US3252155A - Liquid receptacle and method for preparing same - Google Patents
Liquid receptacle and method for preparing same Download PDFInfo
- Publication number
- US3252155A US3252155A US195899A US19589962A US3252155A US 3252155 A US3252155 A US 3252155A US 195899 A US195899 A US 195899A US 19589962 A US19589962 A US 19589962A US 3252155 A US3252155 A US 3252155A
- Authority
- US
- United States
- Prior art keywords
- foil
- liquid
- base
- barrier
- leaks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/16—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
- G01M3/18—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
- G01M3/186—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/40—Investigating fluid-tightness of structures by using electric means, e.g. by observing electric discharges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/20—Investigating the presence of flaws
- G01N27/205—Investigating the presence of flaws in insulating materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L2101/00—Uses or applications of pigs or moles
- F16L2101/30—Inspecting, measuring or testing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
- Y10T428/249969—Of silicon-containing material [e.g., glass, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249987—With nonvoid component of specified composition
- Y10T428/24999—Inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/266—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
- Y10T428/31699—Ester, halide or nitrile of addition polymer
Definitions
- the present invention relates to liquid receptacles and, more particularly, to novel lined liquid receptacles and their methods of preparation.
- overi ice foil 2 is generally finished in some manner so that it presents a relatively smooth surface to receive the metal foil 2.
- Conventional finishing treatments which are suitable include, for example, careful troweling and smoothing of the uncured material or sandblasting of the base after it has hardened.
- the metal foil 2 can be aflixed to the base 1 by any convenient means, for example, by mechanical attachments, not shown. or by adhesives, such as adhesive layer 9 illustrated in FIG. 2.
- the metal foil 2 is characterized by having ductility and weight such that it can be conveniently applied and irremovably secured to the contours of the base 1. These foils should be reasonably free of oil, dust and other surface impurities which might prevent adhesion of the foil to the base or the liquid barrier to the foil.
- Metal foils which can be used according to this invention comprise any of the electrically conductive metals including, for example, aluminum, copper, tin, iron or alloys or mixtures of two or more. Aluminum and alloys thereof have been found to be particularly useful since they are excellent conductors of electricity and are readily applicable to and tightly adherent to the base 1. r
- liquid-impervious liners which are polymerized in situ to masonry bases is often considered impracticable and other less satisfactory bases such as wood or steel are reverted to.
- Liquid receptacles having a liquid-impervious liner positioned over a non-electrically conductive base have suffered, heretofore, from the distinct disadvantage that no positive means has been available for detecting leaks before deterioration of the base has resulted. For this reason, it has been impossible to determine whether or not such a lining contains undetected leaks prior to filling a lined receptacle with liquid. This problem has led to the use of excessively thick linings or to the use of entirely different receptacles.
- a lining havingthe structure described: more fully hereafter, of a liquid-impervious nonconductive liquid barrier and a continuous electrically conductive metal foil positioned over a porous non-conductive base, provides positive means of leak detection and a reliable liner of minimum thickness.
- FIG. 1 depicts, in crosssection, a liquid receptacle embodying the liner construction of this invention.
- FIG. 2 depicts, in cross-section, a preferred liner construction in accordance with this invention.
- the metal foil should have a thickness of from about 0.5 mil to about 6 mils. because it possesses suflicient rigidity to be handled Without excessive tearing and is sufliciently thin to conform and adhere Well to the precise contours of the base 1. Foil which is thinner than the limits given above tends to tear too easily; thicker foil is difficult to apply and does not adhere Well to the base. It has been determined that, in certain instances, the rigidity of the foil can be increased Without increasing the thickness, by quilting or otherwise imparting a non-uniform surface to the-foil. Such increased rigidity increases the ease with Which the foil may be applied and handled and the "adherence of the foil to the base.
- the liquid barrier 3 is applied 'over the foil 2 with or without the use of an adhesive layer 10, shown in FIG. 2.
- the liquid barrier 3 can comprise any of the natural or synthetic resins, elastomers, rubbers, paints and the like, such as polyester, polyvinylchloride, polyacrylate, asphalt and the like.
- the liquid barrier 3 can be reinforced by any of the conventional reinforcement or filler means such as fiber glass, woven mesh and the like.
- Reference numeral 4 in FIG. 1 indicates the liquid to be contained in the receptacle.
- Base -1 should be kept out of contact with liquid 4 since any prolonged contact may cause loss of the liquid, deteriorate the base and/or contaminate the liquid.
- Typical liquids include, for'example, aqueous chemical solutions, hydrocarbons such as crude oil and refined products such as fuel oil, kerosene, gasoline and the like.
- the liquid to be retained within the receptacle is electrically conductive. This electrical conductance property can be utilized in conjunction with the structure according to this invention to provide a means of leak detection.
- Leaks in the structures of this invention can be detected instantaneously as they develop, through a leak detection Foil of this thickness is easy to apply means comprising foil 2, a first electrical contact 5, a warning means 8, a source of current 7 and a second electrical contact 6.
