US3286115A - Electroluminescent lamp with boric acid or boric oxide used in conjunction with the zinc sulphide layer - Google Patents
Electroluminescent lamp with boric acid or boric oxide used in conjunction with the zinc sulphide layer Download PDFInfo
- Publication number
- US3286115A US3286115A US346605A US34660564A US3286115A US 3286115 A US3286115 A US 3286115A US 346605 A US346605 A US 346605A US 34660564 A US34660564 A US 34660564A US 3286115 A US3286115 A US 3286115A
- Authority
- US
- United States
- Prior art keywords
- zinc sulphide
- boric
- electroluminescent
- electrodes
- boric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000005083 Zinc sulfide Substances 0.000 title claims description 20
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 title claims description 20
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 title claims description 19
- 239000004327 boric acid Substances 0.000 title claims description 18
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 title claims description 16
- 229910011255 B2O3 Inorganic materials 0.000 title claims description 11
- 239000000463 material Substances 0.000 claims description 15
- 239000011230 binding agent Substances 0.000 claims description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 16
- 229910052984 zinc sulfide Inorganic materials 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- KXJGSNRAQWDDJT-UHFFFAOYSA-N 1-acetyl-5-bromo-2h-indol-3-one Chemical compound BrC1=CC=C2N(C(=O)C)CC(=O)C2=C1 KXJGSNRAQWDDJT-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920004459 Kel-F® PCTFE Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- NYZGMENMNUBUFC-UHFFFAOYSA-N P.[S-2].[Zn+2] Chemical compound P.[S-2].[Zn+2] NYZGMENMNUBUFC-UHFFFAOYSA-N 0.000 description 1
- XEHUYCFKGDBCDL-UHFFFAOYSA-N S(=O)(=O)(O)[Se]S(=O)(=O)O.[Zn] Chemical compound S(=O)(=O)(O)[Se]S(=O)(=O)O.[Zn] XEHUYCFKGDBCDL-UHFFFAOYSA-N 0.000 description 1
- 241000009298 Trigla lyra Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- -1 copper-activated zinc sulphide phosphor Chemical class 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- UQMZPFKLYHOJDL-UHFFFAOYSA-N zinc;cadmium(2+);disulfide Chemical compound [S-2].[S-2].[Zn+2].[Cd+2] UQMZPFKLYHOJDL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
- H05B33/145—Arrangements of the electroluminescent material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/20—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
Definitions
- This invention relates to organic electroluminescent devices, that is, electroluminescent devices in which the phosphor is dispersed in an organic medium, and in particular to flexible organic electroluminescent devices, in which the electroluminescent cell or cells are not supported on a rigid base, but are enveloped in a flexible envelope which is light-transmitting over at least a part of its surface.
- a flexible organic electroluminescent device in which a layer of an electroluminescent material of the zinc sulphide type dispersed in an organic medium contains and/ or is in contact with boric acid or boric oxide.
- Devices according to the invention not only exhibit superior maintenance of light output after long use but also show less discolor-ation in use.
- Electroluminescent materials of the zinc sulphide type include, apart from zinc sulphide itself, related phosphors such as zinc cadmium sulphide, zinc selenide and zinc sulpho-selenide.
- the amount of boric acid or oxide used is preferably between 0. 25 and 30%, and is advantageously between and 15% of the weight of the dry phosphor.
- the boric acid or oxide can be incorporated in the dielectric layer.
- the boric acid or oxide is included as a separate film between the phosphor layer and a light-transmitting electrode.
- the boric acid or oxide When the boric acid or oxide is to be incorporated in the phosphor layer it can be added to the phosphor before fabricating the lamp by griding and sieving and then mixing thoroughly with the phosphor. Alternatively a solution of the boric acid or oxide can be added to the phosphor powder which is then dried, ground and sieved.
- FIG. 1 shows a flexible electroluminescent device, of the type described in copending application No. 176,373 and FIG. 2 is a section along the lines IIII of FIG. 1.
- FIG. 1 there is shown a number of individual electroluminescent cells 2 arranged end to end over continuous strip current conveyors 4, 4, the whole assembly being sealed in an envelope 6 of transparent plastic.
- the envelope 6 is sealed at '8 between the individual cells, and the connectors 10, 12 in each cell 2 connect the current conveyors 4, 4 with the electrodes of the cell.
