US3244231A - Method for catalytically heating oil bearing formations - Google Patents
Method for catalytically heating oil bearing formations Download PDFInfo
- Publication number
- US3244231A US3244231A US271664A US27166463A US3244231A US 3244231 A US3244231 A US 3244231A US 271664 A US271664 A US 271664A US 27166463 A US27166463 A US 27166463A US 3244231 A US3244231 A US 3244231A
- Authority
- US
- United States
- Prior art keywords
- formation
- catalyst
- oil
- tubing
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015572 biosynthetic process Effects 0.000 title claims description 51
- 238000000034 method Methods 0.000 title claims description 26
- 238000010438 heat treatment Methods 0.000 title claims description 24
- 238000005755 formation reaction Methods 0.000 title description 47
- 239000003054 catalyst Substances 0.000 claims description 50
- 239000000203 mixture Substances 0.000 claims description 47
- 238000007254 oxidation reaction Methods 0.000 claims description 24
- 230000003647 oxidation Effects 0.000 claims description 23
- 239000002360 explosive Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 239000003921 oil Substances 0.000 description 42
- 239000000446 fuel Substances 0.000 description 22
- 239000000047 product Substances 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 238000002485 combustion reaction Methods 0.000 description 15
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 239000012530 fluid Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000001294 propane Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000000571 coke Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 3
- 229910003446 platinum oxide Inorganic materials 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 241000364021 Tulsa Species 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- SPLKSRDVCTUAGF-UHFFFAOYSA-N 3-(1-adamantyl)-4-methyl-5-phenyl-1,2,4-triazole Chemical compound N=1N=C(C23CC4CC(CC(C4)C2)C3)N(C)C=1C1=CC=CC=C1 SPLKSRDVCTUAGF-UHFFFAOYSA-N 0.000 description 1
- 241001609773 Campion Species 0.000 description 1
- 241000905957 Channa melasoma Species 0.000 description 1
- 241001627203 Vema Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000011551 heat transfer agent Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 239000004058 oil shale Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/02—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners
Definitions
- FIG-1 BY 2 ATTORNEY.
- the present invention relates to a method for heating and stimulating oil wells. More particularly, it is concerned with a method suitable for heating oil bearing or similar formations to a temperature sufficient either for stimulating the flow of oil therefrom or for igniting such formation to recover oil by means of combustion.
- our invention contemplates supplying heat to an oil bearing zone through the use of a catalytic heater especially adapted for the generation of heat by catalytic oxidation of any of a number of different fuels.
- FIGURE 1 shows an over-all, partly sectional, view of one embodiment of the apparatus used in accordance with our invention to heat an oil bearing zone by means of catalytic oxidation.
- FIGURE 2 is a modification of-the design shown in FIGURE 1 in which the efliuent from the catalyst bed travels back up the annulus formed by the concentric arrangement of tubing thereby allowing further control of the heater skin temperature which, in turn, aids materially in preventing excessive deposition of coke on the unit.
- FIGURE 3 is a detailed design, in section, of a cata-' lytic bottom hole heater or igniter which can be operated on a wire line and hung from tubing.
- the base of the heater is composed of a heavy stainless steel screen to permit passage of gases while still supporting the catalyst bed.
- FIGURE 4 is a plan view of the top of heater shown in FIGURE 3, having suitable cross-pieces for attachment to the wire line.
- FIGURE 5 is an elevational view, partly in section, showing an adaptation of our invention wherein the heater is in operation while the well is being pumped.
- FIGURE 6 is a detailed design of one form of catalytice bottom hole heater mounted on tubing as contemplated by our invention.
- FIGURE 7 is a cross-section of FIGURE 6 taken along line 6-6, showing in somewhat more detail the structure of the apparatus displayed in FIGURE 6.
- FIGURE 8 is still another variation of the catalytic bottom hole heater mountable on tubing, as contemplated by our invention.
- FIGURE 9 is a modification of the upper portion of the heater design shown in FIGURES 6 and 8.
- FIGURE 10 is another sectional view illustrating a design of our invention wherein heating of the formation and simultaneous pumping of the well are effected with the use of a single string of tubing.
- FIGURE 11 is a plot showing the volume ratio of air to fuel (methanol in this case) required to produce a given gas effluent temperature from the catalyst bed; it also shows the concentration of methanol in the feed in terms of mole percent to generate a given temperature.
- a protective casing 2 is shown extending from the earth's surface down to an oil-bearing zone 4 which communicates with the casing via perforations 8.
- a string of production tubing 10 which may extend above, below or substantially within the vertical distance covered by perforations 8.
- concentrically disposed in tubing 10 is a second tubing 12 which may or may not extend into the well to the depth of perforations 8.
- a seating nipple 14 At the base of tubing 12 is a seating nipple 14 into which catalytic heater 16 is lowered on wire line 18 and seated.
- a fuel-air mixture having a composition outside the explosive limit and in proper proportions for generating gas effluent temperatures from heater 16 of from about 500 to about 1000 F.
- combustion products having a temperature within the above-stated range.
