US3252622A - Gas flow control for dispensing apparatus and the like - Google Patents
Gas flow control for dispensing apparatus and the like Download PDFInfo
- Publication number
- US3252622A US3252622A US426992A US42699265A US3252622A US 3252622 A US3252622 A US 3252622A US 426992 A US426992 A US 426992A US 42699265 A US42699265 A US 42699265A US 3252622 A US3252622 A US 3252622A
- Authority
- US
- United States
- Prior art keywords
- container
- gas
- propellant
- valve
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67D—DISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
- B67D1/00—Apparatus or devices for dispensing beverages on draught
- B67D1/04—Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers
- B67D1/0412—Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers the whole dispensing unit being fixed to the container
Definitions
- the CO gas for example, which is introduced may be supplied from a liquid CO container which has a pressure of from 500 to 600 p.s.i.g.
- the high pressure gas is expanded through an automatic gas pressure reducing valve from such high 500 to 600 p.s.i.g. pressure to a relatively low 12 p.s.i.g. pressure for use above the beer in the dispensing container.
- an object of this invention is to provide in combination with a low pressure gas fiow restricting orifice at the discharge side of an automatic pressure regulating valve to a beverage container, the regulating valve on the inlet side connecting with the outlet of a liquified gas or gaseous high pressure container; an improvide novel dip tube in the high pressure container having an inlet slot serving as a filter to prevent foreign material from reaching the regulating valve and likewise avoid the usual clogging defects of the single round orifice type of dip tube inlet.
- FIGURE 1 is a diagrammatic cross section, partly in elevation, of this invention installed in a beverage container;
- FIGURE 2 is an enlarged cross section of a portion of the embodiment shown in FIGURE 1 showing the dip tube with the filter slot formed in the inlet end thereof.
- FIGURE 3 is an enlargement of the low pressure restriction orifice portion of FIGURE 2.
- FIGURE 4 is an enlarged perspective view of the present novel dip tube showing the intake end of the tube formed with a slit or elongated slot for filtering gas flow from the CO container or bottle disclosed in FIGURES l and 2.
- a low pressure gas charged liquid container 20 may be used, for example, of a size to suitably hold about 500 cu. inches of liquid or beverage to be dispensed, and may be adapted to be placed in a refrigerator, if it is a beverage to be cooled.
- the container 20 may be circular in cross section.
- a liquid dispensing valve or faucet 22 may be provided, which may be opened and closed from time to time, by a suitable actuating handle 24.
- the faucet 22 may be connected to a conduit 26, which has its intake 28 near the lowest portion of the container 20.
- liquid to be dispensed from the container 20 is beer, or other CO charged beverage
- such beverage may be maintained at a suitable low gas pressure, which may be in the order of 12 p.s.i.g. or any proper pressure required for the particular beverage to be dispensed.
- a high pressure propellant or charging gas in a bottle or container 30 may be placed in connection with or in the liquid container 20, so that there is a high pressure propellant gas space 32 inside the container 30, and a low pressure beverage dispensing gas in the liquid space 34 inside the container 20, but outside the container 30.
- Automatic low pressure responsive propellant gas expansion means 36 may be provided in a support member 38.
- the expansion means 36 may have a relatively small, expanded, low pressure, gas chamber 40.
- a diaphragm 42 may be responsive to the pressure of the expanded low pressure gas in chamber 40.
- the diaphragm 42 opens a tire inflation and deflation type of valve 44, sometimes known as a Schrader valve, which has a stem 46, which opens the valve 44, when the stem is pressed downwardly, and closes the valve when the stem 46 is released.
- a thrust button 48 is raised and lowered by the diaphragm 42, so that the thrust button 48 pushes the stem 46 down to open the valve 44 when the gas pressure in the chamber 40 is slightly below the desired pressure, preferably such as 12 p.s.i.g. for beer and which releases the stem 46, when the pressure in the chamber 40 is slightly above the selected pressure, such as 12 p.s.i.g.
- Any suitable type of pressure range adjustment means may be provided, such as a spring construction 50. This spring is adjustable, and is provided to adjust and regulate the diaphragm 42 to maintain the pressure in the chamber 40 substantially at 12 p.s,i.g., more or less.
- the gas bottle or container 30 may be hermetically connected to the support 38 by the threaded construction 52 formed at the neck of the gas bottle and by the resilient ring construction 54.
- the gas bottle or container 30, and its support 38 may be secured to the end wall 56 of the container 20 in any suitable hermetic manner, as is illustrated by way of example.
- the support 38 may have a flange 57 which is held against a resilient O-ring 59, by a split ring 61, see FIGURE 2.
- the split ring 61 may be expanded and contracted when it is desired to insert, or remove, the container 30 and support 38 into or from the container 20.
- High pressure propellant gas intake means may be provided in the propellant gas container 39 and may be connected to the expansion means 36.
- This intake means may include a suitable dip tube, such as an aluminum tube 60 of aluminum alloy 6061T6, for example, which may be inch in external diameter, .035 inch in wall thickness, and 3 inches in length. Its upper end may have a counterbore concentrically positioned to enclose the inlet 62 of the tire type valve 44 to gas chamber 40 and its lower end may be provided with a high pressure elongated inlet opening or inlet slot 64.
- the slot 64 may be made by inserting a stainless steel shim of preferably .003 inch thick (from .002 to .004 inch) with a width of approximately inch into the tube 60.
- the travel length of the slot may be, for example, to A inch in length.
- the lower end of tube 60 may be flattened by press dies, and the shim may then be removed to produce the slot 64.