- the envelope 6 is of transparent plastic film, such as polythene about 0.015 inch thick or Kel-F film about 0.005 inch thick, and the current conveyor 4 and connector (and the conveyor 4 and connector 12, not shown) are of flexible copper strip or ribbon.
- Each cell comprises a layer 14 of a phosphor in a binder, such as cyanoethylcellulose or a vinylidene copolymer, sandwiched between a transparent conducting electrode 16 and a base electrode 18 of aluminum coated with a dielectric layer 20 of barium titanate dispersed in a cyanoethylcellulose or vinylidene copolymer binder.
- the transparent electrode 16 is of micro-fibre glass paper, rendered conductive by treatment such as described in application No. 176,373.
- the layer 22 is of polythene or nylon, which on heating fuses to bond the electrode 16 to the phosphor layer 14 and to the connector 10.
- Example 1 A quantity of a powdered copper-activated zinc sulphide phosphor was intimately mixed with 10% by weight of boric acid of analytical reagent grade which had previously been finely ground and sieved through a 250 mesh silk sieve. The phosphor/boric acid mixture was then used in the construction of an electroluminescent device as described above. Similar devices were constructed in which the quantities of boric used were respectively 0%, 7 /2%, 12 /2%, 15% and 20% of the weight of the dry phosphor powder.
- Example 2 Percent of H3BO3 Hours of continuousrunning Example 2 A powdered zinc sulphide phosphor, finely ground and sieved through a 250 mesh silk sieve was intimately mixed with 8% by weight of boric oxide of analytical reagent grade. The mixture obtained was used in the construction of a flexible electroluminescent device as described in Example 1. The resulting device showed a light output maintenance similar to that of the device employing 10% by weight of boric acid as shown in the above table.
- An electroluminescent device comprising a hermetically sealed flexible envelope at least a portion of which is light-transmitting, and an electroluminescent cell embedded in said envelope, said cell comprising a pair of spaced electrodes superposed in face to face relationship at least one of said electrodes being light-transmitting, means for conducting current to each of said electrodes, and a layer of a zinc sulfide electroluminescent phosphor dispersed in an organic binder sandwiched between said electrodes, said zinc sulphide being substantially in contact with a material consisting essentially of a member selected from the group consisting of boric .acid and boric oxide.
- An electroluminescent device comprising .a hermetically sealed flexible envelope at least a portion of which is light-transmitting, and an electroluminescent cell embedded in said envelope, said cell comprising a pair of spaced electrodes superposed in face to face relationship at least one of. said electrodes being light-transmitting, means for conducting current to each of said electrodes, and an electroluminescent layer of zinc sulfide and a material consisting essentially of a member selected from the group consisting of boric acid and boric oxide uniformly dispersed in an organic binder layer sandwiched between said electrodes.
- An electroluminescent device wherein said layer contains from about 0.25% to about 30% by weight of said material based on the dry weight of the zinc sulphide.
- An electroluminescent device wherein said layer contains from about 5% to about 15% 'by weight of said material based on the dry Weight of the zinc sulphide.
- An electroluminescent device comprising a hermetically sealed flexible envelope at least a port-ion of which is light-transmitting, and an electroluminescent cell embedded in said envelope, said cell comprising a pair of spaced electrodes superposed in vface to face relationship at lea-st one of said electrodes being light-transmitting, means for conducting current to each of said electrodes, and a pair of layers sandwiched between said electrodes in face to face contact, the first of said layer-s comprising a zinc sulfide electroluminescent phosphor substantially uniformly dispersed in an organic binder and the second of said layers comprising a material consisting essentially of a member selected from the group consisting of boric acid and boric oxide.
- An electroluminescent device according to claim 5, wherein said second layer contains from about 0.25% to about 30% by weight of said material based on the dry weight of the zinc sulphide.
- An electroluminescent device comprising .a hermetically sealed flexible envelope at least a portion of which is light-transmitting, and an electroluminescent cell embedded in said envelope, said cell comprising .a light-trans rnitting electrode and an opaque electrode superposed in spaced face to face relationship, means for conducting current to each of said electrodes, and two layers sandwiched between said electrodes in face to face contact, the first of said layers being disposed between said opaque electrode and the second of said layers and comprising a member selected from the group consisting of boric acid and boric oxide substantially uniformly dispersed in a dielectric material and the second of said layers comprising a zinc sulfide electroluminescent phosphor substantially uniformly dispersed in an organic binder.
