US3304399A - High-frequency furnace for high-frequency heating by means of ultra-high frequencies - Google Patents
High-frequency furnace for high-frequency heating by means of ultra-high frequencies Download PDFInfo
- Publication number
- US3304399A US3304399A US350698A US35069864A US3304399A US 3304399 A US3304399 A US 3304399A US 350698 A US350698 A US 350698A US 35069864 A US35069864 A US 35069864A US 3304399 A US3304399 A US 3304399A
- Authority
- US
- United States
- Prior art keywords
- frequency
- heating
- waveguide
- waveguide systems
- heating units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 title claims description 56
- 238000005192 partition Methods 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/78—Arrangements for continuous movement of material
Definitions
- the invention relates to dielectric heating devices which utilize ultra-high frequency energy. More particularly, to a high-frequency furnace provided with several ultra-high frequency generators wherein the ultrahigh frequency oscillations of each of the ultra-high frequency generators are applied to one of several folded waveguide systems arranged in sequence.
- Each waveguide system comprises a plurality of adjacent lengths of waveguide, while a channel is provided in all the waveguide systems through which the object to be heated is passed through the various waveguide systems in sequence in a direction at right angles to the walls of the adjacent lengths of waveguide, which for this purpose are each provided with an aperture of passage.
- the high-frequency furnace according to the invention may be used to particular advantage for drying foils, tows of filaments, and the like.
- the high-frequency furnace according to the invention is characterized in that ultra-high frequency oscillations from each of the various ultra-high frequency generators are applied to the associated waveguide system through an additional folded waveguide system, which also comprises a plurality of adjacent lengths of waveguide provided with apertures in their walls for guiding the object to be heated in a direction at right angles to these walls.
- an additional folded waveguide system which also comprises a plurality of adjacent lengths of waveguide provided with apertures in their walls for guiding the object to be heated in a direction at right angles to these walls.
- all the said additional waveguide systems are disposed so as to succeed the first-mentioned waveguide systems.
- the single figure of the drawing shows a perspective view of a high-frequency furnace according to the invention, which is designed for drying a tow of filaments l, which enters the high-frequency furnace with a degree of humidity, measured in percent by weight, of about 300%, and this degree of humidity is to be reduced to, for example, exactly 12% by high-frequency heating in thehigh-frequency furnace.
- the high-frequency furnace comprises three magnetron generators 2, 3, 4 of 2 kw. each for generating oscillations at a frequency of, for example, 2450 mc./s.
- the ultra-high frequency oscillations of each of the magnetron-generators 2, 3, 4 are applied through wave-guides 5, 6, 7 to individual ones of three folded waveguide systems 8, 9, 10 arranged in sequence.
- the outer wall of the waveguide system 10 is partially broken away to show that the folded waveguide system 10, which is contained in a box, is in the form of a plurality of adjacent lengths of waveguide which are joined to one another, each pair of adjoining lengths being separated from one another by a common boundary wall.
- Ultra-high frequency oscillations of the TE mode are fed into the folded waveguide systems 8, 9, 10 through the waveguides 5, 6, 7 and propagate in the folded waveguide systems 8, 9, 10 in a manner such that the direction of polarisation of the electric field vector is at right angles to the common boundary walls.
- a channel 11 is provided in each of the folded waveguide systems 8, 9, 10 in a direction at right angles to the boundary walls of the adjoining lengths of waveguide, each wall being provided with a slit-shaped aperture of passage.
- the tow of filaments to be dried passes successively through the waveguide systems 8, 9, 10 fed by the magnetron generators 4, 3, 2.
- Short-circuit plungers 12, 13, 14 are arranged in the wave-guides 5, 6, 7 to provide load-matching for the magnetron generators 2, 3, 4.
- the tow of filaments 1 to be dried is thus led through the folded waveguide systems 8, 9, 10 in sequence, in each of said folded waveguide systems 8, 9, 10 the ultrahigh frequency oscillations of the TE mode are guided along the tow 1 in the successive lengths of waveguide so that the tow 1 is dried by the dielectric heating produced.
- the tow 1 when passing through the folded waveguide systems 8, 9, 10 absorbs a power which is proportional to the squareof the electric field strength and to the value of the instantaneous load.
- the length of the highfrequency furnace is reduced and at the same time the heating efiiciency is improved by applying the ultra-high frequency'oscillations produced by the various magnetron generators 2, 3, 4 to the associated wave guide systems 10, 9, 8 through additional folded wave guide systems 15, 16, 17.
- Each of the latter wave guide systems also comprise a plurality of adjacent lengths of waveguide provided with apertures in their walls which form a channel 11 for guiding the object to be heated in a direction at right angles to the walls of the waveguides.