- electrical contact 6 is immersed in the liquid 4, electrical contact connects foil 2 with warning means 8, and electrical current is supplied from source '7.
- Warning means 8 can be either visual or audible, for example, a light, a horn, a bell, a buzzer or the like. This system provides a constant check which immediately and automatically detects any leak as soon as it develops in a receptacle containing an electrolyte, before any substantial damage has occurred.
- the leak detection means of this invention can be employed tovdetect leaks in'the liquid barrier 3 even when an electrically conductive liquid is not present in the receptacle.
- the leak detection means of this invention can be employed tovdetect leaks in'the liquid barrier 3 even when an electrically conductive liquid is not present in the receptacle.
- electri cal contact 6 is attached to a sponge, not shown, Which has been soaked with a good electrolyte, and the sponge is moved slowly over the surface of liquid barrier 3
- any leaks in the liquid barrier will be immediately detected by the warning means 8.
- the electrolyte in the sponge will penetrate any defects in the liquid barrier and contact the metal foil whereupon thecircuit is completed and the warning means will be actuated.
- a first layer 9 of adhesive material is applied between the base 1 and the foil 2.
- a second layer 10 of the same or different adhesive is applied between the foil 2 and the liquid barrier 3-.
- Second layer 10 can serve as a prime coat for liquid barrier 3.
- the first adhesive layer 9 serves to attach the foil 2 firmly to the base 1.
- Suitable materials comprise a liquid pro-polymer applied to the base 1 and polymerized in situ, a strip of adhesive film having both its surfaces gummed or the like. Since, in some cases, it is difficult to apply adhesive film which has been pre-gummed on both sides, it is preferred to use an adhesive material comprising a liquid pre-polymer which is applied as liquid and polymerized in situ. These liquid pre-polymers also adhere more uniformly to, the precise contour of the base than do the gummed films.
- Particularly suitable adhesive materials comprise epoxy resins. These resins are applied and then cured in situ by the use of chemical agents, for example, amines, polyamides, and the like. These chemical agents can be applied before or after the resin is deposited in place.
- the adhesive layers 9 and 10 can be the same or different.
- the adhesive in layer 10' is the same as that in layer 9 since this provides uniform adhesion to the foil 2 by both the base 1 and the liquid barrier 3.
- the use of a single material for both adhesive layers 9 and 10 reduces the equipment and materials required to complete a particular structure.
- the adhesive in layer 9 must be compatible with base 1 and foil 2, while adhesive layer 10 must be compatible with foil 2 and liquid barrier 3.
- the foil 2 is attached to base 1 by mechanical means, not shown.
- mechanical means include brads driven through foil 2 into base 1 With the resulting punctures in foil 2 being carefully sealed.
- foil 2' can be applied to the base 1 simply by carefully contouring the foil 2 to the shape of base 1 so that the foil 2 adheres closely to the base 1 without further attaching means. This contouring can be accomplished, for example, by rolling or brushing the foil onto the base.
- This method of applying the foil to the base 1 has been found to be very suitable in applications where the surface to which the foil is applied is horizontal. This method of adhesion is not limited, however, to horizontal surfaces since it can be employed on substantially vertical surfaces.
- the liquid barrier 3 can be attached to the foil 2 by means of an adhesive layer 10. The nature of the adhesive layer 10 i and the means of applying it are described more fully above with reference to FIG. 2.
- the base 1 as described above can be of any porous material; however, it preferably is a porous masonry material such as, for example, concrete, brick, cinder block and the like.
- One particular application for our structure is in porous concrete swimming pools which have polyester'linings.
- Use of the structure of this invention provides a quick, convenient and inexpensive means for detecting leaks, both prior to initial filling of the swimming pool and during the useof the swimming pool.
- a further application for the structure of this invention is in large underground fuel tanks wherein it is essential to detect the presence of any leaks in the liner prior to introduction of fuel into the storage tanks. Leaks in'such storage tanks can be detected by passing an electrolyte-soaked sponge connected to electrical contact 6 over the surfaces of the lined storage tank, before it is filled with fuel.
- the warning system described above with reference to FIG. 1 is employed to detect any leaks.
- the metal foil 2 has an important function in eliminating the development of blisters and fissures in polymeric liquid barriers which are polymerized in situ on poro'us bases.
- the mechanism by which the metal. foil 2 prevents the formation of blisters during polymerization and thereafter is not fully understood. While we do not wish to be limited toany particular theory, it is believed that the metal foil 2 acts as a vapor barrier during and after curing of the polymeric liquid barrier so that vapors from the porous base do not force portions of the uncured or semi-cured liquid barrier away from the base. While the precise function of the metal foil in this matter is not understood, it has been determined that the use of this metal foil enables the production oflarge lined receptacles which contain no blisters or irregularities in the lining.
- the use of the metal foil 2 in a leak detection means in the structure of this invention provides a highly advantageous'system which provides,among other features, the hitherto unavailable dual features of positive leak detec- 'tion and uniform high quality linings over low cost, po-
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Laminated Bodies (AREA)
Description
Filed May 18, 1962 J. BENARD BYM g E.