- This slot 64 for example, is of a width about equal to the thickness of the shim, of a length equal to about inch and of a travel into the tube of about /8 to A inch, which slot is thus of a length many times the width thereof.
- the container 30 may be so shaped and proportioned that a charge of from 1 /2 to 2 ounces of liquid may be placed in such container 30, and the level of the liquid CO when quiescent, will be below tube tip slot 64 regardless of the position in which the container 30 is placed and particularly when the container is placed in a horizontal position, as shown in FIGURE 1.
- the slot 64 serves to prevent foreign material from reaching the regulation valve 44 and also, because of the elongated opening provided by the length thereof, any ice particles over a portion of the slot will not block oif the flow of carbon dioxide through the dip tube 60*. In fact any foreign material over a part of the slot will tend to be self-clearing during gas generation in the container 30 so that blocking or clogging of the inlet is eliminated.
- a sufiicient quantity of high pressure gas may at times rush through the valve 44 into the space 34 of the container 20 or into the atmosphere to abrasively harm the valve 44, unless a restrictive or flow control orifice 70, see FIGURE 3, is also used in combination with the inlet slot 64 to limit or prevent such rush of gas through valve 44 and by the provision of the slot possible foreign material is filtered from the propellant before it reaches the valve 44.
- a relatively large cross sectional area, but relatively small volume, passageway means 66 and 68 may connect the low pressure gas regulator chamber 40 and the low pressure gas and liquid space 34 in the container 20.
- the passageway 66 may be in the order of /8 inch diameter, and the passageway 68 may be in the order of .092 to .095 inch in diameter.
- the restrictive or flow control orifice 70 comprises a relatively small cross sectional area restricting passageway means with respect to the passageway means 68.
- the cross sectional area of the flow control orifice 70 for beer may be equal to or the equivalent of an area in the order of .015 to .035 inch in diameter, preferably about .028 inch in diameter and the passageway or bore of orifice 70 may be equal to or the equivalent of inch in length.
- This flow control orifice will permit a flow rate of 14 to 20 standard cu. feet per hour of CO when the outlet pressure is zero p.s.i. in the. container 20' and 550 p.s.i. in the propellant container 30.
- check valve means 72 may be part of the low pressure propellant gas discharge means. Any type of check valve means may be used. However, for example, a cylindraceous tube may be used, which has two longitudinally extending slits 74, which open when the pressure in the tube 72 is greater'than the space outside of the tube and which close when the space outside of the tube is greater than the space inside of the tube. This tube is placed tightly over an extension 76 of the support 38. The tube 72 has a closed bottom 78.
- a solid cylindrical member 80 which may be made of a suitable aluminum alloy, if desired, is placed in the tube 72, before the tube is attached to the extension 76, so that the member 80 will prevent the tube 72 from collapsing inwardly when excessive pressure is placed upon the outside of the tube 72.
- valve constructions may be placed in the sup port 38, which do not directly concern the present invention.
- a pop-01f valve 82 may be placed in the end of the passageway 68 so that the valve will pop off whenever the pressure in the space 40 becomes excessive, for example, from 80 p.s.i.g. to 140 p.s.i.g. When such pressure does become excessive, the pop-off valve 82 may open and will allow gas to enter the space 84 and burst a thin plastic cover 86,,to allow escape of the excessively high pressure gas to the atmosphere.
- Another pop-oif valve 88 may be provided, which will open when the pressure in the space 34 becomes excessive.
- valve 88 When the valve 88 opens, the excessive pressure gas may escape through the passageway 90 and will burst the thin plastic cover 86 to allow escape of the gas to the atmosphere.
- Other valves may be added to the support 36, such as a gas charging valve and passageway to charge the container 30 with liquid CO which valve is not illustrated, since it does not directly concern this invention.
- a rupture disc not shown, may be provided with passageway means, so that if the pressure in the container 30 becomes excessive, for example, from 2000 p.s.i.g. to 3000 p.s.i.g., the rupture disc will rupture and allow the escape of gas through a passageway somewhat similar to 90 or 84, and will also rupture the cover 86, when the disc also becomes ruptured.
- the rupture disc is not illustrated, since it does not directly concern this invention.
- the expanded gas space 40 and the connected passageways 66, 68 and the like have relatively small volume which is quickly filled by expanded gas from the valve without any harmful sustained rush of high pressure gas through the valve 44.
- the passageway 70 performs a restricting action which is an important feature of this invention. is capable of regulating the maximum rate of flow of CO all the way from the high pressure CO inlet slot 64 in FIGURE 4, into the low pressure beverage pace 34 in an effective manner to prevent harmful abrasive action in valve 44.
- This orifice 70 ordinarily receives CO in gaseous form only, and at a pressure of 12 p.s.i.g., more or less, on theupstream side of the orifice 70 and at a pressure of from atmospheric pressure to 12 p.s.i.g. on
- the downstream pressure is atmospheric, for example, when the beverage container 20, which beverage may be beer or ale, is initially being charged with gas, starting with atmospheric pressure, and the pressure may then gradually increase to substantially 12 p.s.i.g. when the container beverage space 34 is charged to'the desired 12 p.s.i.g pressure.
- the CO container or bottle 30, and the support 38 are withdrawn from the beer container 20.
- the container 20 is then thoroughly cleaned and then is placed in a vertical position, with the faucet end downward on a suitable support or the like.
- the desired amount of beer is then introduced at atmospheric pressure into the space 34 through the opening which has been left open by the withdrawal of the container 30 and support 38 from the container 20.
