US3432733A - Controllable semi-conductor element - Google Patents
Controllable semi-conductor element Download PDFInfo
- Publication number
- US3432733A US3432733A US630927A US3432733DA US3432733A US 3432733 A US3432733 A US 3432733A US 630927 A US630927 A US 630927A US 3432733D A US3432733D A US 3432733DA US 3432733 A US3432733 A US 3432733A
- Authority
- US
- United States
- Prior art keywords
- zone
- conductor
- range
- face
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title description 23
- 239000004020 conductor Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 19
- 230000000903 blocking effect Effects 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZHSKUOZOLHMKEA-UHFFFAOYSA-N 4-[5-[bis(2-chloroethyl)amino]-1-methylbenzimidazol-2-yl]butanoic acid;hydron;chloride Chemical compound Cl.ClCCN(CCCl)C1=CC=C2N(C)C(CCCC(O)=O)=NC2=C1 ZHSKUOZOLHMKEA-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D18/00—Thyristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/40—Resistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/60—Impurity distributions or concentrations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
Definitions
- a controllable semi-conductor element comprises a circular disc of semi-conductor material having four stratified zones or layers of different conductor type materials to form an n-p-n-p structure.
- This structure includes an outer annular zone of n+ type material extending over an outer range which adjoins a first annular part-surface of an end face of a circular zone of p-type material.
- An inner circular zone of p+ material extending over an inner range adjoins a second part-surface of this end face which is concentric with and spaced radially from the outer annular zone and forms a four zone structure with two p-n transitions.
- a circular internal zone of the n-type material adjoins the circular zone of p-type material and has a higher average doping in the inner range than in the outer range, and an electrode adjoins the end face to provide a surface contact for the outer annular and inner circular part-surfaces.
- a second electrode adjoins the opposite end face of another circular zone of p-type material which is located adjacent the circular internal zone of n-type material to complete the four zone structure.
- the present invention relates to a controllable semiconductor element with one semiconductor disc having stratified zones of different types for forming an n-p-n-p structure.
- thyristors have achieved great significance in their function as inertialess switching elements.
- the blocking current I which, when exceeded, causes the thyristor to strike, i.e. conduct current, is an important characteristic of the thyristor.
- the aforementioned blocking current depends substantially on temperature and falls with a rise in temperature.
- a reduction of the blocking current is also accompanied by a reduction of the breakdown voltage in the forward direction so that normal thyristors lose their blocking characteristics at temperatures of only 110 to 130 C.
- the blocking current is not readily reproducible. In order to avoid this disadvantage, it has been proposed to design thyristors with a higher blocking current but in many cases this necessitates an undesirable increase in the driving power.
- the improved semi-conductor element according to the invention is characterized in that the n-p-n-p structure has an external zone of a first conductor type adjoining a first part-surface of an end face of the semi-conductor disc, that a four layer structure is provided with two p-n transition zones, an external zone of the other, second conductor type adjoining on the one hand on a second part-surface of the end face, and on the other hand on a less doped zone of the second conductor type which, in turn, adjoins between the two aforementioned part-sun Patented Mar.
- FIG. 1 is a view in central vertical section through the improved four-layer semi-conductor structure
- FIGS. 24 are plots of curves showing anode voltage and blocking current characteristics of four-layer semiconductor structure.
- a circular crystal disc has a stratified zone 1 of n-conductor type onto which the zones 2 and 3 respectively of the p-conductor type adjoin on both sides.
- a central circular zone 6 of higher doping (p+) and being of p-conductor type adjoins on the one hand on a circular second part-surface of the end face 5 corresponding to the range II and on the other hand on the zone 2 of the p-conductor type so that a four-layer structure (p+-p-n-p) with two p-n transition zones is formed in the aforementioned range II.
- the zone 2 adjoins the end face 5 between the two part-surfaces in a range III. It is important that the inwardly facing edges 10, 11 of the part-surfaces of the end face 5 corresponding to the ranges I and II are as equidistant as possible.
- the zone 1 of the n-conductor type has a higher average doping in the range II than in the range I. This is simply achieved by originating the silicon crystal disc from a cylindrical silicon monocrystal produced by zone refining in an atmosphere containing the doping atoms. By means of this doping method, a doping profile is obtained in the monocrystal having a maximum in the axis and a content of to of its maximum value towards the peripheral zone.