ATTORNEY INVENTOR LYLL S. SURTEES GERA L. S. SURTEES ETAL 5 VLIQUID RECEPTACLE'AND METHOD FOR PREPARING SAME POWER SOURCE 1 May 17, 1966 3,252,155 LIQUID RECEPTACLE AND METHOD FOR PREPARING SAME Lyll S. Surtees and Gerald J. Benard, Trona, Calif., as-
signors to American Potash & Chemical Corporation, Los Angeles, Calif., a corporation of Delaware Filed May 18, 1962, Ser. No. 195,899 1 Claim. (Cl. 340242) The present invention relates to liquid receptacles and, more particularly, to novel lined liquid receptacles and their methods of preparation.
United States Patent Considerable difiiculty has been experienced in applying liquid-impervious linings over porous bases. Often, particularly when theliquid-impervious linings are polymerized in situ, blisters, fissures and other irregularities develop in the lining. Such irregularities cause the lining to leak, thus destroying its usefulness.
In the past, various attempts have been made to overi ice foil 2 is generally finished in some manner so that it presents a relatively smooth surface to receive the metal foil 2. Conventional finishing treatments which are suitable include, for example, careful troweling and smoothing of the uncured material or sandblasting of the base after it has hardened.
The metal foil 2 can be aflixed to the base 1 by any convenient means, for example, by mechanical attachments, not shown. or by adhesives, such as adhesive layer 9 illustrated in FIG. 2.
The metal foil 2 is characterized by having ductility and weight such that it can be conveniently applied and irremovably secured to the contours of the base 1. These foils should be reasonably free of oil, dust and other surface impurities which might prevent adhesion of the foil to the base or the liquid barrier to the foil. Metal foils which can be used according to this invention comprise any of the electrically conductive metals including, for example, aluminum, copper, tin, iron or alloys or mixtures of two or more. Aluminum and alloys thereof have been found to be particularly useful since they are excellent conductors of electricity and are readily applicable to and tightly adherent to the base 1. r
has not originally intended to carry a lining. For this reason, the application of liquid-impervious liners which are polymerized in situ to masonry bases is often considered impracticable and other less satisfactory bases such as wood or steel are reverted to.
The use, heretofore, of excessively thick liquid-impervious liners to prevent leaks in the lining has been unsuccessful, generally.
Liquid receptacles having a liquid-impervious liner positioned over a non-electrically conductive base, have suffered, heretofore, from the distinct disadvantage that no positive means has been available for detecting leaks before deterioration of the base has resulted. For this reason, it has been impossible to determine whether or not such a lining contains undetected leaks prior to filling a lined receptacle with liquid. This problem has led to the use of excessively thick linings or to the use of entirely different receptacles.
Broadly and in accordance with this invention, it has been determined that a lining, havingthe structure described: more fully hereafter, of a liquid-impervious nonconductive liquid barrier and a continuous electrically conductive metal foil positioned over a porous non-conductive base, provides positive means of leak detection and a reliable liner of minimum thickness.
Referring to the drawings, FIG. 1 depicts, in crosssection, a liquid receptacle embodying the liner construction of this invention.
FIG. 2 depicts, in cross-section, a preferred liner construction in accordance with this invention.
It has been determined that the metal foil, to be'satisfactory, should have a thickness of from about 0.5 mil to about 6 mils. because it possesses suflicient rigidity to be handled Without excessive tearing and is sufliciently thin to conform and adhere Well to the precise contours of the base 1. Foil which is thinner than the limits given above tends to tear too easily; thicker foil is difficult to apply and does not adhere Well to the base. It has been determined that, in certain instances, the rigidity of the foil can be increased Without increasing the thickness, by quilting or otherwise imparting a non-uniform surface to the-foil. Such increased rigidity increases the ease with Which the foil may be applied and handled and the "adherence of the foil to the base.
The liquid barrier 3 is applied 'over the foil 2 with or without the use of an adhesive layer 10, shown in FIG. 2. The liquid barrier 3 can comprise any of the natural or synthetic resins, elastomers, rubbers, paints and the like, such as polyester, polyvinylchloride, polyacrylate, asphalt and the like. The liquid barrier 3 can be reinforced by any of the conventional reinforcement or filler means such as fiber glass, woven mesh and the like.
Reference numeral 4 in FIG. 1 indicates the liquid to be contained in the receptacle. Base -1 should be kept out of contact with liquid 4 since any prolonged contact may cause loss of the liquid, deteriorate the base and/or contaminate the liquid. Typical liquids include, for'example, aqueous chemical solutions, hydrocarbons such as crude oil and refined products such as fuel oil, kerosene, gasoline and the like.
Many lined vessels of large surface area are employed in the chemical industry for settling basins, waste purification, solar ponds, storage basins, reaction vessels and as holding areas Within a process stream. The present invention is applicable, of course, to all such vessels. In many instances, the liquid to be retained within the receptacle is electrically conductive. This electrical conductance property can be utilized in conjunction with the structure according to this invention to provide a means of leak detection.
