US3393680A - Surgical instrument - Google Patents
Surgical instrument Download PDFInfo
- Publication number
- US3393680A US3393680A US515661A US51566165A US3393680A US 3393680 A US3393680 A US 3393680A US 515661 A US515661 A US 515661A US 51566165 A US51566165 A US 51566165A US 3393680 A US3393680 A US 3393680A
- Authority
- US
- United States
- Prior art keywords
- key
- arms
- pincers
- manual
- axi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000013011 mating Effects 0.000 claims description 2
- 210000000080 chela (arthropods) Anatomy 0.000 description 30
- 210000003811 finger Anatomy 0.000 description 13
- 210000003813 thumb Anatomy 0.000 description 11
- 210000005224 forefinger Anatomy 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 5
- 239000002874 hemostatic agent Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013130 cardiovascular surgery Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/28—Surgical forceps
- A61B17/2812—Surgical forceps with a single pivotal connection
- A61B17/2841—Handles
Definitions
- finger-rings in instruments are attributed to Albucasis, an Arabian surgeon of Cordoba, in centuries IX and X (De chirurgia, Tasrif) the rings being then open.
- the applicant has found that such instruments originate in the prehistoric pincers and that before reaching the Arabian surgeon they passed, in the Hippocratic era (th century B.C.) by a rudimental ring as significant as the pincers for foreign bodies of the Epidauro museum, reproduced by Theod. Meyer-Steineg in his book, Chirurgische Instrumente des Altertums.
- finger-ring surgical instruments not only have a profane origin but also a prehistoric structure which was created by man when the surgery did not exist. And this anachronistic, anti-surgical structure, of an obscure empiricism, is What surgery continues to use in its most advanced present techniques of pulmonary or cardiovascular surgery.
- Cross-manual surgical instruments have numerous drawbacks. They require increased and firm flexions of the operating surgeons wrist, the muscular contraction extending at times to the shoulder. This produces rigidity, slowness and difiiculty in obtaining precision.
- a ring hemostat for example, is projected across the axis of the hand and the surgeon is forced to bend his wrist in order to correct the centrifugal cross-manual direction and reach the objective. In deep zones this bending is maximum and often obstructs the vision of depth, obstructs the operatory field and creates serious difficulties to the operating surgeon.
- the instrument finger rings clamp the surgeons fingers, which certainly constitutes another drawback. Also, being flat, the instrument has to be lifted from the table in order to insert the fingers in the rings thereof.
- the surgical instrument in accordance with the present invention eliminates the use of finger rings and is used with the longitudinal axis thereof parallel and as close as possible to the axis of the surgeons hand.
- the instrument is axi-manual, and the axi-manual law is so fundamental that the operating surgeon obeys it as much as possible, even without intending to do so, in the manner as an illiterate child follows very complicated static and dynamic rules when he runs and jumps.
- the present invention provides a double key axi-manual surgery instrument which is tridimensional and can be grasped directly, in a simple and quick manner, thus affording a further operatory advantage.
- the invention can be applied to substantially all existing surgical instruments of the ring type, such as the Kocher, Pean, Rankin, Crile, Chaput, Allis and Gregoire ring hemostats, to cite only some of the most known, as Well as to visceral pincers and clamps of the Reverdin and Fooester type, etc.
- the longitudinal axis thereof is aligned with the hand axis, which means deep reach, free arm and fingers, quick and direct movement;
- pilot key or microkey which with easy and almost imperceptible movements permits opening and closing of the instrument rack;
- the fingers press behind the instrument rack, thus greatly decreasing the resistance of the instrument arms and affording a smoother action thereof;
- minimum Width less than the width of the rings, which makes it easier to handle and affords a greater operative freedom;
- tridimensional which permits the instantaneous grasping thereof and not in three steps as occurs with the ring instruments; and
- ringless which means unclamped fingers and simplicity as it avoids the necessity of inserting the fingers in the rings and removing them therefrom each time.