- the combustion products, including excess air, are produced either through casing or through the annulus between tubing 12 and tubing 16v and out line 22 along with the produced oil.
- the amount of air used is regulated such that there is no possibility of developing explosive mixtures or excessive temperatures if it reacts with the produced oil.
- production tubing 10 is omitted.
- Well fluids are forced back into the formation by means of gas pressure until they have dropped to a level in the well below perforations 8.
- the hot combustion gases are then directed into formation 4 via perforations 8, or casing 2 may be landed near the top of formation 4 in which case the hot gases from heater 16 are directed to the walls of the open hole extending into said formation.
- the well head and valved line 22 is closed, of course, so that the hot gases are directed to all of the formation 4.
- valved line 22 may be left open slightly. so that a small stream of hot oxidation products flows up the annulus, thereby furnishing heat to said mixture.
- heater 16 After the formation ignition temperature is reached, is removed from the well and the latter becomes either a producing or an injection well, depending on whether it is being used. in a reverse or forward combustion drive. If the well is. employed as a producer, oil is produced through line 22, and if it is used as an injection well, air is introduced into the formation via line 26.
- heater 16. may be either in the form as shown in FIGURES l or 3, i.e., all of the fuel-air mixture flows through only. a portion of the catalyst bed or said mixture may flow through the entire bed.
- FIGURE Where it is desired to employ a bottom hole heater for the purpose of preventing accumulation of paraffin at or near the face of the formation and in the tubing, an arrangement such as that shown in FIGURE may be used.
- tubing 24, carrying heater 26, is secured to well head 28;.
- Heater 26 is threadedly or otherwise removably mounted to tubing 24 at 30.
- the necessary fuel-air mixture is supplied to the heater via valved line 32.
- the structure of heater 26 is shown in further detail in FIGURES 6 and 7, in which an elongated cylindrical vessel 33, measuring usually to 20 feet in length and about 2 inches O.D., is filled with a suitable oxidation catalyst 34.
- the catalyst is supported at a level near the base. of the-heater by means of a stainless steel screen 36..
- fuel line 32 extends into vessel 33. for a short distance above thetop of catalyst 34.
- Line 32 is held in alignment with the mouth of vessel 33 by meansof metal seal 38.
- Tubes 40 fit snugly against the exterior of vessel 33 and place into communication the space below screen 36 with the open area just above seal 38 in tubing 24.
- the total cross-sectional area of tubes 4,0.sho u1d be large enough, in proportion to that of vessel 33, to avoid excessive pressure drop.
- Production tubing 42 isequipped at the lower end with a check orstanding valve 44 which permits flow of oil from formation 4 into tubing 42 but prevents reverse flow.
- The. flow-of. oil through the system is maintained by the reciprocal motion ofpump 46 connected to sucker rod 48extending upwardly to the surface. through tubing 42 tosuitable, power means (not shown) located at the surface. O'il pumped from thewell in this fashion is removed-by means of flow line 50.
- the heater shown in FIGURE 8 can be substituted for the, one illustrated in FIGURE 5, shown in moredetail inFIGURE6.
- the device in FIGURE 8 is somewhat simpler indesign andincludes an elongated metal case 52 ,holclinga bed of catalyst 34supported at the base by a grate or screen 54. Screen 54 is secured both to the interior of case 52 and to the base of tubing 32. A similar.
- gagture57 is placed at the top of the bed to prevent entrainment. of the catalyst with the fluids flowing upwardly into the annulus between tubing strings 24 and 5.6; The upper portion of case 52 is engaged to tubing 24 at threaded connection 30.
- asuitable fuel-air mixture is forced down line 32 into contact with the catalyst as shown in the heater of FIGURES; Rapidoxidation of the hydrocarbon or oxyg enated organic compound in the feed occurs, generating temperatures of the order of from 400 to 800 or 1000 F;
- Thehot products of combustion flow through catalyst 3.4- down to the base-of the heater and then flow upwardly through tubes 40. Heat in these tubes, as well as in vessel 33, is extracted therefrom and transferred to surrounding well fluids which, in turn, release this heat to formation 4.
- said products flow, as indicated, into tubing 24 where the remainder of the heat is transferred to the fresh fuel-air mixture flowing downwardly in line 32 to catalyst 34.
- tubing 24 In the event thetemperature in the vicinity of tubing 24 becomes excessive, i.e., the fuel-air mixture is preheated to too high a temperature before contacting the catalyst bed, suitable insulation can be placed about tubing 24, thereby avoiding such undesirably high temperatures.
- the apparatus shown in FIGURE 9 may be used with any type of heater of the general design illustrated in FIGURES 6 and 8.
- the modification shown in FIG- URE 9 comprising tubing 62, has metal seal 64, holding pipe 66 and maintains the latter substantially concentric with tubing 62 at or near the juncture of seal 64 with pipe 66 or perforations 68. This entire assembly may be attached at the lower end thereof to a heater such as shown in FIGURE 5.