Leaks in the structures of this invention can be detected instantaneously as they develop, through a leak detection Foil of this thickness is easy to apply means comprising foil 2, a first electrical contact 5, a warning means 8, a source of current 7 and a second electrical contact 6. As shown in FIG. 1, electrical contact 6 is immersed in the liquid 4, electrical contact connects foil 2 with warning means 8, and electrical current is supplied from source '7.
If there are leaks in the liquid barrier 3, liquid 4 will be in contact with metal foil 2. Electrical current flowing through liquid 4 into any opening in liquid barrier 3 and thus to the metal foil 2 will complete the circuit and automatically actuate warning means 8. Warning means 8 can be either visual or audible, for example, a light, a horn, a bell, a buzzer or the like. This system provides a constant check which immediately and automatically detects any leak as soon as it develops in a receptacle containing an electrolyte, before any substantial damage has occurred.
It is an important feature that the leak detection means of this invention can be employed tovdetect leaks in'the liquid barrier 3 even when an electrically conductive liquid is not present in the receptacle. Thus, if electri cal contact 6 is attached to a sponge, not shown, Which has been soaked with a good electrolyte, and the sponge is moved slowly over the surface of liquid barrier 3, any leaks in the liquid barrier will be immediately detected by the warning means 8. The electrolyte in the sponge will penetrate any defects in the liquid barrier and contact the metal foil whereupon thecircuit is completed and the warning means will be actuated. In accordance with this feature, it is possible to insure that'no leaks are present in the liquid barrier 3 before any of the liquid 4 is introduced into the receptacle.
Referring specifically to FIG. 2, a first layer 9 of adhesive material is applied between the base 1 and the foil 2. A second layer 10 of the same or different adhesive is applied between the foil 2 and the liquid barrier 3-. Second layer 10 can serve as a prime coat for liquid barrier 3. The first adhesive layer 9 serves to attach the foil 2 firmly to the base 1. Although this layer of adhesive is not essential, it has been determined that fewer leaks and better results are obtained if this layer of adhesive is employed.
Any adhesive material can be used as layers 9 and 10. Suitable materials comprise a liquid pro-polymer applied to the base 1 and polymerized in situ, a strip of adhesive film having both its surfaces gummed or the like. Since, in some cases, it is difficult to apply adhesive film which has been pre-gummed on both sides, it is preferred to use an adhesive material comprising a liquid pre-polymer which is applied as liquid and polymerized in situ. These liquid pre-polymers also adhere more uniformly to, the precise contour of the base than do the gummed films. Particularly suitable adhesive materials comprise epoxy resins. These resins are applied and then cured in situ by the use of chemical agents, for example, amines, polyamides, and the like. These chemical agents can be applied before or after the resin is deposited in place.
The adhesive layers 9 and 10 can be the same or different. Conveniently, the adhesive in layer 10' is the same as that in layer 9 since this provides uniform adhesion to the foil 2 by both the base 1 and the liquid barrier 3. Also, the use of a single material for both adhesive layers 9 and 10 reduces the equipment and materials required to complete a particular structure. The adhesive in layer 9 must be compatible with base 1 and foil 2, while adhesive layer 10 must be compatible with foil 2 and liquid barrier 3.
Referring particularly to FIG. 3, the foil 2 is attached to base 1 by mechanical means, not shown. Such mechanical means include brads driven through foil 2 into base 1 With the resulting punctures in foil 2 being carefully sealed. If desired, foil 2'can be applied to the base 1 simply by carefully contouring the foil 2 to the shape of base 1 so that the foil 2 adheres closely to the base 1 without further attaching means. This contouring can be accomplished, for example, by rolling or brushing the foil onto the base. This method of applying the foil to the base 1 has been found to be very suitable in applications where the surface to which the foil is applied is horizontal. This method of adhesion is not limited, however, to horizontal surfaces since it can be employed on substantially vertical surfaces. As shown in FIG. 3, the liquid barrier 3 can be attached to the foil 2 by means of an adhesive layer 10. The nature of the adhesive layer 10 i and the means of applying it are described more fully above with reference to FIG. 2.
The base 1 as described above can be of any porous material; however, it preferably is a porous masonry material such as, for example, concrete, brick, cinder block and the like.
One particular application for our structure is in porous concrete swimming pools which have polyester'linings. Use of the structure of this invention provides a quick, convenient and inexpensive means for detecting leaks, both prior to initial filling of the swimming pool and during the useof the swimming pool. A further application for the structure of this invention is in large underground fuel tanks wherein it is essential to detect the presence of any leaks in the liner prior to introduction of fuel into the storage tanks. Leaks in'such storage tanks can be detected by passing an electrolyte-soaked sponge connected to electrical contact 6 over the surfaces of the lined storage tank, before it is filled with fuel. The warning system described above with reference to FIG. 1 is employed to detect any leaks.