- a thoroughly cleaned or purged container 30 and support 38 are placed in the liquid container 20 and are sealed thereto by the sealing means which are shown in FIGURE 2.
- the gas bottle or container 30 is then charged with liquid CO through a liquid charging valve, not shown, which is accessible through a passageway similar to 90, for example, and which has a connecting passageway from the charging valve to the interior of the container 30.
- the orifice or passage 70 insures that a quick rise in pressure in the small volume chamber 40 and passageways 66 and 68 will take place up to the selected pressure, such as 12 p.s.i.g., and thereafter only a slow and restricted flow of gas through the orifice 70 is maintained, until all of the contents of the beer container 20 gradually reach 12 p.s.i.g., the equilibrium or fully charged condition. Thereafter, when beer is withdrawn through the faucet 22 from time to time, the orifice 70 allows the diaphragm 42 and the tire type valve 44 to supply CO into the space 34, but never at any excessive rate of flow that might be harmful to the valve 44.
- the selected pressure such as 12 p.s.i.g.
- restrictive orifice 70 a restrictive action is placed upon the operation of the valve 44 and diaphragm 42, which prevents high speed, excessive gas flow in a continuous manner through the valve 44 at all times, even when the container 20 is being charged with beer and CO or when excessive withdrawals of beer are being made at the faucet 22.
- the orifice or passage 70 is also effective to prevent harmful and high speed discharge of CO from the gas bottle container 30 into the atmosphere, when the container 30 and support 38 are withdrawn from the container 20, in preparation for recharging the container 20 with fresh beer.
- novel clip tube 60 with a slot inlet opening 64 in place of a round pin hole form of orifice prevents cutoff of gas flow into the inlet of the tube by foreign matter which sometimes blocks a round pin hole type of dip tube gas inlet orifice.
- CO ice particles often develop at the orifice on the inlet end of the tube and such ice particles block a single round orifice, thereby causing an objectionable erratic emission of gaseous CO propellant to the regulator chamber 40.
- a liquid container including a predetermined charge of low pressure gas and liquid to be dispensed; a high pressure propellant container; automatic low pressure responsive propellant gas expansion means; high pressure propellant gas intake means in said propellant container and connected to said expansion means; check valve means connected to said low pressure responsive expansion means discharging propellant gas into said liquid container; and low pressure gas restricting passageway means between said check valve means and said expansion means, said combination having a high pressure gas restricting gas filtering passageway means in said high pressure propellant gas intake means.
- a pressurized beverage container connected with a pressurizing assembly having a starting relatively high pressure gas producing propellant container connected with said beverage container, a dip tube with an inlet in said propellant container, means connected to the propellant container in said beverage container for reducing high pressure gas produced by said propellant container to a relatively low pressure for suitable pressurizing the beverage container; said means comprising automatic reduced pressure responsive propellant gas expansion means; a gas discharge check valve means connected with said expansion means, said check valve means discharging relatively low pressure gas with respect to said gas from the propellant container in said beverage container; and a low pressure gas restricting discharge passageway between said check valve means and said expansion means.
- a pressurized beverage container connected with a pressurizing assembly having a starting relatively high pressure gas producing propellant container connected with said beverage container, a dip tube with aninlet in said propellant container, means connected to the propellant container in said beverage container for reducing high pressure gas produced by said propellant container to a relatively low pressure for suitably pressurizing the beverage container; said means comprising automatic reduced pressure responsive propellant gas expansion means; a gas discharge check valve means connecting with said expansion means, said check valve means discharging relatively low pressure gas with respect to said gas from the propellant container in said beverage container; and a low pressure gas restricting discharge passageway between said check valve means and said expansion means, said clip tube inlet being elongated to form a slot of a length many times the width thereof.
- a pressure regulator having a high pressure gas propellant container, said regulator adapted to be housed in a low pressure liquid reservoir, said regulator comprising a support member, said gas propellant container being coupled to said member, a gas receiving regulator chamber formed in said support member relatively smaller than said container, a valve connecting said propellant container with said regulator chamber, valve means responsive to pressure in said chamber, regulator means for setting the pressure in saidchamber within a predetermined range, a dip tube having a propellant.
- said tube having the opposite end thereof concentrically positioned to enclose the orifice and said valve, said tube in the said propellant inlet tip having a filtering slot of a length many times the width thereof, and a one-way outlet valve at the discharge side of said regulator chamber opening.
- a pressure regulator having a high pressure gas pro-' propellant container, said regulator adapted to be housed in a low pressure liquid containing reservoir, said regulator comprising a support member, said gas propellant container being coupled to said member, a gas receiving regulator chamber formed in said support member relatively smaller than said container, a valve connecting said propellant container with said regulator chamber, valve means responsive to pressure in said chamber, regulator means for setting the pressure in said chamber within a predetermined range, a dip tube having a propellant inlet tip extending from within said propellant container, said tube having the opposite end thereof concentrically positioned to enclose the inlet orifice of said valve, said inlet tip of the tube being die pressed to define a slot having a length many times the width thereof, a gas flow controlling outlet orifice with an intake connecting with said regulator chamber, and a one-way valve discharging into said low pressure liquid reservoir at said gas flow controlling outlet orifice.