- the said additional waveguide systems 15, 16, 17 are arranged so as to succeed the firstmentioned waveguide systems 8, 9, 10.
- the outer wall of the additional waveguide system 15 is partly broken away so as to show that this system, similarly to the waveguide system 10, comprises a plurality of lengths of waveguide joined to one another,
- the degree of humidity of the tow of filaments 1 is considerably reduced by the high-frequency heating in the folded waveguide systems 8, 9, 10, after which this tow 1 is passed through the additional waveguide systems 15, 16, 17 for further reduction of the degree of humidity to the desired value.
- the degree of humidity of the tow 1 after passing through the folded waveguide systems 8, 9, may be and is to be reduced to the desired value of 12% in the additional wave-guide systems 15, 16. 17.
- the load imposed on the waveguide systems 15, 16, 17 is considerably decreased owing to the reduction in the degree of humidity of the tow 1.
- high-frequency heating is effected at the maximum field strength of the high-frequency oscillations due to their direct connection to the magnetron generators 2, 3, 4, and this maximum field strength is substantially maintained in the folded waveguide systems 15, 16, 17 owing to the slight dissipative power of the small load imposed by the tow 1 having a low degree of humidity.
- the efficiency of the magnetron generators 2, 3, 4 is particularly high because of the fact that the high-frequency oscillations after passing through the folded waveguide systems 15, 16, 17 are applied, through the waveguides 5, 6, 7, to the first-mentioned folded waveguide systems 8, 9, 11) for the magnetron generators 2, 3, 4 are each connected to one of the folded wave guide systems 15, 16, 17 and to one of the folded Waveguide systems 8, 9, 10, which represent a light load and a heavy load respectively, so that the overall loading of each of the magnetrons is favourable.
- the matching plungers 12, 13, 14 permit an optimum power transfer from the magnetron generators 2, 3, 4 to the tow of filaments 1.
- the length of the high-frequency furnace is reduced while its heating efficiency is increased, and furthermore an effective drying process is achieved.
- the high-frequency furnace described provides the important practical effect of remarkable uniformity of the drying process. If, for ex- :ample, the tow of filaments 1 before passing through the waveguide systems 15, 16, 17 shows differences in degree of humidity along its width, at the area of the highest degree of humidity of the said tow 1 due to the increase in the load at this area the power absorbed at this area and hence the drying effect will greatly increase, since the absorbed power is proportional to the value of the load and to the square of the electric field strength, which has a maximum value in the waveguide systems 15, 16, 17.
- the folded waveguide systems 15, 16, 17 provide a highly equalising effect with respect to differences in degree of humidity and it has been found, for example, that the difference in degree of humidity of the tow 1 after passing through the high-frequency furnace are less than a few tenths of a percent.
- a tow of filaments 1 having a length of 3 kms. and a width of 50 cms. was treated per hour to reduce the degree of humidity from 300% to 12%.
- the efii-ciency of the furnace was The structure of the high-frequency furnace, in which high-frequency heating is performed at a maximum field strength with a low degree of humidity of the tow of filaments in the folded waveguide systems 15, 16, 17 and in which the ultra-high frequency oscillations taken from the waveguide systems 15, 16, 17 are used for high-frequency heating of the tow with a comparatively high degree of humidity in the folded waveguide systems 8, 9, 10, permits of further reducing the size of the high-frequency furnace, which is effected by reducing the spacings between the boundary walls of the lengths of waveguide in the waveguide systems 8, 9, 10.
- High-frequency heating apparatus comprising first and second groups of heating units sequentially arranged in the path of an object to be heated, each of said heating units comprising a waveguide structure having a plurality of spaced partition members extending transversely to said path and arranged to form a plurality of adjacent waveguide sections interconnected to define a serpentine path for high-frequency energy, each of said partition members having an aperture therein to form a channel for the passage of said object, a plurality of high-frequency generators coupled to individual ones of the heating units of said first group, and means for coupling the heating units of said first group to individual ones of the heating units of said second group thereby forming a high-frequency energy propagation path for each generator com prising a heating unit of each of said first and second groups.
- partition members of said heating unit comprise parallel walls having aligned apertures therein arranged to allow said object to pass through said waveguide structures in sequence in a direction at right angles to the walls of the adjacent waveguide sections.