- FIG. 2 shows the characteristic of the four-layer (p+- p-n-p) structure of the range II while FIG. 3 illustrates the known characteristic of the n-p-n-p structure.
- the avalanche breakdown voltage in that range is smaller than in the range I. If the anode voltage V rises, breakdown will therefore occur at point A, the entire blocking current flowing via the range II and increasing approximately proportionally with a further increase of the anode voltage until it produces a sufiiciently large carrier density on the emitter edge 10 of the n-p-n-p structure in order to cause striking in the range I which then in turn absorbs the entire current.
- the semi-conductor element characteristic shown in FIG. 4 is obtained as a first approximation from the superposing of the characteristics of the structures in the ranges II or I, respectively according to FIGS. 3 or 2 respectively.
- the magnitude of the actual striking current however depends on the distance of the ranges II and I respectively, while striking, which is initiated as uniformly as possible over the emitter edge 10, is ensured by maintaining as accurately as possible conditions of equidistance of the emitter edge 10 from the edge 11 of the zone 6.
- the blocking current I is substantially larger than with a normal n-p-n-p structure according to FIG. 3 with the driving power being substantially the same. Since striking is controlled in the first place by the conditions prevailing in the p+-p-np structure in the range II which do not substantially vary over a wide temperature range, the striking current which substantially corresponds to the blocking current I is largely unaffected by temperature changes.
- the zones 2 and 3 are first produced by a diffusion method on a silicon disc of the n-conductor type whose doping is a maximum along the axis.
- metal discs 12 or 13, respectively containing the appropriate doping substances are then simultaneously alloyed onto the end face 5 of the semi-conductor disc.
- the electrodes may then be contacted by any suitable method, always providing that the cathode 7 does not touch the end face 5 of the semi-conductor disc in the range III.
- the lowermost zone of p-conductor type terminates in the opposite end face 8 of the four zone semi-conductor structure and is faced with an electrode 9.
- a terminal connection 10 is applied to the periphery of zone 2 of P' YP I claim:
- a controllable semi-conductor element comprising a disc of semi-conductor material having four stratified zones of different conductor type materials and forming an n-p-n-p structure, said structure including an outer zone (4) of a first conductor type material extending over an outer range I and which adjoins a first partsurface of an end face (5) of a zone (2) of a second conductor type material, an inner zone (6) of said second conductor type material adjoining on the one hand a second part-surface of said end face and on the other hand a less doped portion of said zone (2) of second conductor type material which extends between said inner and outer zones to said end face thereby to establish over an inner range II a four zone structure with two p-n transitions, the inwardly facing edges (10, 11) of said first and second part-surfaces being uniformly spaced from one another, an internal zone (1) of said first conductor type material adjoining said zone (2) of said second conductor type material and having a higher average doping in said inner range II than in said outer range I
- first and second metal discs (12, 13) having the dimensions respectively of said first and second part surfaces of said end face and containing different doping substances are alloyed onto said zone (2) of said second conductor type material for establishing respectively said outer zone (4) and said inner zone (6).
Landscapes
- Thyristors (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH589466A CH436494A (de) | 1966-04-22 | 1966-04-22 | Steuerbares Halbleiterventil |
Publications (1)
Publication Number | Publication Date |
---|---|
US3432733A true US3432733A (en) | 1969-03-11 |
Family
ID=4301121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US630927A Expired - Lifetime US3432733A (en) | 1966-04-22 | 1967-04-14 | Controllable semi-conductor element |
Country Status (6)
Country | Link |
---|---|
US (1) | US3432733A (nl) |
CH (1) | CH436494A (nl) |
DE (2) | DE6607598U (nl) |
GB (1) | GB1106637A (nl) |
NL (1) | NL154624B (nl) |