The metal foil 2 has an important function in eliminating the development of blisters and fissures in polymeric liquid barriers which are polymerized in situ on poro'us bases. The mechanism by which the metal. foil 2 prevents the formation of blisters during polymerization and thereafter is not fully understood. While we do not wish to be limited toany particular theory, it is believed that the metal foil 2 acts as a vapor barrier during and after curing of the polymeric liquid barrier so that vapors from the porous base do not force portions of the uncured or semi-cured liquid barrier away from the base. While the precise function of the metal foil in this matter is not understood, it has been determined that the use of this metal foil enables the production oflarge lined receptacles which contain no blisters or irregularities in the lining. This is in sharp contrast to linings which are produced by substantially the same procedures and materials without the use of the metal foil. These linings on porous bases are substantially worthless because they are filled with blisters and fissures. Often, these linings, which are applied over a porous base, contain more surface area vihich is filled with blisters than surface area which is firmly adhered to the base. For this reason, it is essential to use a metal foil in producing lined receptacles which have porous bases.
The use of the metal foil 2 in a leak detection means in the structure of this invention, provides a highly advantageous'system which provides,among other features, the hitherto unavailable dual features of positive leak detec- 'tion and uniform high quality linings over low cost, po-
rous, non-conductive bases.
As will be understood by those skilled in the art, what has been described is the preferred embodiment of the invention; however, many modifications, changes and substitutions can be made therein without departing from non-conductive liquid-impervious barrier liner to said foil and permitting the same to cure in situ against said foil; and testing for leaks in said cured barrier liner by connecting leak detection means to the foil, passing an electrical contact probe over said barrier liner to subject the barrier to an electrical potential and determining if a leak exists therein.
References Cited by the Examiner UNITED STATES PATENTS 1,952,705 3/1934 Eglolf et a1. 50-459 X 2,036,123 3/1936 Dahlander 50-160 X 2,205,534 6/1940 Lytle 5026'8 X 2,372,489 3/ 1945 Hampson.
6 8/ 1962 Osborn. 3,05 6,492 10/1196 2 Campbell. 3,064,874 11/1962 Kauffeld.
5 FOREIGN PATENTS 1,063,318 12/1953 France.
355,594 8/ 1931 Great Britain.
OTHER REFERENCES Concrete: Concrete Sealed by Glass Cloth and Resin, by J. Delmonte; June 1949; pages 12 and 45.
NEIL C. READ, Primary Examiner.
DANIEL K. MYER, Assistant Examiner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US195899A US3252155A (en) | 1962-05-18 | 1962-05-18 | Liquid receptacle and method for preparing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US195899A US3252155A (en) | 1962-05-18 | 1962-05-18 | Liquid receptacle and method for preparing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US3252155A true US3252155A (en) | 1966-05-17 |
Family
ID=22723279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US195899A Expired - Lifetime US3252155A (en) | 1962-05-18 | 1962-05-18 | Liquid receptacle and method for preparing same |
Country Status (1)
Country | Link |
---|---|
US (1) | US3252155A (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3719884A (en) * | 1970-02-17 | 1973-03-06 | Alusuisse | Process and apparatus for determining the porosity of a dielectric layer coating a metallic surface |
US3800217A (en) * | 1971-09-23 | 1974-03-26 | Lowrance Electronics Mfg | Pipeline including means of indicating the existence of and location of a leak |
US4110739A (en) * | 1976-08-02 | 1978-08-29 | Kidd John A | Means for detecting leakage in the inner lining of tanks and piping |
US4110945A (en) * | 1976-09-07 | 1978-09-05 | The Dow Chemical Company | Roof installation for locating water leakage points |
US4404516A (en) * | 1980-10-29 | 1983-09-13 | Johnson Jr Victor R | System for detecting leaks from liquid-containing reservoirs and conduits |
US4408628A (en) * | 1982-01-29 | 1983-10-11 | Monk Robert J | System and method for repair of leaking storage tanks containing fluids which contaminate ground water |
US4451173A (en) * | 1981-08-13 | 1984-05-29 | British Nuclear Fuels Limited | Storage pond |
US4569634A (en) * | 1984-09-27 | 1986-02-11 | Mantell Myron E | Failure sensing diaphragm for a diaphragm pump |
US4598273A (en) * | 1984-08-16 | 1986-07-01 | Bryan Jr Bynum O | Leak detection system for roofs |