- FIG. 1 is a side view of a double-key axi-manual pair of pincers in accordance with the present invention
- FIG. 2 is a plan view of the instrument shown in FIG. 1;
- FIG. 3 is the front segment of a cross-section of FIG. 2, passing through the front stop of the smaller key and following the line A-A in FIG. 2;
- FIG. 4 illustrates the manner of holding the instrument, at the time of closing same.
- the hemostat which will be hereinafter referred to as a pair of pincers since the invention is intended to cover any surgical instrument of the finger-ring type acting in a pincers-like or scissors-like fashion, comprises generically a pair of proximal arms 1 and 2, pivoted at 3 and terminating in a pair of distal arms 4 and 5.
- each proximal arm 1 and 2 there is projected a toothed portion 6 and 7, respectively, said toothed portions being articulated so as to form a rack arrangement.
- These arms, the rack arrangement and the distal ends thereof may have any known or desired shape.
- the rear edge of each larger key 8 and 9 is formed with an anatomical notch 10 and 11, respectively, for engagement by the users thumb.
- This larger key 8, 9 is inclined and forms a downwardly and outwardly open angle of between 70 and degrees (preferably 79) with the plane passing through the proximal arms, as shown in FIG. 3. It will be seen that the larger key is outwardly lateralized, as shown in FIGS. 2 and 3. This lateralization, as well as the angle of inclination of the key, are necessary in order to release the rack.
- a smaller key which may also be designated as a pilot key or microkey, can be described, in the embodiment illustrated, as a quadrangular right prism, 12 and 13 is joined horizontally, along one of its major faces, to the outer surface of the larger key 11 and oriented in the same longitudinal direction as the latter.
- the smaller key has two free side edges 14-15 and 1617 The thumb bears on these free edges for alternatively opening and closing the rack arrangement to thereby move the instrument arms away from or towards each other.
- the forward stop 18-19 is prismatic square and constitutes a powerful retaining element for the semi-bent forefinger.
- the rear stop 20-21 is also upstanding and forms a relatively thick edge projecting from the smaller key, so that the thumb may push this element forwardly against the opposing action exerted by the forefinger from the smaller key forward stop 19 which is located below, as may be seen in FIG. 4.
- the inner face of the arm 1 Adjacent the toothed projection 6, the inner face of the arm 1 carries at the end thereof a pin 22 which fixes one end of a spring strip 23.
- the distal end of this spring strip reaches the proximity of the pivot point 3, and at this end the spring strip is formed with an elongated opening 24 engaged by a pin 25 secured to the inner face of the arm 2.
- the pin and opening prevent excessive opening of the pair of pincers, inasmuch as the pin will prevent opening of the arms beyond a certain limit, as will be readily understood.
- the spring strip 23 will urge the arms 1 and 2 to open the pincers when they are not held together by the racks in the projections 6 and 7.
- the bilaterality of the keys 8 and 9 permits the use of the pair of pincers when grasped by either of the two surfaces thereof.
- the spring strip 23 is a functional component of the pair of pincers. It would be superfluous to use it in a pair of ring pincers, since the rings will be sufiicient for the fingers to separate the pincers arms.
- the forefinger and middle finger will hold the pincers from the double key which remains downwards, engaging each of the stops 19 and 21, respectively, as may be seen in FIG. 4.
- the thumb will press forwardly against the stop 20 or 21 and the forefinger will resist such pushing action inasmuch as same is engaging the forward stop 18 or 19.
- the keys may be firmly gripped by the surgeons fingers.
- the efficiency of the smaller key is also dependent on the inclination of the larger key. of about 79.