- High-frequency heating apparatus comprising first and second equal groups of heating units sequentially arranged in the path of an object to be heated, all of the heating units of said second group being arranged ahead of the heating units of said first group so that said object passes through said second group of heating units before it passes through said first group of heating units, each of said heating units comprising a waveguide structure having a plurality of parallel spaced partition members extending transversely to said path and arranged to form a plurality of adjacent waveguide sections interconnected to define a serpentine path for high-frequency energy, said partition members having aligned apertures therein for passage of said object, a plurality of high-frequency generators equal to the number of heating units of said first group, means for coupling each of said generators to an individual one of the heating units of said first group, and energy coupling means interconnecting the References Cited by the Examiner UNITED STATES PATENTS 2,521,993 9/1950 Parker 219-1055 2,640,142 5/1953 Kinn 219-10.55 3,027,442
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Drying Of Solid Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL290076 | 1963-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3304399A true US3304399A (en) | 1967-02-14 |
Family
ID=19754509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US350698A Expired - Lifetime US3304399A (en) | 1963-03-11 | 1964-03-10 | High-frequency furnace for high-frequency heating by means of ultra-high frequencies |
Country Status (10)
Country | Link |
---|---|
US (1) | US3304399A (tr) |
AT (1) | AT241637B (tr) |
BE (1) | BE644931A (tr) |
CH (1) | CH415896A (tr) |
DE (1) | DE1515067C3 (tr) |
DK (1) | DK106104C (tr) |
ES (1) | ES297396A1 (tr) |
GB (1) | GB1051091A (tr) |
NL (1) | NL290076A (tr) |
SE (1) | SE305496B (tr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413433A (en) * | 1965-03-27 | 1968-11-26 | Philips Corp | High-frequency heating devices comprising a waveguide for heating thin widths of material |
US3470343A (en) * | 1966-09-13 | 1969-09-30 | Rank Organisation Ltd | Heat treatment of sheet and web materials |
US3471672A (en) * | 1967-04-28 | 1969-10-07 | Varian Associates | Slotted waveguide applicator |
US3500012A (en) * | 1967-03-07 | 1970-03-10 | Kenneth Hilton | Microwave heating apparatus |
US3506467A (en) * | 1966-12-12 | 1970-04-14 | Francis S Ulrich | Applying a protective film to unset printing ink on backing material |
US3622733A (en) * | 1970-01-28 | 1971-11-23 | Cryodry Corp | Method and apparatus for drying sheet materials |
US3666905A (en) * | 1969-04-25 | 1972-05-30 | Messrs Paul Troester Maschinen | Method and apparatus for dielectric heating |
US3710064A (en) * | 1971-06-03 | 1973-01-09 | Mac Millan Bloedel Ltd | Microwave drying system |
US5217656A (en) * | 1990-07-12 | 1993-06-08 | The C. A. Lawton Company | Method for making structural reinforcement preforms including energetic basting of reinforcement members |
US5866060A (en) * | 1989-12-06 | 1999-02-02 | C. A. Lawton Company | Method for making preforms |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4446348A (en) * | 1982-03-29 | 1984-05-01 | E. I. Du Pont De Nemours And Company | Serpentine microwave applicator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE629047A (tr) * | ||||
US2521993A (en) * | 1948-04-30 | 1950-09-12 | Rca Corp | Radio-frequency heating electrode for filamentary material |
US2640142A (en) * | 1946-10-04 | 1953-05-26 | Westinghouse Electric Corp | Microwave heating |
US3027442A (en) * | 1960-02-29 | 1962-03-27 | Philips Corp | High-frequency furnaces |
FR1370675A (fr) * | 1963-06-26 | 1964-08-28 | Chausson Usines Sa | Four à ondes d'hyperfréquence, notamment pour la cuisson de feuilles ou plaques en matière synthétique et applications analogues |
GB982171A (en) * | 1962-10-26 | 1965-02-03 | Philips Electronic Associated | Improvements in or relating to high-frequency ovens |
-
0
- NL NL290076D patent/NL290076A/xx unknown
- GB GB1051091D patent/GB1051091A/en active Active
-
1964
- 1964-03-06 CH CH297764A patent/CH415896A/de unknown
- 1964-03-07 DK DK115864AA patent/DK106104C/da active
- 1964-03-09 SE SE2937/64A patent/SE305496B/xx unknown
- 1964-03-09 AT AT200864A patent/AT241637B/de active
- 1964-03-09 DE DE1515067A patent/DE1515067C3/de not_active Expired
- 1964-03-09 BE BE644931A patent/BE644931A/xx unknown