US4664982A (en) * | 1983-07-15 | 1987-05-12 | American Standard Inc. | Multi-layer composite structure |
US4682492A (en) * | 1985-07-08 | 1987-07-28 | Green Marion C | Means and method for detecting leaks in tanks |
US4697456A (en) * | 1986-10-02 | 1987-10-06 | Maser Kenneth R | Leakage test for liquid containment |
EP0251045A2 (en) * | 1986-06-23 | 1988-01-07 | Keramchemie GmbH | Chemically resistant fluid tight lining |
US4934866A (en) * | 1989-03-10 | 1990-06-19 | Secondary Containment, Inc. | Secondary fluid containment method and apparatus |
EP0525278A2 (en) * | 1991-08-01 | 1993-02-03 | FRANK DEPONIETECHNIK GmbH | Plastic liner arrangement wich can be monitored for their permeability |
US5191785A (en) * | 1991-04-16 | 1993-03-09 | Cpf Chemical Equipment Ltd. | Method and apparatus for identifying and locating a leak in the inner liner of a vessel having a laminated wall structure |
US5204632A (en) * | 1989-07-05 | 1993-04-20 | Leach Eddie D | Apparatus and method for detecting leaks in surgical and examination gloves |
US5225812A (en) * | 1991-05-30 | 1993-07-06 | Wright State University | Protective composite liner |
US5288168A (en) * | 1992-08-24 | 1994-02-22 | Gundle Lining Construction Corporation | Method and apparatus for lining outdoor fluid containment areas to facilitate electrical leak detection |
US5351008A (en) * | 1993-01-25 | 1994-09-27 | Associated Enterprises, Inc. | Portable and disposable device for detecting holes or leaks in a surgical or examination glove |
US5378991A (en) * | 1992-05-27 | 1995-01-03 | Anderson; Thomas F. | Detecting degradation of non-conductive inert wall layers in fluid containers |
WO1998028611A1 (en) * | 1996-12-20 | 1998-07-02 | Molten Metal Technology, Inc. | Method and apparatus for monitoring physical integrity of a wall in a vessel |
US5850144A (en) * | 1997-09-03 | 1998-12-15 | Serrot Corporation | Method for detecting leaks in a membrane |
EP0896211A2 (en) * | 1997-08-04 | 1999-02-10 | Gynecare, Inc. | Apparatus and method for leak detection |
US5900270A (en) * | 1997-09-22 | 1999-05-04 | Cobe Laboratories, Inc. | Technique for testing and coating a microporous membrane |
US5980155A (en) * | 1994-02-10 | 1999-11-09 | University Of Newcastle Upon Tyne | Composite geosynthetics and methods for their use |
DE19841317C1 (en) * | 1998-09-10 | 2000-02-17 | Dirk Hergenroether | Leakage display device for plastics seal e.g. for contaminated water shaft, uses electrically-conductive electrode layer incorporated in triple layer plastics seal wall |
EP1195599A1 (en) * | 2000-10-05 | 2002-04-10 | Sanko Electronic Laboratory Co., Ltd. | Method and device for detecting pinholes in organic film on concrete surface |
US6662632B1 (en) | 2002-10-08 | 2003-12-16 | Larry L. Parker | Lined tank equipped with leak detection and monitoring system |
CN102345302A (en) * | 2011-07-13 | 2012-02-08 | 郑州润通环境仪表有限公司 | Electronic intelligent impermeable membrane and leakage monitoring method thereof |
US20130211633A1 (en) * | 2010-10-13 | 2013-08-15 | Katholieke Universiteit Leuven | Sensor for detecting hydraulic liquids in aircraft |
WO2014123687A1 (en) | 2013-02-11 | 2014-08-14 | Gse Lining Technology, Inc. | Leak detectable geomembrane liners and method and apparatus for forming |
US9297795B2 (en) | 2010-12-03 | 2016-03-29 | Todd Nicholas Bishop | Monitored filament insertion for resitivity testing |
US20190002066A1 (en) * | 2016-01-27 | 2019-01-03 | Greendock Project Development B.V. | Dry dock for building and/or dismantling navel structures |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB355594A (en) * | 1929-12-03 | 1931-08-27 | Ver Stahlwerke Ag | Device for detecting leakage in a vessel containing an electrically conductive liquid bath |
US1952705A (en) * | 1929-07-18 | 1934-03-27 | Universal Oil Prod Co | Lining for vessels holding oil |
US2036123A (en) * | 1935-06-22 | 1936-03-31 | William J Tompkins | Dampproof structure and method of constructing same |
US2205534A (en) * | 1938-06-04 | 1940-06-25 | Pittsburgh Plate Glass Co | Composite cellular glass block |
US2372489A (en) * | 1943-07-13 | 1945-03-27 | Plating Processes Corp | Leak detector for electrolyte tanks |
FR1063318A (en) * | 1952-08-02 | 1954-05-03 | Improvements in processes for storing fluids in concrete tanks | |
US3048294A (en) * | 1959-05-01 | 1962-08-07 | Wilford F Osborn | Insulated bottle |
US3056492A (en) * | 1958-08-29 | 1962-10-02 | Polaroid Corp | Fluid containers |
US3064874A (en) * | 1961-07-18 | 1962-11-20 | Foils Packaging Corp | Food container |
-
1962