- a pressure regulator having a high pressure gas propellant container, said regulator adapted to be housed in a low pressure liquid reservoir, said regulator comprising a support member, said gas propellant container being coupled to said member, a gas receiving regulator chamber formed in said support member relatively smaller than said container, a valve connecting said propellant container With said regulator chamber, valve means re sponsive to pressure in said chamber, regulator means for setting the pressure in said chamber within a predetermined safety range, -a dip tube having a propellant inlet tip extending from within said container, said tube having the opposite end thereof concentrically positioned to enclose the orifice of said valve, said tube in the said propellant inlet tip having a filtering slot of a length many times the width thereof, and a gas flow controlling outlet orifice With an intake connecting with said regulator chamber discharging into said low pressure liquid reservoir at said controlled pressure, and a one-Way outlet valve at the discharge end of said gas flow control-ling outlet orifice.
- a propellant container for soluble inorganic liquid propellants said container being bottle-shaped, said container having a coupling neck portion and a bulbous pro- .8 pellant reservoir portion, and a dip tube extending into said reservoir portion With a propellant inlet end, said tube having a slot-shaped opening of a length many times the Width thereof in the said inlet end thereof to substantially eliminate any foreign material from the propellant container entering said tube at the inlet end and to maintain at least part of said slot-shaped opening clear for ingress of propellant.
Landscapes
- Devices For Dispensing Beverages (AREA)
Description
L. M. PUSTER May 24, 1966 GAS FLOW CONTROL FOR DISPENSING APPARATUS AND THE LIKE Filed Jan. 21, 1965 m Rs 2 mm 7 N o W 3 /I\7AA w gill/lid m I. F. m w mm/ m 2:; 1 w J w/ 6M28mx4 43 6 3 5 0 3 FIG.2.
ATTORNEYS United States Patent I O 3,252,622 GAS FLOW CONTROL FOR DISPENSING APPARATUS AND THE LIKE Louis M. Puster, Knoxville, Tenn., assignor to Robertshaw Conh'ois Company, Richmond, Va., a corporation of Deiaware Filed Jan. 21, E65, Ser. No. 426,992 7 Claims. (Cl. 22252) This invention is a continuation-in-part of prior copending application Serial Number 344,074, of Loui M. Puster, filed February 11, 1964, now abandoned, for a Gas Flow Control Dispensing Apparatus-and the like. More particularly this invention relates to high pressure gas reduction regulators to provide for dispensing of carbonated beverages from containers at relatively low optimum dispensing pressure.
In dispensing appartaus, such as in a gas charged liquid container for beer or the like, it is desirable to introduce relatively low pressure charging gas into such container as the beer is gradually dispensed, to maintain the gas charge above the beer continuously at the optimum or proper pressure, such as 12 p.s.i.g., if the liquid or -beverage to be dispensed is beer. The CO gas, for example, which is introduced may be supplied from a liquid CO container which has a pressure of from 500 to 600 p.s.i.g. The high pressure gas is expanded through an automatic gas pressure reducing valve from such high 500 to 600 p.s.i.g. pressure to a relatively low 12 p.s.i.g. pressure for use above the beer in the dispensing container. It has been discovered that a sustained rush of high pressure gas, or liquified gas, through the automatic valve is very harmful to the valve and also it has been discovered that high pressure flow from the liquid carbon dioxide container is likely to be interrupted at the dip tube inlet by ice crystal formations and foreign matter collecting over the tube inlet, particularly when the inlet is a single round orifice inlet.
Accordingly an object of this invention is to provide in combination with a low pressure gas fiow restricting orifice at the discharge side of an automatic pressure regulating valve to a beverage container, the regulating valve on the inlet side connecting with the outlet of a liquified gas or gaseous high pressure container; an improvide novel dip tube in the high pressure container having an inlet slot serving as a filter to prevent foreign material from reaching the regulating valve and likewise avoid the usual clogging defects of the single round orifice type of dip tube inlet.
While a charging gas, such as CO has been described in connection with this invention, many of the features of this invention are applicable to other charging and/or propelling gases.
Other features are apparent from this description, the appended claimed subject matter, a-nd/ or the accompanying drawings, in which:
FIGURE 1 is a diagrammatic cross section, partly in elevation, of this invention installed in a beverage container;
FIGURE 2 is an enlarged cross section of a portion of the embodiment shown in FIGURE 1 showing the dip tube with the filter slot formed in the inlet end thereof.
FIGURE 3 is an enlargement of the low pressure restriction orifice portion of FIGURE 2.
FIGURE 4 is an enlarged perspective view of the present novel dip tube showing the intake end of the tube formed with a slit or elongated slot for filtering gas flow from the CO container or bottle disclosed in FIGURES l and 2.
Certain words indicating direction, relative position, etc., are used herein for the sake of brevity and clearness of description. However, it is to be understood "ice that these words are used in connection with the specific showing in the drawings. In actual use, the parts so described by these words may have entirely different direction, relative position, etc. Examples of the words so used are upward, downward, vertical, horizontal, etc.
According to this invention, a low pressure gas charged liquid container 20 may be used, for example, of a size to suitably hold about 500 cu. inches of liquid or beverage to be dispensed, and may be adapted to be placed in a refrigerator, if it is a beverage to be cooled. The container 20 may be circular in cross section.
A liquid dispensing valve or faucet 22 may be provided, which may be opened and closed from time to time, by a suitable actuating handle 24. The faucet 22 may be connected to a conduit 26, which has its intake 28 near the lowest portion of the container 20.
If the liquid to be dispensed from the container 20 is beer, or other CO charged beverage, such beverage may be maintained at a suitable low gas pressure, which may be in the order of 12 p.s.i.g. or any proper pressure required for the particular beverage to be dispensed.
A high pressure propellant or charging gas in a bottle or container 30 may be placed in connection with or in the liquid container 20, so that there is a high pressure propellant gas space 32 inside the container 30, and a low pressure beverage dispensing gas in the liquid space 34 inside the container 20, but outside the container 30.