- 1964-03-09 ES ES0297396A patent/ES297396A1/es not_active Expired
- 1964-03-10 US US350698A patent/US3304399A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE629047A (tr) * | ||||
US2640142A (en) * | 1946-10-04 | 1953-05-26 | Westinghouse Electric Corp | Microwave heating |
US2521993A (en) * | 1948-04-30 | 1950-09-12 | Rca Corp | Radio-frequency heating electrode for filamentary material |
US3027442A (en) * | 1960-02-29 | 1962-03-27 | Philips Corp | High-frequency furnaces |
GB982171A (en) * | 1962-10-26 | 1965-02-03 | Philips Electronic Associated | Improvements in or relating to high-frequency ovens |
FR1370675A (fr) * | 1963-06-26 | 1964-08-28 | Chausson Usines Sa | Four à ondes d'hyperfréquence, notamment pour la cuisson de feuilles ou plaques en matière synthétique et applications analogues |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413433A (en) * | 1965-03-27 | 1968-11-26 | Philips Corp | High-frequency heating devices comprising a waveguide for heating thin widths of material |
US3470343A (en) * | 1966-09-13 | 1969-09-30 | Rank Organisation Ltd | Heat treatment of sheet and web materials |
US3506467A (en) * | 1966-12-12 | 1970-04-14 | Francis S Ulrich | Applying a protective film to unset printing ink on backing material |
US3500012A (en) * | 1967-03-07 | 1970-03-10 | Kenneth Hilton | Microwave heating apparatus |
US3471672A (en) * | 1967-04-28 | 1969-10-07 | Varian Associates | Slotted waveguide applicator |
US3666905A (en) * | 1969-04-25 | 1972-05-30 | Messrs Paul Troester Maschinen | Method and apparatus for dielectric heating |
US3622733A (en) * | 1970-01-28 | 1971-11-23 | Cryodry Corp | Method and apparatus for drying sheet materials |
US3710064A (en) * | 1971-06-03 | 1973-01-09 | Mac Millan Bloedel Ltd | Microwave drying system |
US5866060A (en) * | 1989-12-06 | 1999-02-02 | C. A. Lawton Company | Method for making preforms |
US6001300A (en) * | 1989-12-06 | 1999-12-14 | C.A. Lawton Company | Method for making rigid three-dimensional preforms using directed electromagnetic energy |
US6004123A (en) * | 1989-12-06 | 1999-12-21 | C.A. Lawton Company | Apparatus for making preforms |
US5217656A (en) * | 1990-07-12 | 1993-06-08 | The C. A. Lawton Company | Method for making structural reinforcement preforms including energetic basting of reinforcement members |
US5827392A (en) * | 1990-07-12 | 1998-10-27 | C.A. Lawton Company | Method for making structural reinforcement preforms including energetic basting of reinforcement members |
Also Published As
Publication number | Publication date |
---|---|
GB1051091A (tr) | |
NL290076A (tr) | |
BE644931A (tr) | 1964-09-09 |
ES297396A1 (es) | 1964-09-01 |
DE1515067B2 (de) | 1973-05-30 |
SE305496B (tr) | 1968-10-28 |
CH415896A (de) | 1966-06-30 |
DK106104C (da) | 1966-12-19 |
DE1515067A1 (de) | 1969-06-26 |
AT241637B (de) | 1965-08-10 |
DE1515067C3 (de) | 1973-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3304399A (en) | High-frequency furnace for high-frequency heating by means of ultra-high frequencies | |
CA1162615A (en) | Microwave energy heating device with two waveguides coupled side-by-side | |
US2749523A (en) | Band pass filters | |
US3564458A (en) | Branched waveguide transitions with mode filters | |
US4118653A (en) | Variable energy highly efficient linear accelerator | |
US3851131A (en) | Multimode microwave cavities for microwave heating systems | |
KR20030031112A (ko) | 유도결합을 사용하는 유전성 가열기 | |
US3632945A (en) | System and method for heating material employing oversize waveguide applicator | |
US3235702A (en) | High-frequency oven | |
US2600509A (en) | Traveling wave tube | |
US3160887A (en) | Broadside array with adjustable coupling network for beam shaping | |
US3523297A (en) | Dual frequency antenna | |
US6888115B2 (en) | Cascaded planar exposure chamber | |
US2810854A (en) | Serpentine traveling wave tube | |
US2617961A (en) | Electron tube for very high frequencies | |
GB1234622A (tr) | ||
US2974252A (en) | Low noise amplifier | |
US3597567A (en) | Microwave applicator for heating continuous web | |
US3597566A (en) | Resonant cavity microwave applicator | |
US2453760A (en) | Cavity resonator | |
US3189908A (en) | Ridged waveguide slot antenna | |
US3227959A (en) | Crossed fields electron beam parametric amplifier | |
US2842705A (en) | Particle accelerator | |
US3218586A (en) | Transmission of dominant transverse electric mode in large rectangular waveguide, with polarization parallel to width, by use of mode absorber | |
US2853682A (en) | Waveguide filter |