A (zh) * 2019-01-09 2019-05-07 北京科技大学广州新材料研究院 一种铸造铝合金晶粒细化变质方法
CN114096690A (zh) * 2019-07-08 2022-02-25 Lkr轻金属能力中心兰斯霍芬有限责任公司 具有精细尺度共晶结构,特别是纳米共晶结构的合金以及这种合金的生产

Also Published As

Publication number Publication date
DE1255928B (de) 1967-12-07
NL6618414A (he) 1967-07-14
GB1169104A (en) 1969-10-29
BE692488A (he) 1967-06-16
LU52759A1 (he) 1967-03-06
FR1507664A (fr) 1967-12-29

Similar Documents

Publication Publication Date Title
US3466170A (en) Process for improving grain structure of aluminum silicon alloys
CN115261684A (zh) 一种铸造Al-Si合金及其制备方法
EP0107334B1 (en) Improvements in or relating to aluminium alloys
JPS6154101B2 (he)
US3475166A (en) Aluminum base alloy
US3598576A (en) Method of making nodular iron
US3403997A (en) Treatment of age-hardenable coppernickel-zinc alloys and product resulting therefrom
KR810002049B1 (ko) 다이케스트용 내식성 Al합금
US3856583A (en) Method of increasing hardness of aluminum-silicon composite
RU2525967C2 (ru) Способ модифицирования литых сплавов
US3328164A (en) Prealloy for the treatment of iron and steel melts
US1387900A (en) Alloy
US4067733A (en) High strength aluminum alloy
US4162159A (en) Cast iron modifier and method of application thereof
US3297435A (en) Production of heat-treatable aluminum casting alloy
US1500954A (en) Manufacture of lead alloys
RU2016112C1 (ru) Способ модифицирования алюминиевых сплавов
US1912382A (en) Method of making and casting aluminum alloys
US4345953A (en) Aluminum-based die casting alloys
SU549495A1 (ru) Литейный сплав на основе алюмини
US2932567A (en) Cast iron and process for making same
KR810002048B1 (ko) 다이케스트용 내식성 Al 합금
CN106319312B (zh) 一种高性能蜗轮蜗杆减速机
US3471286A (en) Aluminium base alloy
SU1044652A1 (ru) Модификатор дл сплавов алюмини с кремнием