- An electroluminescent device wherein said first layer contains from about 0.25% to about 30% by weight of said material based on the dry weight of the zinc sulphide.
- An electroluminescent device wherein said first layer contains from about 5% to about 15% by weight of said material based on the dry weight of the zinc sulphide.
- a laminated electroluminescent device comprising an envelope of thermoplastic material at least a portion of which is light-transmitting, at least two electroluminescent cells hermetically sealed within the envelope and insulated from each other by the hermetic seal of said envelope, said cells comprising at least two superposed electrodes, at least one of which is light-transmitting, and a layer of light-emitting material including a zinc sulfide electroluminescent phosphor disposed between said electrodes, said electroluminescent material consisting essentially of at least one member being substantially in contact with a material selected from the group consisting of boric acid and boric oxide; means to conduct current to each of said electrodes in each of said electro1umi nescent ce l-ls, said means comprising at least two longitudinally disposed current conveying means, insulated from each other, and each insulated from one of the electrodes in said cells, said current conveying means extending along the length of said electroluminescent device and passing across the seal between each of said elec troluminescent
Landscapes
- Luminescent Compositions (AREA)
- Electroluminescent Light Sources (AREA)
Description
Nov. 15, 1966 v P w. RANBY ETAL 3,286,115
ELECTROLUMINESCENTIAMP WITH BORIC ACID OR BORIC OXIDE USED IN CONJUNCTION WITH THE ZINC SULPHIDE LAYER Filed Feb. 24, 1964 PETER WHITTEN RANBY DAVID WlLLlAM SMITH //vvEA/T0S United States Patent Ofllice 3,286,115 Patented Nov. 15, 1966 3,286,115 ELECTROLUMINESCENT LAMP WITH BORIC ACID R BORIC OXIDE USED IN CONJUNC- TION WITH THE ZINC SULPHIDE LAYER Peter Whitten Ranby and David William Smith, London,
England, assignors to Thorn Electrical Industries Limited, London, England, a British company Filed Feb. 24, 1964, Ser. No. 346,605 Claims priority, application Great Britain, Feb. 25, 1963, 7,534/ 63 11 Claims. (Cl. 313108) This invention relates to organic electroluminescent devices, that is, electroluminescent devices in which the phosphor is dispersed in an organic medium, and in particular to flexible organic electroluminescent devices, in which the electroluminescent cell or cells are not supported on a rigid base, but are enveloped in a flexible envelope which is light-transmitting over at least a part of its surface.
It is an object of the present invention to provide a flexible organic electroluminescent device showing improved maintenance of light output.
According to the invention there is provided a flexible organic electroluminescent device in which a layer of an electroluminescent material of the zinc sulphide type dispersed in an organic medium contains and/ or is in contact with boric acid or boric oxide. Devices according to the invention not only exhibit superior maintenance of light output after long use but also show less discolor-ation in use.
Electroluminescent materials of the zinc sulphide type include, apart from zinc sulphide itself, related phosphors such as zinc cadmium sulphide, zinc selenide and zinc sulpho-selenide.
The amount of boric acid or oxide used is preferably between 0. 25 and 30%, and is advantageously between and 15% of the weight of the dry phosphor. Where the device contains a layer of dielectric material disposed between the phosphor layer and an opaque electrode, the boric acid or oxide can be incorporated in the dielectric layer.
In another embodiment of the invention, the boric acid or oxide is included as a separate film between the phosphor layer and a light-transmitting electrode.
When the boric acid or oxide is to be incorporated in the phosphor layer it can be added to the phosphor before fabricating the lamp by griding and sieving and then mixing thoroughly with the phosphor. Alternatively a solution of the boric acid or oxide can be added to the phosphor powder which is then dried, ground and sieved.
The invention will now he further described with reference to the following specific examples of the construction of a flexible electroluminescent device, taken in conjunction with the accompanying drawings, in which:
FIG. 1 shows a flexible electroluminescent device, of the type described in copending application No. 176,373 and FIG. 2 is a section along the lines IIII of FIG. 1.
Referring to FIG. 1, there is shown a number of individual electroluminescent cells 2 arranged end to end over continuous strip current conveyors 4, 4, the whole assembly being sealed in an envelope 6 of transparent plastic. The envelope 6 is sealed at '8 between the individual cells, and the connectors 10, 12 in each cell 2 connect the current conveyors 4, 4 with the electrodes of the cell.