SE (1) | SE325645B (nl) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49104580A (nl) * | 1973-01-08 | 1974-10-03 | ||
US4315271A (en) * | 1976-12-20 | 1982-02-09 | U.S. Philips Corporation | Power transistor and method of manufacturing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3277352A (en) * | 1963-03-14 | 1966-10-04 | Itt | Four layer semiconductor device |
US3280392A (en) * | 1961-05-09 | 1966-10-18 | Siemens Ag | Electronic semiconductor device of the four-layer junction type |
US3337783A (en) * | 1964-01-16 | 1967-08-22 | Westinghouse Electric Corp | Shorted emitter controlled rectifier with improved turn-off gain |
US3337782A (en) * | 1964-04-01 | 1967-08-22 | Westinghouse Electric Corp | Semiconductor controlled rectifier having a shorted emitter at a plurality of points |
US3343048A (en) * | 1964-02-20 | 1967-09-19 | Westinghouse Electric Corp | Four layer semiconductor switching devices having a shorted emitter and method of making the same |
-
1966
- 1966-04-22 CH CH589466A patent/CH436494A/de unknown
- 1966-05-13 DE DE6607598U patent/DE6607598U/de not_active Expired
- 1966-05-13 DE DE19661539644 patent/DE1539644B1/de not_active Withdrawn
-
1967
- 1967-02-23 NL NL676702749A patent/NL154624B/nl not_active IP Right Cessation
- 1967-04-14 US US630927A patent/US3432733A/en not_active Expired - Lifetime
- 1967-04-20 GB GB18203/67A patent/GB1106637A/en not_active Expired
- 1967-04-20 SE SE05595/67A patent/SE325645B/xx unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3280392A (en) * | 1961-05-09 | 1966-10-18 | Siemens Ag | Electronic semiconductor device of the four-layer junction type |
US3277352A (en) * | 1963-03-14 | 1966-10-04 | Itt | Four layer semiconductor device |
US3337783A (en) * | 1964-01-16 | 1967-08-22 | Westinghouse Electric Corp | Shorted emitter controlled rectifier with improved turn-off gain |
US3343048A (en) * | 1964-02-20 | 1967-09-19 | Westinghouse Electric Corp | Four layer semiconductor switching devices having a shorted emitter and method of making the same |
US3337782A (en) * | 1964-04-01 | 1967-08-22 | Westinghouse Electric Corp | Semiconductor controlled rectifier having a shorted emitter at a plurality of points |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49104580A (nl) * | 1973-01-08 | 1974-10-03 | ||
JPS5725984B2 (nl) * | 1973-01-08 | 1982-06-02 | ||
US4315271A (en) * | 1976-12-20 | 1982-02-09 | U.S. Philips Corporation | Power transistor and method of manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
GB1106637A (en) | 1968-03-20 |
CH436494A (de) | 1967-05-31 |
NL6702749A (nl) | 1967-10-23 |
SE325645B (nl) | 1970-07-06 |
NL154624B (nl) | 1977-09-15 |
DE6607598U (de) | 1971-03-25 |
DE1539644B1 (de) | 1970-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6025622A (en) | Conductivity modulated MOSFET | |
US3391287A (en) | Guard junctions for p-nu junction semiconductor devices | |
US4110775A (en) | Schottky diode with voltage limiting guard band | |
US3249831A (en) | Semiconductor controlled rectifiers with a p-n junction having a shallow impurity concentration gradient | |
JPS6325509B2 (nl) | ||
US4377816A (en) | Semiconductor element with zone guard rings | |
US4517582A (en) | Asymmetrical thyristor with highly doped anode base layer region for optimized blocking and forward voltages | |
US3771029A (en) | Thyristor with auxiliary emitter connected to base between base groove and main emitter | |
US3437886A (en) | Thyristor with positively bevelled junctions | |
US4060825A (en) | High speed high power two terminal solid state switch fired by dV/dt | |
US3432731A (en) | Planar high voltage four layer structures | |
JP3853595B2 (ja) | フィールド形成領域を有する半導体構成素子 | |
US4236169A (en) | Thyristor device | |
US3470036A (en) | Rectifying semi-conductor body | |
US3414780A (en) | High voltage semiconductor device with electrical gradient-reducing groove | |
JPH11297994A (ja) | 半導体装置 | |
US3432733A (en) | Controllable semi-conductor element | |
US3413527A (en) | Conductive electrode for reducing the electric field in the region of the junction of a junction semiconductor device | |
JPH06283727A (ja) | 電力用半導体素子 | |
US4713679A (en) | Reverse blocking type semiconductor device | |
US5155568A (en) | High-voltage semiconductor device | |
US3758832A (en) | Thyristor with short circuiting ring | |
US3700982A (en) | Controlled rectifier having gate electrode which extends across the gate and cathode layers | |
JP2000101066A (ja) | 電力用半導体素子 | |
US4586070A (en) | Thyristor with abrupt anode emitter junction |