Automatic low pressure responsive propellant gas expansion means 36 may be provided in a support member 38. The expansion means 36 may have a relatively small, expanded, low pressure, gas chamber 40. A diaphragm 42 may be responsive to the pressure of the expanded low pressure gas in chamber 40. The diaphragm 42 opens a tire inflation and deflation type of valve 44, sometimes known as a Schrader valve, which has a stem 46, which opens the valve 44, when the stem is pressed downwardly, and closes the valve when the stem 46 is released. A thrust button 48 is raised and lowered by the diaphragm 42, so that the thrust button 48 pushes the stem 46 down to open the valve 44 when the gas pressure in the chamber 40 is slightly below the desired pressure, preferably such as 12 p.s.i.g. for beer and which releases the stem 46, when the pressure in the chamber 40 is slightly above the selected pressure, such as 12 p.s.i.g. Any suitable type of pressure range adjustment means, may be provided, such as a spring construction 50. This spring is adjustable, and is provided to adjust and regulate the diaphragm 42 to maintain the pressure in the chamber 40 substantially at 12 p.s,i.g., more or less.
The gas bottle or container 30 may be hermetically connected to the support 38 by the threaded construction 52 formed at the neck of the gas bottle and by the resilient ring construction 54. The gas bottle or container 30, and its support 38, may be secured to the end wall 56 of the container 20 in any suitable hermetic manner, as is illustrated by way of example. The support 38 may have a flange 57 which is held against a resilient O-ring 59, by a split ring 61, see FIGURE 2. The split ring 61 may be expanded and contracted when it is desired to insert, or remove, the container 30 and support 38 into or from the container 20.
High pressure propellant gas intake means, see FIG- URE 2, may be provided in the propellant gas container 39 and may be connected to the expansion means 36. This intake means may include a suitable dip tube, such as an aluminum tube 60 of aluminum alloy 6061T6, for example, which may be inch in external diameter, .035 inch in wall thickness, and 3 inches in length. Its upper end may have a counterbore concentrically positioned to enclose the inlet 62 of the tire type valve 44 to gas chamber 40 and its lower end may be provided with a high pressure elongated inlet opening or inlet slot 64. The slot 64 may be made by inserting a stainless steel shim of preferably .003 inch thick (from .002 to .004 inch) with a width of approximately inch into the tube 60. The travel length of the slot may be, for example, to A inch in length. The lower end of tube 60 may be flattened by press dies, and the shim may then be removed to produce the slot 64. This slot 64, for example, is of a width about equal to the thickness of the shim, of a length equal to about inch and of a travel into the tube of about /8 to A inch, which slot is thus of a length many times the width thereof.
The container 30 may be so shaped and proportioned that a charge of from 1 /2 to 2 ounces of liquid may be placed in such container 30, and the level of the liquid CO when quiescent, will be below tube tip slot 64 regardless of the position in which the container 30 is placed and particularly when the container is placed in a horizontal position, as shown in FIGURE 1.
The slot 64 serves to prevent foreign material from reaching the regulation valve 44 and also, because of the elongated opening provided by the length thereof, any ice particles over a portion of the slot will not block oif the flow of carbon dioxide through the dip tube 60*. In fact any foreign material over a part of the slot will tend to be self-clearing during gas generation in the container 30 so that blocking or clogging of the inlet is eliminated.
However, a sufiicient quantity of high pressure gas may at times rush through the valve 44 into the space 34 of the container 20 or into the atmosphere to abrasively harm the valve 44, unless a restrictive or flow control orifice 70, see FIGURE 3, is also used in combination with the inlet slot 64 to limit or prevent such rush of gas through valve 44 and by the provision of the slot possible foreign material is filtered from the propellant before it reaches the valve 44.
A relatively large cross sectional area, but relatively small volume, passageway means 66 and 68 may connect the low pressure gas regulator chamber 40 and the low pressure gas and liquid space 34 in the container 20. For
example, the passageway 66 may be in the order of /8 inch diameter, and the passageway 68 may be in the order of .092 to .095 inch in diameter.
The restrictive or flow control orifice 70 comprises a relatively small cross sectional area restricting passageway means with respect to the passageway means 68. For example, the cross sectional area of the flow control orifice 70 for beer may be equal to or the equivalent of an area in the order of .015 to .035 inch in diameter, preferably about .028 inch in diameter and the passageway or bore of orifice 70 may be equal to or the equivalent of inch in length.
This flow control orifice will permit a flow rate of 14 to 20 standard cu. feet per hour of CO when the outlet pressure is zero p.s.i. in the. container 20' and 550 p.s.i. in the propellant container 30.
If desired, check valve means 72 may be part of the low pressure propellant gas discharge means. Any type of check valve means may be used. However, for example, a cylindraceous tube may be used, which has two longitudinally extending slits 74, which open when the pressure in the tube 72 is greater'than the space outside of the tube and which close when the space outside of the tube is greater than the space inside of the tube. This tube is placed tightly over an extension 76 of the support 38. The tube 72 has a closed bottom 78. A solid cylindrical member 80, which may be made of a suitable aluminum alloy, if desired, is placed in the tube 72, before the tube is attached to the extension 76, so that the member 80 will prevent the tube 72 from collapsing inwardly when excessive pressure is placed upon the outside of the tube 72.