- Double-key axi-manual pincers including a pair of crossed arms pivoted together at the crossing point, the proximal ends of said arms carrying a free rack arrangement, which comprises an elongated plate member located at the proximal end of each of said arms and constituting a larger key; said plate members being outwardly lateralized and inclined with respect to the planes of said arms at an angle of about to 70 degrees; an elongated smaller key member longitudinally superposed on said larger key; a forward stop upstanding from the forward end of said smaller key; a rear stop member upstanding from the rear end portion of said smaller key; and an elongated spring member mounted between the proximal arms of said pincers, one of the ends of said spring member being slidable along one of said arms.
- Double-key axi-manual pincers including a pair of crossed arms pivoted at the crossing point, the proximal ends of said arms carrying a free rack arrangement, which comprises a quadrangular elongated plate mem ber located at the proximal end of each of said arms, constituting a larger key and having an anatomical thumb notch at the rear edge thereof; said plate members being outwardly lateralized and inclined with respect to the planes of said arms at an angle of 85 to 70 degrees; an elongated prismatic, quadrangular smaller key member superposed longitudinally on said larger key nearer the rear edge thereof; a forward stop upstanding from the forward end portion of said smaller key; a rear upstanding flange at the rear end portion of said smaller key, constituting a rear stop means; and an elongated spring member mounted between the proximal arms of said pincers, one of the ends of said elongated spring member being slidable along one of said arms.
- Double-key axi-manual pincers according to claim 2, wherein each arm of said pincers terminates in a quadrangular elongated larger key, partly lateralized with respect to the sagittal plane of said arms and downwardly inclined so as to form an angle of from 85 to 70 degrees with said sagittal plane, the rear ends of said larger keys being formed with an anatomical thumb notch.
- Double-key axi-manual pincers according to claim 2, wherein said smaller key forward stop is a small square prism projecting from the forward end of said smaller key and serving to be engaged by the forefinger for firmly holding and directing the pincers.
- Double-key axi-manual pincers comprising a pair of crossed arms pivoted together at the crossing point there- 5 6 of; oppositely directed projections having opposed mating References Cited teeth at the proximal ends of said arms, a pair of handle UNITED STATES PATENTS plates each extending backwardly from the rear end of one, of said arms, said handle plates being outwardly 1,395,714 11/1921 Johnson 32 62 lateralized and inclined with respect to said arms at an 5 2,669,993 2/1954 Curutchet angle of between 70 and 85 degrees, a smaller plate mern- FOREIGN PATENTS ber superposed on each of said handle plates and having a forward finger-engaging projection and a rear fingergifi gg f engaging projection, and resilient means urging said arms towards the open pincers position.
- 10 L. W. TRAPP Primary Examiner.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Ophthalmology & Optometry (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Description
July 1963 P. D. CURUTCHET 3,393,680
SURGICAL INSTRUMENT Filed Dec. 22, 1965 s- 4 #f i I 2 7 /6 United States Patent 3,393,680 SURGICAL INSTRUMENT Pedro Domingo Curutchet, Av. 53, 320, La Plata, Argentina Filed Dec. 22, 1965, Ser. No. 515,661 Claims priority, application Argentina, Aug. 27, 1965, 196,002 7 Claims. (Cl. 128321) This invention relates to surgical instruments, and more particularly to a novel surgery instrument of the pincers type, such as forceps, hemostats and the like.
The use of finger-rings in instruments is attributed to Albucasis, an Arabian surgeon of Cordoba, in centuries IX and X (De chirurgia, Tasrif) the rings being then open. The applicant has found that such instruments originate in the prehistoric pincers and that before reaching the Arabian surgeon they passed, in the Hippocratic era (th century B.C.) by a rudimental ring as significant as the pincers for foreign bodies of the Epidauro museum, reproduced by Theod. Meyer-Steineg in his book, Chirurgische Instrumente des Altertums.
Later, in centuries XV and XVI, surgery shared the scissors with tailors and barbers and had to imitate the latter and not the reverse, as can be verified, for example, in the famous work Chirurgia Universale of Giovanni Andrea Dalla Croce, in the year 1574.