In the particular construction shown in FIG. 2 the envelope 6 is of transparent plastic film, such as polythene about 0.015 inch thick or Kel-F film about 0.005 inch thick, and the current conveyor 4 and connector (and the conveyor 4 and connector 12, not shown) are of flexible copper strip or ribbon. Each cell comprises a layer 14 of a phosphor in a binder, such as cyanoethylcellulose or a vinylidene copolymer, sandwiched between a transparent conducting electrode 16 and a base electrode 18 of aluminum coated with a dielectric layer 20 of barium titanate dispersed in a cyanoethylcellulose or vinylidene copolymer binder. The transparent electrode 16 is of micro-fibre glass paper, rendered conductive by treatment such as described in application No. 176,373. The layer 22 is of polythene or nylon, which on heating fuses to bond the electrode 16 to the phosphor layer 14 and to the connector 10.
Example 1 A quantity of a powdered copper-activated zinc sulphide phosphor was intimately mixed with 10% by weight of boric acid of analytical reagent grade which had previously been finely ground and sieved through a 250 mesh silk sieve. The phosphor/boric acid mixture was then used in the construction of an electroluminescent device as described above. Similar devices were constructed in which the quantities of boric used were respectively 0%, 7 /2%, 12 /2%, 15% and 20% of the weight of the dry phosphor powder.
These lamps were run continuously and their respective brightnesses compared after various intervals, with the following results, 100 being taken as the initial brightness of the boric acid free lamp:
Percent of H3BO3 Hours of continuousrunning Example 2 A powdered zinc sulphide phosphor, finely ground and sieved through a 250 mesh silk sieve was intimately mixed with 8% by weight of boric oxide of analytical reagent grade. The mixture obtained was used in the construction of a flexible electroluminescent device as described in Example 1. The resulting device showed a light output maintenance similar to that of the device employing 10% by weight of boric acid as shown in the above table.
What is claimed is:
1. An electroluminescent device comprising a hermetically sealed flexible envelope at least a portion of which is light-transmitting, and an electroluminescent cell embedded in said envelope, said cell comprising a pair of spaced electrodes superposed in face to face relationship at least one of said electrodes being light-transmitting, means for conducting current to each of said electrodes, and a layer of a zinc sulfide electroluminescent phosphor dispersed in an organic binder sandwiched between said electrodes, said zinc sulphide being substantially in contact with a material consisting essentially of a member selected from the group consisting of boric .acid and boric oxide.
2. An electroluminescent device comprising .a hermetically sealed flexible envelope at least a portion of which is light-transmitting, and an electroluminescent cell embedded in said envelope, said cell comprising a pair of spaced electrodes superposed in face to face relationship at least one of. said electrodes being light-transmitting, means for conducting current to each of said electrodes, and an electroluminescent layer of zinc sulfide and a material consisting essentially of a member selected from the group consisting of boric acid and boric oxide uniformly dispersed in an organic binder layer sandwiched between said electrodes.
3. An electroluminescent device according to claim 2, wherein said layer contains from about 0.25% to about 30% by weight of said material based on the dry weight of the zinc sulphide.
4. An electroluminescent device according to claim 2, wherein said layer contains from about 5% to about 15% 'by weight of said material based on the dry Weight of the zinc sulphide.
5. An electroluminescent device comprising a hermetically sealed flexible envelope at least a port-ion of which is light-transmitting, and an electroluminescent cell embedded in said envelope, said cell comprising a pair of spaced electrodes superposed in vface to face relationship at lea-st one of said electrodes being light-transmitting, means for conducting current to each of said electrodes, and a pair of layers sandwiched between said electrodes in face to face contact, the first of said layer-s comprising a zinc sulfide electroluminescent phosphor substantially uniformly dispersed in an organic binder and the second of said layers comprising a material consisting essentially of a member selected from the group consisting of boric acid and boric oxide.
6. An electroluminescent device according to claim 5, wherein said second layer contains from about 0.25% to about 30% by weight of said material based on the dry weight of the zinc sulphide.
7. An electroluminescent device according to claim 5, wherein said second layer contains from about 5% to about 15% by weight of said material based on the dry weigh-t of the zinc sulphide.