Other valve constructions may be placed in the sup port 38, which do not directly concern the present invention. For example, a pop-01f valve 82 may be placed in the end of the passageway 68 so that the valve will pop off whenever the pressure in the space 40 becomes excessive, for example, from 80 p.s.i.g. to 140 p.s.i.g. When such pressure does become excessive, the pop-off valve 82 may open and will allow gas to enter the space 84 and burst a thin plastic cover 86,,to allow escape of the excessively high pressure gas to the atmosphere. Another pop-oif valve 88 may be provided, which will open when the pressure in the space 34 becomes excessive. When the valve 88 opens, the excessive pressure gas may escape through the passageway 90 and will burst the thin plastic cover 86 to allow escape of the gas to the atmosphere. Other valves may be added to the support 36, such as a gas charging valve and passageway to charge the container 30 with liquid CO which valve is not illustrated, since it does not directly concern this invention. Also, if desired, a rupture disc, not shown, may be provided with passageway means, so that if the pressure in the container 30 becomes excessive, for example, from 2000 p.s.i.g. to 3000 p.s.i.g., the rupture disc will rupture and allow the escape of gas through a passageway somewhat similar to 90 or 84, and will also rupture the cover 86, when the disc also becomes ruptured. The rupture disc is not illustrated, since it does not directly concern this invention.
However, the expanded gas space 40 and the connected passageways 66, 68 and the like, have relatively small volume which is quickly filled by expanded gas from the valve without any harmful sustained rush of high pressure gas through the valve 44.
The passageway 70 performs a restricting action which is an important feature of this invention. is capable of regulating the maximum rate of flow of CO all the way from the high pressure CO inlet slot 64 in FIGURE 4, into the low pressure beverage pace 34 in an effective manner to prevent harmful abrasive action in valve 44. This orifice 70 ordinarily receives CO in gaseous form only, and at a pressure of 12 p.s.i.g., more or less, on theupstream side of the orifice 70 and at a pressure of from atmospheric pressure to 12 p.s.i.g. on
its downstream side. The downstream pressure is atmospheric, for example, when the beverage container 20, which beverage may be beer or ale, is initially being charged with gas, starting with atmospheric pressure, and the pressure may then gradually increase to substantially 12 p.s.i.g. when the container beverage space 34 is charged to'the desired 12 p.s.i.g pressure.
When the container 20 is to be charged at a brewery with beer, the CO container or bottle 30, and the support 38, are withdrawn from the beer container 20. The container 20 is then thoroughly cleaned and then is placed in a vertical position, with the faucet end downward on a suitable support or the like. The desired amount of beer is then introduced at atmospheric pressure into the space 34 through the opening which has been left open by the withdrawal of the container 30 and support 38 from the container 20. Thereafter, a thoroughly cleaned or purged container 30 and support 38 are placed in the liquid container 20 and are sealed thereto by the sealing means which are shown in FIGURE 2. The gas bottle or container 30 is then charged with liquid CO through a liquid charging valve, not shown, which is accessible through a passageway similar to 90, for example, and which has a connecting passageway from the charging valve to the interior of the container 30.
If the liquid CO were first introduced into the purged container 30, without the use of orifice 70 a violent rush of CO would be produced through the tire type valve 44 when it is opened into the expansion chamber 40, through the passageways 66 and 68 and into the relatively large beer space 34 at a harmful rate and an abrasive rate of speed through the valve 44. However, such harmful rush of gas is prevented by the action of the restrictive passageway 70 which becomes effective almost immediately because of its highly restrictive character, whereby only a This orifice 70 t very small amount of CO can rush through the valve 44 into the relatively small space 40 and into the relatively small volume passageways 66 and 6S and any other relatively small volume passageways that may be connected to the gas chamber 40.
Since the passageway 70 provides a very restrictive action, the pressure in chamber 40 and passageways 66 and 68 quickly reaches 12 p.s.i.g., and then the diaphragm 40 is pushed upward, see FIGURE 2, and the stem 46 is released to close the valve 62, and to stop any further rush of CO which might occur. A continuous unchecked rush of CO through the open valve 44, which would be produced by a continued flow of gas to the relatively large beer space 34 and if unchecked by the orifice or passage 70, would be harmful to the valve 44. This is so, because the flow of CO from a liquid CO source is very abrasive and uncontrollable. However, as has just been described, the orifice or passage 70 insures that a quick rise in pressure in the small volume chamber 40 and passageways 66 and 68 will take place up to the selected pressure, such as 12 p.s.i.g., and thereafter only a slow and restricted flow of gas through the orifice 70 is maintained, until all of the contents of the beer container 20 gradually reach 12 p.s.i.g., the equilibrium or fully charged condition. Thereafter, when beer is withdrawn through the faucet 22 from time to time, the orifice 70 allows the diaphragm 42 and the tire type valve 44 to supply CO into the space 34, but never at any excessive rate of flow that might be harmful to the valve 44.
Hence, because of restrictive orifice 70, a restrictive action is placed upon the operation of the valve 44 and diaphragm 42, which prevents high speed, excessive gas flow in a continuous manner through the valve 44 at all times, even when the container 20 is being charged with beer and CO or when excessive withdrawals of beer are being made at the faucet 22.
The orifice or passage 70 is also effective to prevent harmful and high speed discharge of CO from the gas bottle container 30 into the atmosphere, when the container 30 and support 38 are withdrawn from the container 20, in preparation for recharging the container 20 with fresh beer.
Thus the novel clip tube 60 with a slot inlet opening 64 in place of a round pin hole form of orifice prevents cutoff of gas flow into the inlet of the tube by foreign matter which sometimes blocks a round pin hole type of dip tube gas inlet orifice. Also, CO ice particles often develop at the orifice on the inlet end of the tube and such ice particles block a single round orifice, thereby causing an objectionable erratic emission of gaseous CO propellant to the regulator chamber 40.