In short, finger-ring surgical instruments not only have a profane origin but also a prehistoric structure which was created by man when the surgery did not exist. And this anachronistic, anti-surgical structure, of an obscure empiricism, is What surgery continues to use in its most advanced present techniques of pulmonary or cardiovascular surgery.
Most surgical instruments acting in a scissors-like fashion, such as forceps, hemostats and pincers in gen eral, have finger rings and are thus cross-manual, which is equivalent to saying that they are centrifugal, since they act across the operators hand. This is anti-surgical, as is more readily found out in deep operatory regions.
Cross-manual surgical instruments have numerous drawbacks. They require increased and firm flexions of the operating surgeons wrist, the muscular contraction extending at times to the shoulder. This produces rigidity, slowness and difiiculty in obtaining precision. A ring hemostat, for example, is projected across the axis of the hand and the surgeon is forced to bend his wrist in order to correct the centrifugal cross-manual direction and reach the objective. In deep zones this bending is maximum and often obstructs the vision of depth, obstructs the operatory field and creates serious difficulties to the operating surgeon.
Many surgeons have tried to remedy in an empirical manner the affects of the cross-manual structure of such instruments, by bending or curving the arms thereof, but the disadvantages thereof still subsist.
Furthermore, besides being cross-manual, the instru ment finger rings clamp the surgeons fingers, which certainly constitutes another drawback. Also, being flat, the instrument has to be lifted from the table in order to insert the fingers in the rings thereof.
The surgical instrument in accordance with the present invention eliminates the use of finger rings and is used with the longitudinal axis thereof parallel and as close as possible to the axis of the surgeons hand. In other words, the instrument is axi-manual, and the axi-manual law is so fundamental that the operating surgeon obeys it as much as possible, even without intending to do so, in the manner as an illiterate child follows very complicated static and dynamic rules when he runs and jumps.
"ice
This can be verified in the best operating rooms in the world. In handling the scissors or a needle-holder, the surgeon withdraws his thumb from the instrument thumbring almost entirely, so as to be able to align the instrument in the direction of the hand axis. However, the prehistorical cross-manual structure of his instruments does not allow such alignment and he must torture his hands mystifying the correct axi-manual handling.
The present invention provides a double key axi-manual surgery instrument which is tridimensional and can be grasped directly, in a simple and quick manner, thus affording a further operatory advantage.
The invention can be applied to substantially all existing surgical instruments of the ring type, such as the Kocher, Pean, Rankin, Crile, Chaput, Allis and Gregoire ring hemostats, to cite only some of the most known, as Well as to visceral pincers and clamps of the Reverdin and Fooester type, etc.
The advantages of the double key axi-manual instruments according to the invention could be summarized as follows: (a) the longitudinal axis thereof is aligned with the hand axis, which means deep reach, free arm and fingers, quick and direct movement; (b) pilot key or microkey which with easy and almost imperceptible movements permits opening and closing of the instrument rack; (c) the fingers press behind the instrument rack, thus greatly decreasing the resistance of the instrument arms and affording a smoother action thereof; (d') minimum Width, less than the width of the rings, which makes it easier to handle and affords a greater operative freedom; (e) tridimensional, which permits the instantaneous grasping thereof and not in three steps as occurs with the ring instruments; and (f) ringless, which means unclamped fingers and simplicity as it avoids the necessity of inserting the fingers in the rings and removing them therefrom each time.
In order that the invention may be more clearly understood and readily carried into practice, a preferred embodiment thereof has been illustrated by way of example in the accompanying drawings, wherein a hemostat has been selected as an example of a double-key axi-manual pair of pincers. In the drawings:
FIG. 1 is a side view of a double-key axi-manual pair of pincers in accordance with the present invention;
FIG. 2 is a plan view of the instrument shown in FIG. 1;
FIG. 3 is the front segment of a cross-section of FIG. 2, passing through the front stop of the smaller key and following the line A-A in FIG. 2; and
FIG. 4 illustrates the manner of holding the instrument, at the time of closing same.