8. An electroluminescent device comprising .a hermetically sealed flexible envelope at least a portion of which is light-transmitting, and an electroluminescent cell embedded in said envelope, said cell comprising .a light-trans rnitting electrode and an opaque electrode superposed in spaced face to face relationship, means for conducting current to each of said electrodes, and two layers sandwiched between said electrodes in face to face contact, the first of said layers being disposed between said opaque electrode and the second of said layers and comprising a member selected from the group consisting of boric acid and boric oxide substantially uniformly dispersed in a dielectric material and the second of said layers comprising a zinc sulfide electroluminescent phosphor substantially uniformly dispersed in an organic binder.
9. An electroluminescent device according to claim 8, wherein said first layer contains from about 0.25% to about 30% by weight of said material based on the dry weight of the zinc sulphide.
10. An electroluminescent device according to claim 8, wherein said first layer contains from about 5% to about 15% by weight of said material based on the dry weight of the zinc sulphide.
11. A laminated electroluminescent device comprising an envelope of thermoplastic material at least a portion of which is light-transmitting, at least two electroluminescent cells hermetically sealed within the envelope and insulated from each other by the hermetic seal of said envelope, said cells comprising at least two superposed electrodes, at least one of which is light-transmitting, and a layer of light-emitting material including a zinc sulfide electroluminescent phosphor disposed between said electrodes, said electroluminescent material consisting essentially of at least one member being substantially in contact with a material selected from the group consisting of boric acid and boric oxide; means to conduct current to each of said electrodes in each of said electro1umi nescent ce l-ls, said means comprising at least two longitudinally disposed current conveying means, insulated from each other, and each insulated from one of the electrodes in said cells, said current conveying means extending along the length of said electroluminescent device and passing across the seal between each of said elec troluminescent cells.
References Cited by the Examiner UNITED STATES PATENTS 2,941,103 6/1960 Nagy et al. 313-108 2,944,177 7/1960 Piper 313-108 2,945,128 7/ 1960 Kuan-Han Sun et al. 250- 3,161,797 12/1964 Butler et al. 313-108 JAMES W. LAWRENCE, Primary Examiner. R. JUDD, Assistant Examiner.
Claims (1)
1. AN ELECTROLUMINESCENT DEVICE COMPRISING A HERMETICALLY SEALED FLEXIBLE ENVELOPE AT LEAST A PORTION OF WHICH IS LIGHT-TRANSMITTING, AND AN ELECTROLUMINESCENT CELL EMBEDDED IN SAID ENVELOPE, SAID CELL COMPRISING A PAIR OF SPACED ELECTRODES SUPERPOSED IN FACE TO FACE RELATIONSHIP AT LEAST ONE OF SAID ELECRODES BEING LIGHT-TRANSMITTING, MEANS FOR CONDUCTING CURRENT TO EACH OF SAID ELECTRODES, AND A LAYER OF A ZINC SULPHIDE BEING SUBSTANTIALLY IN CONDISPERSED IN AN ORGANIC BINDER SANDWICHED BETWEEN SAID ELECTRODES, SAID ZINC SULPHIDE BEING SUBSTANTIALLY IN CONTACT WITH A MATERIAL CONSISTING ESSENTIALLY OF A NUMBER SELECTED FROM THE GROUP CONSISTING OF BORIC ACID AND BORIC OXIDE.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB7534/63A GB994680A (en) | 1963-02-25 | 1963-02-25 | Improved electroluminescent device |
Publications (1)
Publication Number | Publication Date |
---|---|
US3286115A true US3286115A (en) | 1966-11-15 |
Family
ID=9834956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US346605A Expired - Lifetime US3286115A (en) | 1963-02-25 | 1964-02-24 | Electroluminescent lamp with boric acid or boric oxide used in conjunction with the zinc sulphide layer |
Country Status (2)
Country | Link |
---|---|
US (1) | US3286115A (en) |
GB (1) | GB994680A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4458177A (en) * | 1980-12-22 | 1984-07-03 | General Electric Company | Flexible electroluminescent lamp device and phosphor admixture therefor |
US5309060A (en) * | 1988-05-31 | 1994-05-03 | Electroluminescent Technologies Corporation | Electroluminescent lamp |
WO1994014180A1 (en) * | 1992-12-16 | 1994-06-23 | Durel Corporation | Electroluminescent lamp devices and their manufacture |