Without further description it is believed that the advantage of the present invention over the prior art is apparent and while only one embodiment of the same is illustrated, it is to be expressly understood that the same is not limited thereto as various changes may be made in the combination and arrangement of the parts illustrated, as will now likely appear to others and those skilled in the art. For a definition of the scope or limits of the invention, reference should be had to the appended claims.
What is claimed is:
1. In combination: a liquid container including a predetermined charge of low pressure gas and liquid to be dispensed; a high pressure propellant container; automatic low pressure responsive propellant gas expansion means; high pressure propellant gas intake means in said propellant container and connected to said expansion means; check valve means connected to said low pressure responsive expansion means discharging propellant gas into said liquid container; and low pressure gas restricting passageway means between said check valve means and said expansion means, said combination having a high pressure gas restricting gas filtering passageway means in said high pressure propellant gas intake means. 2. A pressurized beverage container connected with a pressurizing assembly having a starting relatively high pressure gas producing propellant container connected with said beverage container, a dip tube with an inlet in said propellant container, means connected to the propellant container in said beverage container for reducing high pressure gas produced by said propellant container to a relatively low pressure for suitable pressurizing the beverage container; said means comprising automatic reduced pressure responsive propellant gas expansion means; a gas discharge check valve means connected with said expansion means, said check valve means discharging relatively low pressure gas with respect to said gas from the propellant container in said beverage container; and a low pressure gas restricting discharge passageway between said check valve means and said expansion means.
3. A pressurized beverage container connected with a pressurizing assembly having a starting relatively high pressure gas producing propellant container connected with said beverage container, a dip tube with aninlet in said propellant container, means connected to the propellant container in said beverage container for reducing high pressure gas produced by said propellant container to a relatively low pressure for suitably pressurizing the beverage container; said means comprising automatic reduced pressure responsive propellant gas expansion means; a gas discharge check valve means connecting with said expansion means, said check valve means discharging relatively low pressure gas with respect to said gas from the propellant container in said beverage container; and a low pressure gas restricting discharge passageway between said check valve means and said expansion means, said clip tube inlet being elongated to form a slot of a length many times the width thereof.
4. A pressure regulator having a high pressure gas propellant container, said regulator adapted to be housed in a low pressure liquid reservoir, said regulator comprising a support member, said gas propellant container being coupled to said member, a gas receiving regulator chamber formed in said support member relatively smaller than said container, a valve connecting said propellant container with said regulator chamber, valve means responsive to pressure in said chamber, regulator means for setting the pressure in saidchamber within a predetermined range, a dip tube having a propellant. inlet tip extending from within said container, said tube having the opposite end thereof concentrically positioned to enclose the orifice and said valve, said tube in the said propellant inlet tip having a filtering slot of a length many times the width thereof, and a one-way outlet valve at the discharge side of said regulator chamber opening.
5. A pressure regulator having a high pressure gas pro-' propellant container, said regulator adapted to be housed in a low pressure liquid containing reservoir, said regulator comprising a support member, said gas propellant container being coupled to said member, a gas receiving regulator chamber formed in said support member relatively smaller than said container, a valve connecting said propellant container with said regulator chamber, valve means responsive to pressure in said chamber, regulator means for setting the pressure in said chamber within a predetermined range, a dip tube having a propellant inlet tip extending from within said propellant container, said tube having the opposite end thereof concentrically positioned to enclose the inlet orifice of said valve, said inlet tip of the tube being die pressed to define a slot having a length many times the width thereof, a gas flow controlling outlet orifice with an intake connecting with said regulator chamber, and a one-way valve discharging into said low pressure liquid reservoir at said gas flow controlling outlet orifice.
6. A pressure regulator having a high pressure gas propellant container, said regulator adapted to be housed in a low pressure liquid reservoir, said regulator comprising a support member, said gas propellant container being coupled to said member, a gas receiving regulator chamber formed in said support member relatively smaller than said container, a valve connecting said propellant container With said regulator chamber, valve means re sponsive to pressure in said chamber, regulator means for setting the pressure in said chamber within a predetermined safety range, -a dip tube having a propellant inlet tip extending from within said container, said tube having the opposite end thereof concentrically positioned to enclose the orifice of said valve, said tube in the said propellant inlet tip having a filtering slot of a length many times the width thereof, and a gas flow controlling outlet orifice With an intake connecting with said regulator chamber discharging into said low pressure liquid reservoir at said controlled pressure, and a one-Way outlet valve at the discharge end of said gas flow control-ling outlet orifice.
7. A propellant container for soluble inorganic liquid propellants, said container being bottle-shaped, said container having a coupling neck portion and a bulbous pro- .8 pellant reservoir portion, and a dip tube extending into said reservoir portion With a propellant inlet end, said tube having a slot-shaped opening of a length many times the Width thereof in the said inlet end thereof to substantially eliminate any foreign material from the propellant container entering said tube at the inlet end and to maintain at least part of said slot-shaped opening clear for ingress of propellant.
' References Cited by the Examiner UNITED STATES PATENTS 1,959,815 5/1934 Corcoran Q 222 52 3,127,059 3/1964 Lawrence 222-52X 3,161,324 12/1964 ONeil'l 2'z2 52 LOUIS J. DEMBO, Primary Examine r.
HADD S. LANE, Examiner.