With reference to the drawings, the hemostat, which will be hereinafter referred to as a pair of pincers since the invention is intended to cover any surgical instrument of the finger-ring type acting in a pincers-like or scissors-like fashion, comprises generically a pair of proximal arms 1 and 2, pivoted at 3 and terminating in a pair of distal arms 4 and 5.
From the rear end of each proximal arm 1 and 2 there is projected a toothed portion 6 and 7, respectively, said toothed portions being articulated so as to form a rack arrangement. These arms, the rack arrangement and the distal ends thereof may have any known or desired shape.
A quadrangular plate 8, 9, hereinafter referred to as larger key, extends rearwardly from each of the proximal arms 1 and 2. The rear edge of each larger key 8 and 9 is formed with an anatomical notch 10 and 11, respectively, for engagement by the users thumb. This larger key 8, 9 is inclined and forms a downwardly and outwardly open angle of between 70 and degrees (preferably 79) with the plane passing through the proximal arms, as shown in FIG. 3. It will be seen that the larger key is outwardly lateralized, as shown in FIGS. 2 and 3. This lateralization, as well as the angle of inclination of the key, are necessary in order to release the rack.
A smaller key, which may also be designated as a pilot key or microkey, can be described, in the embodiment illustrated, as a quadrangular right prism, 12 and 13 is joined horizontally, along one of its major faces, to the outer surface of the larger key 11 and oriented in the same longitudinal direction as the latter. In this manner, the smaller key has two free side edges 14-15 and 1617 The thumb bears on these free edges for alternatively opening and closing the rack arrangement to thereby move the instrument arms away from or towards each other.
From each end of the prism and integral therewith, two very important instrumental elements are upwardly projected, viz, a forward stop 18I9 and a rear stop 202].. The forward stop 18-19 is prismatic square and constitutes a powerful retaining element for the semi-bent forefinger. The rear stop 20-21 is also upstanding and forms a relatively thick edge projecting from the smaller key, so that the thumb may push this element forwardly against the opposing action exerted by the forefinger from the smaller key forward stop 19 which is located below, as may be seen in FIG. 4.
Adjacent the toothed projection 6, the inner face of the arm 1 carries at the end thereof a pin 22 which fixes one end of a spring strip 23. The distal end of this spring strip reaches the proximity of the pivot point 3, and at this end the spring strip is formed with an elongated opening 24 engaged by a pin 25 secured to the inner face of the arm 2. The pin and opening prevent excessive opening of the pair of pincers, inasmuch as the pin will prevent opening of the arms beyond a certain limit, as will be readily understood.
The spring strip 23 will urge the arms 1 and 2 to open the pincers when they are not held together by the racks in the projections 6 and 7.
The bilaterality of the keys 8 and 9 permits the use of the pair of pincers when grasped by either of the two surfaces thereof.
The spring strip 23 is a functional component of the pair of pincers. It would be superfluous to use it in a pair of ring pincers, since the rings will be sufiicient for the fingers to separate the pincers arms.
As regards the operation of the instrument, same is as follows: When the thumb-which plays an important partpresses the superointernal edge or 17 of the smaller key, the rack members 6 and 7 will mesh with each other and the pincers will close, as is being done in FIG. 4. When the thumb presses against the superoexternal edge 14 or 16, the pincers will open. The pressure of the thumb is not in a vertical direction, but obliquely towards the opposite side.
The forefinger and middle finger will hold the pincers from the double key which remains downwards, engaging each of the stops 19 and 21, respectively, as may be seen in FIG. 4. When a firm hold is required, the thumb will press forwardly against the stop 20 or 21 and the forefinger will resist such pushing action inasmuch as same is engaging the forward stop 18 or 19. Held between these two opposing forces, the keys may be firmly gripped by the surgeons fingers.