- 1962-05-18 US US195899A patent/US3252155A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1952705A (en) * | 1929-07-18 | 1934-03-27 | Universal Oil Prod Co | Lining for vessels holding oil |
GB355594A (en) * | 1929-12-03 | 1931-08-27 | Ver Stahlwerke Ag | Device for detecting leakage in a vessel containing an electrically conductive liquid bath |
US2036123A (en) * | 1935-06-22 | 1936-03-31 | William J Tompkins | Dampproof structure and method of constructing same |
US2205534A (en) * | 1938-06-04 | 1940-06-25 | Pittsburgh Plate Glass Co | Composite cellular glass block |
US2372489A (en) * | 1943-07-13 | 1945-03-27 | Plating Processes Corp | Leak detector for electrolyte tanks |
FR1063318A (en) * | 1952-08-02 | 1954-05-03 | Improvements in processes for storing fluids in concrete tanks | |
US3056492A (en) * | 1958-08-29 | 1962-10-02 | Polaroid Corp | Fluid containers |
US3048294A (en) * | 1959-05-01 | 1962-08-07 | Wilford F Osborn | Insulated bottle |
US3064874A (en) * | 1961-07-18 | 1962-11-20 | Foils Packaging Corp | Food container |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3719884A (en) * | 1970-02-17 | 1973-03-06 | Alusuisse | Process and apparatus for determining the porosity of a dielectric layer coating a metallic surface |
US3800217A (en) * | 1971-09-23 | 1974-03-26 | Lowrance Electronics Mfg | Pipeline including means of indicating the existence of and location of a leak |
US4110739A (en) * | 1976-08-02 | 1978-08-29 | Kidd John A | Means for detecting leakage in the inner lining of tanks and piping |
US4110945A (en) * | 1976-09-07 | 1978-09-05 | The Dow Chemical Company | Roof installation for locating water leakage points |
US4404516A (en) * | 1980-10-29 | 1983-09-13 | Johnson Jr Victor R | System for detecting leaks from liquid-containing reservoirs and conduits |
US4451173A (en) * | 1981-08-13 | 1984-05-29 | British Nuclear Fuels Limited | Storage pond |
US4408628A (en) * | 1982-01-29 | 1983-10-11 | Monk Robert J | System and method for repair of leaking storage tanks containing fluids which contaminate ground water |
US4664982A (en) * | 1983-07-15 | 1987-05-12 | American Standard Inc. | Multi-layer composite structure |
US4598273A (en) * | 1984-08-16 | 1986-07-01 | Bryan Jr Bynum O | Leak detection system for roofs |
US4569634A (en) * | 1984-09-27 | 1986-02-11 | Mantell Myron E | Failure sensing diaphragm for a diaphragm pump |
US4682492A (en) * | 1985-07-08 | 1987-07-28 | Green Marion C | Means and method for detecting leaks in tanks |
EP0251045A2 (en) * | 1986-06-23 | 1988-01-07 | Keramchemie GmbH | Chemically resistant fluid tight lining |
EP0251045A3 (en) * | 1986-06-23 | 1989-04-26 | Keramchemie Gmbh | Chemically resistant fluid tight lining |
US4697456A (en) * | 1986-10-02 | 1987-10-06 | Maser Kenneth R | Leakage test for liquid containment |
US4934866A (en) * | 1989-03-10 | 1990-06-19 | Secondary Containment, Inc. | Secondary fluid containment method and apparatus |
US5204632A (en) * | 1989-07-05 | 1993-04-20 | Leach Eddie D | Apparatus and method for detecting leaks in surgical and examination gloves |
US5191785A (en) * | 1991-04-16 | 1993-03-09 | Cpf Chemical Equipment Ltd. | Method and apparatus for identifying and locating a leak in the inner liner of a vessel having a laminated wall structure |
US5225812A (en) * | 1991-05-30 | 1993-07-06 | Wright State University | Protective composite liner |
EP0525278A2 (en) * | 1991-08-01 | 1993-02-03 | FRANK DEPONIETECHNIK GmbH | Plastic liner arrangement wich can be monitored for their permeability |
EP0525278A3 (en) * | 1991-08-01 | 1993-09-22 | Frank Deponietechnik Gmbh | Plastic liner arrangement with lightness control, more particularly for landfills |
US5362182A (en) * | 1991-08-01 | 1994-11-08 | Frank Deponietechnik Gmbh | Waste disposal landfill having subsurface impermeable sheets which can be monitored with respect to their impermeability |
US5378991A (en) * | 1992-05-27 | 1995-01-03 | Anderson; Thomas F. | Detecting degradation of non-conductive inert wall layers in fluid containers |
US5288168A (en) * | 1992-08-24 | 1994-02-22 | Gundle Lining Construction Corporation | Method and apparatus for lining outdoor fluid containment areas to facilitate electrical leak detection |
DE4239119A1 (en) * | 1992-08-24 | 1994-03-10 | Gundle Lining Constr | Thermoplastic liner for an outdoor fluid storage area and sealing process |
US5351008A (en) * | 1993-01-25 | 1994-09-27 | Associated Enterprises, Inc. | Portable and disposable device for detecting holes or leaks in a surgical or examination glove |
US5980155A (en) * | 1994-02-10 | 1999-11-09 | University Of Newcastle Upon Tyne | Composite geosynthetics and methods for their use |