Claims (1)
- 2. A PRESSURIZED BEVERAGE CONTAINER CONNECTED WITH A PRESSURIZING ASSEMBLY HAVING A STARTING RELATIVELY HIGH PRESSURE GAS PRODUCTING PROPELLANT CONTAINER CONNECTED WITH SAID BEVERAGE CONTAINER, A DIP TUUBE WITH AN INLET IN SAID PROPELLANT CONTAINER, MEANS CONNECTED TO THE PROPELLANT CONTAINER IN SAID BEBVERAGE CONTAINER FOR REDUCING HIGH PRESSURE GAS PRODUCED BY SAID PROPELLANT CONTAINER TO A RELATIVELY LOW PRESSURE FOR SUITABLE PRESSURIZING THE BEVERAGE CONTAINER; SAID MEANS COMPRISING AUTOMATIC REDUCED PRESSURE RESPONSIVE PROPELLANT GAS EXPANSION MEANS; A GAS DISCHARGE CHECK VALUE MEANS CONNECTED WITH SAID EXPANSION MEANS, SAID CHECK VALVE MEANS DISCHARGING RELATIVELY LOW PRESSURE GAS WITH RESPECT TO SAID GAS FROM THE PROPELLANT CONTAINER IN SAID BEVERAGE CONTAINER; AND A LOW PRESSURE GAS RESTRICTING DISCHARGE PASSAGEWAY BETWEEN SAID CHECK VALVE MEANS AND SAID EXPANSION MEANS.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US426992A US3252622A (en) | 1965-01-21 | 1965-01-21 | Gas flow control for dispensing apparatus and the like |
US3460555D US3460555A (en) | 1965-01-21 | 1966-05-18 | Pressure regulator construction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US426992A US3252622A (en) | 1965-01-21 | 1965-01-21 | Gas flow control for dispensing apparatus and the like |
Publications (1)
Publication Number | Publication Date |
---|---|
US3252622A true US3252622A (en) | 1966-05-24 |
Family
ID=23693039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US426992A Expired - Lifetime US3252622A (en) | 1965-01-21 | 1965-01-21 | Gas flow control for dispensing apparatus and the like |
Country Status (1)
Country | Link |
---|---|
US (1) | US3252622A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3411669A (en) * | 1966-09-08 | 1968-11-19 | Reynolds Metals Co | Beverage dispenser regulation and the like |
US3460555A (en) * | 1965-01-21 | 1969-08-12 | Reynolds Metals Co | Pressure regulator construction |
US20140318651A1 (en) * | 2013-04-30 | 2014-10-30 | Tilden C. Harris | Safety valve device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1959815A (en) * | 1933-07-15 | 1934-05-22 | Charles A Corcoran | Fluid pressure dispensing apparatus |
US3127059A (en) * | 1964-03-31 | figure | ||
US3161324A (en) * | 1961-07-20 | 1964-12-15 | Pneumo Dynamics Corp | Dispensing container and pressurizer therefor |
-
1965
- 1965-01-21 US US426992A patent/US3252622A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3127059A (en) * | 1964-03-31 | figure | ||
US1959815A (en) * | 1933-07-15 | 1934-05-22 | Charles A Corcoran | Fluid pressure dispensing apparatus |
US3161324A (en) * | 1961-07-20 | 1964-12-15 | Pneumo Dynamics Corp | Dispensing container and pressurizer therefor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3460555A (en) * | 1965-01-21 | 1969-08-12 | Reynolds Metals Co | Pressure regulator construction |
US3411669A (en) * | 1966-09-08 | 1968-11-19 | Reynolds Metals Co | Beverage dispenser regulation and the like |
US20140318651A1 (en) * | 2013-04-30 | 2014-10-30 | Tilden C. Harris | Safety valve device |
US9506577B2 (en) * | 2013-04-30 | 2016-11-29 | Tilden C. Harris | Safety valve device |
US20170051839A1 (en) * | 2013-04-30 | 2017-02-23 | Tilden C. Harris | Safety valve device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3245583A (en) | Gas charging and liquid dispensing apparatus and method | |
US3460555A (en) | Pressure regulator construction | |
US3976221A (en) | Carbonator and dispenser for carbonated liquid or the like | |
US4120425A (en) | Apparatus for dispensing sparkling wines | |
US2120297A (en) | Device for producing aerated expanded food products | |
US2976897A (en) | Reusable pressurized canister | |
SU733511A3 (en) | Apparatus for storing and batched dispensing of thickening liquids | |
US4341330A (en) | Aerosol container | |
US5405058A (en) | Device for dispensing liquids | |
US3472425A (en) | Carbonator for drink-dispensing machine | |
US3411669A (en) | Beverage dispenser regulation and the like | |
CA1100809A (en) | Preparation of beverages containing gas in solution | |
US3096000A (en) | Method and apparatus for discharging fluid by pressure of an isolated propellant in contact with an adsorber or absorber thereof | |
US3197144A (en) | Dispensing apparatus for ebullient liquids | |
US1959815A (en) | Fluid pressure dispensing apparatus | |
CN106458557A (en) | Beverage dispensing system, beverage container and pressurizing system for use in a beverage dispensing system or container | |
US2072629A (en) | Coupling device for carbonators | |
US3252622A (en) | Gas flow control for dispensing apparatus and the like | |
US3248098A (en) | Means of carbonating water | |
US3214061A (en) | Dispenser for carbonated beverages | |
US3927801A (en) | Dispenser for carbonated beverage or the like | |
US2226958A (en) | Apparatus for carbonating liquids | |
US3228559A (en) | Pressurized beverage dispenser development | |
US1412321A (en) | Appliance for delivering gaseous liquids | |
US2437618A (en) | Beer delivery and dispensing apparatus |