US5957564A (en) * | 1996-03-26 | 1999-09-28 | Dana G. Bruce | Low power lighting display |
US6069444A (en) * | 1992-12-16 | 2000-05-30 | Durel Corporation | Electroluminescent lamp devices and their manufacture |
US20040160768A1 (en) * | 2002-05-28 | 2004-08-19 | Eastman Kodak Company | Method for providing replaceable light source |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2284306B (en) * | 1991-03-13 | 1995-10-11 | Standard Products Co | Electroluminescent light strip |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2941103A (en) * | 1957-01-08 | 1960-06-14 | Egyesuelt Izzolampa | Electroluminescent cell and method of making same |
US2944177A (en) * | 1958-04-28 | 1960-07-05 | Gen Electric | Electroluminescent cell and method of making the same |
US2945128A (en) * | 1955-12-29 | 1960-07-12 | Westinghouse Electric Corp | Fluorescent structures and method of manufacture |
US3161797A (en) * | 1962-02-28 | 1964-12-15 | Sylvania Electric Prod | Electroluminescent device |
-
1963
- 1963-02-25 GB GB7534/63A patent/GB994680A/en not_active Expired
-
1964
- 1964-02-24 US US346605A patent/US3286115A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2945128A (en) * | 1955-12-29 | 1960-07-12 | Westinghouse Electric Corp | Fluorescent structures and method of manufacture |
US2941103A (en) * | 1957-01-08 | 1960-06-14 | Egyesuelt Izzolampa | Electroluminescent cell and method of making same |
US2944177A (en) * | 1958-04-28 | 1960-07-05 | Gen Electric | Electroluminescent cell and method of making the same |
US3161797A (en) * | 1962-02-28 | 1964-12-15 | Sylvania Electric Prod | Electroluminescent device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4458177A (en) * | 1980-12-22 | 1984-07-03 | General Electric Company | Flexible electroluminescent lamp device and phosphor admixture therefor |
US5309060A (en) * | 1988-05-31 | 1994-05-03 | Electroluminescent Technologies Corporation | Electroluminescent lamp |
WO1994014180A1 (en) * | 1992-12-16 | 1994-06-23 | Durel Corporation | Electroluminescent lamp devices and their manufacture |
US5565733A (en) * | 1992-12-16 | 1996-10-15 | Durel Corporation | Electroluminescent modular lamp unit |
US5811930A (en) * | 1992-12-16 | 1998-09-22 | Durel Corporation | Electroluminescent lamp devices and their manufacture |
US6069444A (en) * | 1992-12-16 | 2000-05-30 | Durel Corporation | Electroluminescent lamp devices and their manufacture |
US5957564A (en) * | 1996-03-26 | 1999-09-28 | Dana G. Bruce | Low power lighting display |
US20040160768A1 (en) * | 2002-05-28 | 2004-08-19 | Eastman Kodak Company | Method for providing replaceable light source |
Also Published As
Publication number | Publication date |
---|---|
GB994680A (en) | 1965-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4684353A (en) | Flexible electroluminescent film laminate | |
US4455324A (en) | Method of producing electroluminescent cell | |
US2755406A (en) | Electroluminescent lamp | |
US2937353A (en) | Photoconductive devices | |
US2901652A (en) | Electroluminescent lamp construction | |
US3286115A (en) | Electroluminescent lamp with boric acid or boric oxide used in conjunction with the zinc sulphide layer | |
US2834903A (en) | Electroluminescent lighting device | |
US4458177A (en) | Flexible electroluminescent lamp device and phosphor admixture therefor | |
SU1301327A3 (en) | Electric luminiscent device | |
US4743801A (en) | Light-emitting electroluminescent device | |
US3023338A (en) | Electroluminescent lamp and method | |
US3104339A (en) | Electroluminescent device | |
US3048732A (en) | Electroluminescent cell | |
US2928015A (en) | Electroluminescent lamp | |
US3154712A (en) | Electroluminescent lamp | |
US3283194A (en) | Electroluminescent lamp with a barium titanate layer | |
US3379915A (en) | Conductive media for electroluminescent devices, and electroluminescent device | |
US3118079A (en) | Electroluminescent cell and variable frequency source for selective excitation of contrastingly-responsive phosphor components thereof | |
US2972694A (en) | Method of operating electroluminescent cell | |
US3143682A (en) | Electroluminescent devices with a barium titanate layer | |
KR0180070B1 (en) | Organic eletroluminescent device and its manufacturing method | |
US3048731A (en) | Electroluminescent cell and method | |
US2991385A (en) | Electroluminescent device | |
JPH07119406B2 (en) | EL lamp | |
US3048733A (en) | Electroluminescent device |