It will thus be understood that while the forward and rear stops of the smaller or pilot key form a part thereof, functionally they are independent and unsubstitutable, and the fingers will methodically use each of them. This function of the stops is independent from the action of the thumb on the prism of the key itself. It will thus be understood why the smaller key can be termed a pilot key.
It may be added also that the efficiency of the smaller key is also dependent on the inclination of the larger key. of about 79.
However, the complete digital control of the instrument depends on those anti-anatomical and apparently insignificant small projections and geometrical volumes. Consequently, pilot key is an accurate designation and not a metaphor. And it is also the result of a constructive effort and of an intellectual and experimental elaboration of many years.
It should be obvious that the idea of the double-key axi-manual pincers of the present invention is not limited in any way to the axi-manual hemostat illustrated and described by way of example, but that many modifications, changes and/ or alterations in the shape and details thereof will occur to those skilled in the art, without departing from the scope of the invention as clearly set forth in the appended claims.
What is claimed is:
1. Double-key axi-manual pincers including a pair of crossed arms pivoted together at the crossing point, the proximal ends of said arms carrying a free rack arrangement, which comprises an elongated plate member located at the proximal end of each of said arms and constituting a larger key; said plate members being outwardly lateralized and inclined with respect to the planes of said arms at an angle of about to 70 degrees; an elongated smaller key member longitudinally superposed on said larger key; a forward stop upstanding from the forward end of said smaller key; a rear stop member upstanding from the rear end portion of said smaller key; and an elongated spring member mounted between the proximal arms of said pincers, one of the ends of said spring member being slidable along one of said arms.
2. Double-key axi-manual pincers including a pair of crossed arms pivoted at the crossing point, the proximal ends of said arms carrying a free rack arrangement, which comprises a quadrangular elongated plate mem ber located at the proximal end of each of said arms, constituting a larger key and having an anatomical thumb notch at the rear edge thereof; said plate members being outwardly lateralized and inclined with respect to the planes of said arms at an angle of 85 to 70 degrees; an elongated prismatic, quadrangular smaller key member superposed longitudinally on said larger key nearer the rear edge thereof; a forward stop upstanding from the forward end portion of said smaller key; a rear upstanding flange at the rear end portion of said smaller key, constituting a rear stop means; and an elongated spring member mounted between the proximal arms of said pincers, one of the ends of said elongated spring member being slidable along one of said arms.
3. Double-key axi-manual pincers according to claim 2, wherein each arm of said pincers terminates in a quadrangular elongated larger key, partly lateralized with respect to the sagittal plane of said arms and downwardly inclined so as to form an angle of from 85 to 70 degrees with said sagittal plane, the rear ends of said larger keys being formed with an anatomical thumb notch.
4. Double-key axi-manual pincers according to claim 2, wherein said smaller key forward stop is a small square prism projecting from the forward end of said smaller key and serving to be engaged by the forefinger for firmly holding and directing the pincers.
5. Double-key axi-manual pincers as claimed in claim 2, wherein said smaller key rear upstanding flange is a thick flange capable of receiving pressure from the users thumb in opposition to the opposite action exerted by the forefinger from said forward stop.
6. Double-key axi-manual pincers as claimed in claim 2, wherein said elongated spring member is a spring strip fixed at one end to one of said arms and having at the other end a longitudinal elongated opening engaged by a pin fixed to the other of said arms.
7. Double-key axi-manual pincers, comprising a pair of crossed arms pivoted together at the crossing point there- 5 6 of; oppositely directed projections having opposed mating References Cited teeth at the proximal ends of said arms, a pair of handle UNITED STATES PATENTS plates each extending backwardly from the rear end of one, of said arms, said handle plates being outwardly 1,395,714 11/1921 Johnson 32 62 lateralized and inclined with respect to said arms at an 5 2,669,993 2/1954 Curutchet angle of between 70 and 85 degrees, a smaller plate mern- FOREIGN PATENTS ber superposed on each of said handle plates and having a forward finger-engaging projection and a rear fingergifi gg f engaging projection, and resilient means urging said arms towards the open pincers position. 10 L. W. TRAPP, Primary Examiner.