WO1998028611A1 (en) * | 1996-12-20 | 1998-07-02 | Molten Metal Technology, Inc. | Method and apparatus for monitoring physical integrity of a wall in a vessel |
EP0896211A2 (en) * | 1997-08-04 | 1999-02-10 | Gynecare, Inc. | Apparatus and method for leak detection |
EP0896211A3 (en) * | 1997-08-04 | 1999-12-01 | Gynecare, Inc. | Apparatus and method for leak detection |
US6057689A (en) * | 1997-08-04 | 2000-05-02 | Gynecare, Inc. | Apparatus and method for leak detection in a fluid-filled balloon useful to treat body tissue |
US5850144A (en) * | 1997-09-03 | 1998-12-15 | Serrot Corporation | Method for detecting leaks in a membrane |
US5900270A (en) * | 1997-09-22 | 1999-05-04 | Cobe Laboratories, Inc. | Technique for testing and coating a microporous membrane |
DE19841317C1 (en) * | 1998-09-10 | 2000-02-17 | Dirk Hergenroether | Leakage display device for plastics seal e.g. for contaminated water shaft, uses electrically-conductive electrode layer incorporated in triple layer plastics seal wall |
EP1099946A1 (en) * | 1998-09-10 | 2001-05-16 | ORPHEUS Geophysik Gesellschaft für Baugrund- und Umweltanalytik mbH | Leak sensing device for plastic liners and corresponding method of detecting leaks |
US6636031B1 (en) | 2000-10-05 | 2003-10-21 | Sanko Electronic Laboratory Co., Ltd. | Method and device for detecting pinholes in organic film on concrete surface |
EP1195599A1 (en) * | 2000-10-05 | 2002-04-10 | Sanko Electronic Laboratory Co., Ltd. | Method and device for detecting pinholes in organic film on concrete surface |
US6662632B1 (en) | 2002-10-08 | 2003-12-16 | Larry L. Parker | Lined tank equipped with leak detection and monitoring system |
US20130211633A1 (en) * | 2010-10-13 | 2013-08-15 | Katholieke Universiteit Leuven | Sensor for detecting hydraulic liquids in aircraft |
US9297795B2 (en) | 2010-12-03 | 2016-03-29 | Todd Nicholas Bishop | Monitored filament insertion for resitivity testing |
CN102345302A (en) * | 2011-07-13 | 2012-02-08 | 郑州润通环境仪表有限公司 | Electronic intelligent impermeable membrane and leakage monitoring method thereof |
WO2014123687A1 (en) | 2013-02-11 | 2014-08-14 | Gse Lining Technology, Inc. | Leak detectable geomembrane liners and method and apparatus for forming |
US9033620B2 (en) | 2013-02-11 | 2015-05-19 | Gse Environmental, Llc | Leak detectable geomembrane liners for containment system and method of testing for leaks |
US9975293B2 (en) | 2013-02-11 | 2018-05-22 | Gse Environmental, Llc | Method and apparatus for forming leak detectable geomembrane liners |
US10493699B2 (en) | 2013-02-11 | 2019-12-03 | Gse Environmental, Llc | Method and apparatus for forming leak detectable geomembrane liners |
EP3587304A1 (en) | 2013-02-11 | 2020-01-01 | GSE Environmental LLC | Apparatus for forming leak detectable geomembrane liners |
US20190002066A1 (en) * | 2016-01-27 | 2019-01-03 | Greendock Project Development B.V. | Dry dock for building and/or dismantling navel structures |
US10913520B2 (en) * | 2016-01-27 | 2021-02-09 | Greendock Project Development B.V. | Dry dock for building and/or dismantling navel structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3252155A (en) | Liquid receptacle and method for preparing same | |
Macdonald et al. | Bonded steel plating for strengthening concrete structures | |
US2956915A (en) | Thermoplastic laminate for use in lining storage tanks | |
JPS59159068A (en) | Infiltration capacity test core forming device for concrete,test device and method | |
US4800128A (en) | Chemical attack-resistant, liquid-tight lining | |
US3370998A (en) | Coating | |
US3410772A (en) | Method for attaching impressed current anodes for cathodic protection | |
NZ209801A (en) | Laminate patch with fast-curing acrylic based adhesive | |
US3126311A (en) | Laminated plastic article and method wherein | |
US3087515A (en) | Impermeable barrier in cement lined pipe | |
US4112572A (en) | Method for repairing protectively lined reactor vessels | |
US4299869A (en) | Protection of substrates against corrosion | |
DE3527764A1 (en) | Device for cleaning textile slats for blinds or the like | |
US5094111A (en) | Thermally insulated pipeline coating test | |
US3683628A (en) | Storage of fluids | |
US3054523A (en) | Field storage tanks | |
Cherry et al. | Wetting kinetics and the strength of adhesive joints | |
IE811725L (en) | Bonding resin to metal | |
US3533531A (en) | Liquid storage tanks | |
US2410681A (en) | Container and method of making it | |
JPH0423635Y2 (en) | ||
JPH11291369A (en) | Patching sheet | |
US2108722A (en) | Laminated corrosion resistant structure | |
CN217000231U (en) | Novel roof waterproof construction | |
CA1115143A (en) | Protection of substrates against corrosion |