Claims (1)
- 7. DOUBLE-KEY AXI-MANUAL PINCERS, COMPRISING A PAIR OF CROSSED ARMS PIVOTED TOGETHER AT THE CROSSING POINT THEREOF; OPPOSITELY DIRECTED PROJECTIONS HAVING OPPOSED MATING TEETH AT THE PROXIMAL ENDS OF SAID ARMS, A PAIR OF HANDLE PLATES EACH EXTENDING BACKWARDLY FROM THE REAR END OF ONE OF SAID ARMS, SAID HANDLE PLATES BEING OUTWARDLY LATERALIZED AND INCLINED WITH RESPECT TO SAID ARMS AT AN ANGLE OF BETWEEN 70 AND 85 DEGREES, A SMALLER PLATE MEM-
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AR19600265 | 1965-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3393680A true US3393680A (en) | 1968-07-23 |
Family
ID=3461413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US515661A Expired - Lifetime US3393680A (en) | 1965-08-27 | 1965-12-22 | Surgical instrument |
Country Status (1)
Country | Link |
---|---|
US (1) | US3393680A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3828791A (en) * | 1973-03-21 | 1974-08-13 | M Santos | Surgical instruments |
US3921615A (en) * | 1973-10-23 | 1975-11-25 | Paul A Dodge | Bow string release devices |
US4192314A (en) * | 1976-10-27 | 1980-03-11 | Curutchet Pedro D | Surgical instruments |
DE3103352A1 (en) * | 1981-01-31 | 1982-08-12 | Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen | TWEEZER OR PLIERS-SURGICAL INSTRUMENT |
US4392494A (en) * | 1979-02-14 | 1983-07-12 | Ashby Richard L | Ligature tying instrument |
US4413635A (en) * | 1980-04-07 | 1983-11-08 | Hughes Aircraft Company | Ophthalmic clip |
US4414985A (en) * | 1980-04-07 | 1983-11-15 | Hughes Aircraft Company | Ophthalmic clip |
EP0218544A1 (en) * | 1985-09-18 | 1987-04-15 | Fritz Gegauf Ag Bernina-Nähmaschinenfabrik | Surgical instrument |
EP0392547A1 (en) * | 1989-04-14 | 1990-10-17 | JOHNSON & JOHNSON PROFESSIONAL, INC. | Multi-position latching mechanism for forceps |
US5674228A (en) * | 1994-11-29 | 1997-10-07 | Stone Manufacturing & Supply Co., Inc. | Method for livestock castration |
US20010031221A1 (en) * | 1997-12-17 | 2001-10-18 | Wu Su-Syin S. | Apparatus and method for delivering fluids to contact surfaces between parts of a medical device |
US20030026729A1 (en) * | 1997-08-21 | 2003-02-06 | Wu Su-Syin S. | Lumen sterilization device and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1395714A (en) * | 1921-04-12 | 1921-11-01 | Johnson Albert Baxter | Forceps |
DE654976C (en) * | 1938-01-05 | Wilhelm Steinbrink | Sheath extractor, especially for game birds | |
US2669993A (en) * | 1953-01-26 | 1954-02-23 | Pedro D Curutchet | Bicapsular grip for pivoted surgical instruments |
GB966277A (en) * | 1962-11-13 | 1964-08-06 | Pedro Domingo Curutchet | Improvements in surgical instruments |
-
1965
- 1965-12-22 US US515661A patent/US3393680A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE654976C (en) * | 1938-01-05 | Wilhelm Steinbrink | Sheath extractor, especially for game birds | |
US1395714A (en) * | 1921-04-12 | 1921-11-01 | Johnson Albert Baxter | Forceps |
US2669993A (en) * | 1953-01-26 | 1954-02-23 | Pedro D Curutchet | Bicapsular grip for pivoted surgical instruments |
GB966277A (en) * | 1962-11-13 | 1964-08-06 | Pedro Domingo Curutchet | Improvements in surgical instruments |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3828791A (en) * | 1973-03-21 | 1974-08-13 | M Santos | Surgical instruments |
US3921615A (en) * | 1973-10-23 | 1975-11-25 | Paul A Dodge | Bow string release devices |
US4192314A (en) * | 1976-10-27 | 1980-03-11 | Curutchet Pedro D | Surgical instruments |
US4392494A (en) * | 1979-02-14 | 1983-07-12 | Ashby Richard L | Ligature tying instrument |
US4414985A (en) * | 1980-04-07 | 1983-11-15 | Hughes Aircraft Company | Ophthalmic clip |
US4413635A (en) * | 1980-04-07 | 1983-11-08 | Hughes Aircraft Company | Ophthalmic clip |
DE3103352A1 (en) * | 1981-01-31 | 1982-08-12 | Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen | TWEEZER OR PLIERS-SURGICAL INSTRUMENT |
US4462404A (en) * | 1981-01-31 | 1984-07-31 | Vormals Jetter & Scheerer Aesculap-Werke Aktiengesellschaft | Forceps- or tweezers-shaped surgical instrument |
EP0218544A1 (en) * | 1985-09-18 | 1987-04-15 | Fritz Gegauf Ag Bernina-Nähmaschinenfabrik | Surgical instrument |
EP0392547A1 (en) * | 1989-04-14 | 1990-10-17 | JOHNSON & JOHNSON PROFESSIONAL, INC. | Multi-position latching mechanism for forceps |
US5104397A (en) * | 1989-04-14 | 1992-04-14 | Codman & Shurtleff, Inc. | Multi-position latching mechanism for forceps |
US5674228A (en) * | 1994-11-29 | 1997-10-07 | Stone Manufacturing & Supply Co., Inc. | Method for livestock castration |
US20030026729A1 (en) * | 1997-08-21 | 2003-02-06 | Wu Su-Syin S. | Lumen sterilization device and method |
US7229591B2 (en) | 1997-08-21 | 2007-06-12 | Ethicon, Inc. | Lumen sterilization device and method |
US20010031221A1 (en) * | 1997-12-17 | 2001-10-18 | Wu Su-Syin S. | Apparatus and method for delivering fluids to contact surfaces between parts of a medical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3393680A (en) | Surgical instrument | |
US4753235A (en) | Forceps-type surgical instrument | |
US4369788A (en) | Reversed forceps for microdisc surgery | |
US5885210A (en) | Surgical retractor | |
US5449374A (en) | Tissue spreading forceps | |
US4950281A (en) | Everting forceps | |
US5176696A (en) | Handles for microsurgical instruments | |
US3659343A (en) | Suture cutter | |
US20060129187A1 (en) | Double headed tweezers | |
EP0535370A1 (en) | Handle for manipulating a laparoscopic tool | |
JPH10500583A (en) | Endoscopic microsurgical instruments and methods | |
US4724838A (en) | Footed forceps-type surgical instrument | |
AU2017204618B2 (en) | Orthopedic surgical pliers-like tool for holding and gripping a patella bone | |
US5674234A (en) | Flexible surgical razor | |
US3313294A (en) | Instruments for open-holding of cavity openings in the human body | |
JP2004525725A (en) | Surgical cutting instrument | |
US4140124A (en) | Handles for surgical instruments | |
CA1062108A (en) | Surgical retractor | |
DK163140B (en) | DEVICE FOR SURGICAL PAPER REMOVAL | |
EP1365690B1 (en) | Anatomical handle for surgical precision scalpel | |
JP4734469B1 (en) | Medical microsurgical instrument | |
JP4707932B2 (en) | Surgical cutting instrument | |
US5405353A (en) | Microsurgical needle holder | |
US4192314A (en) | Surgical instruments | |
JP6883190B2 (en) | Tooth extraction device |