- the modification in tubing arrangement, as shown in FIGURE 9 may be safely used where the combustible gas production from the oil is low enough that there will be no danger of formation of an explosive mixture in the casing.
- the fuel-air mixture flows downwardly to the heater via tubing 62 until it reaches seal 64 located, for example, 4 or 5 feet above the catalyst bed.
- seal 64 located, for example, 4 or 5 feet above the catalyst bed.
- The. entire flow is then directed into pipe 66 where it continues on its way and comes in contact with the oxidation catalyst, as previously described; Combustion or oxidation products are conducted away from the heater via annulus 70 and then leave the latter through perforations 68, traveling upwardly inside the casing and are then removed from the well.
- the heat contained in the combustion products generated in the various ways mentioned above is transferred through the well fluids to formation 4, heating the oil therein and preventing parafiin or materials of a similar nature from solidifying at or near the formation face.
- the hot oil thus produced into the well and lifted to the surface via tubing 42 likewise, tends to prevent the deposition of paraffin in said tubingas well as in flow line 50.
- FIGURE 10 eliminates the dual tubing arrangement used in the previously illustrated embodiment and is suitable for simultaneously pumping oil and heating an oil-containing formation penetrated by a well.
- the assembly illustrated may replace the equipment shown in FIGURE 5.
- a heater 72 containing catalyst 34 is mounted on tubing 74* and located opposite perforations 8 and oilbearing formation 4.
- Inside tubing 74' is hollow sucker rod 76 carrying pump 46.
- a seal 78 is placed substantially midway of heater 72 to prevent flow of fluids upwardly through annulus 80.
- At the base of tubing 74 is standing valve 82 which allows hot produced oil to flow into the variable volume chamber defined by said valve and pump 46.
- ports 84 which permit the fuel air mixture to fiow out of the rod and into lower ports 86 in heater 72. After the temperature of catalyst bed 34-has reached the desired level, air alone is sent down sucker rod 76 and the produced crude used as the fuel for heating.
- air rate is regulated to obtain substantially complete consumption of air in the catalyst bed to avoid burning or possible formation of explosive mixtures on the way to the surface.
- Produced oil flows into and through heater 7?. and out upper ports 88 along with oxidation products formed when the mixture of oil and air comes in contact with catalyst 34.
- the produced oil and combustion products are then removed from the well via annulus 90.
- the fuel portion of the feed which is to be contacted with the catalyst in accordance with our invention may be selected from a wide variety of substances, such as, for example, light hydrocarbons, typically natural gas, propane, butane and unsaturated derivatives thereof, kerosene, crude oil, oxygenated organic chemicals, such as the lower molecular Weight alcohols, for example, methanol, and the like.
- Mixtures, of course, of two or more of the foregoing materials may be used-in gaseous or liquid formas the fuel component of the feed.
- air or oxygen-rich fuel mixtures we prefer to employ air or oxygen-rich fuel mixtures, however, our invention also contemplates the use of fuel-rich mixtures. Tests using feed mixtures of propane and air and propylene and air were carried out under the conditions outlined below.
- space velocities employed will vary with the nature of the fuel employed. Generally speaking, when methanol is used as the fuel, space velocities as high as 100,000 s.c.f.h. per cubic foot of catalyst may be employed. With fuels less readily oxidized, the space velocities ordinarily will be in the range of from about 10,000 to about 25,000 s.c.f.h. per cubic foot of catalyst. These figures, in both instances, refer to the combined fuel-air mixture.
- the table below illustrates the temperature rise produced by contacting varying methane-air and propane-air mixtures with a supported platinum oxide catalyst so as to effect complete combustion of the fuel in an adiabatic system.
- Propane Preferred volume ratios of air to methane and air to propane are from about to 130 and from about 60 to about 200, respectively.
- catalysts suitable for oxidation of the feeds contemplated herein include the oxides of platinum, palladium, rhodium, etc. These oxides are preferably used in very dilute concentrations, e.g., 0.05 to about 0.5 weight percent, and may be supported on materials having a large surface area, such as pumice, aluminum oxide, metal wool, for example, stainless steel wool, and the like. Supported platinum oxide catalyst suitable for this purpose is manu factured by the Chemetron Corporation of Louisville, Ky., and is identified as catalyst (3-43. In operation, the portion of catalyst apparently entering into the oxidation reaction is that with which the feed mixture first comes in contact.
- a method for heating a subsurface formation containing combustible material, said formation being penetrated by a well which comprises placing a body of an oxidation catalyst in said well at the approximate level of said formation, thereafter conducting a fuel-air mixture through said catalyst, said mixture being outside the explosive range, and passing the resulting hot oxidation products in heat exchange relation with said formation, said products having a temperature of from about 500 to about 1100 F.
- a method for treating an oil-bearing formation to promote the flow of oil therefrom, said formation being penetrated by a Well which comprises placing a confined body of an oxidation catalyst in said Well and near the face of said formation, thereafter conducting a fuel-oxygen-containing gas mixture upwardly through said catalyst to produce oxidation products having a temperature of from about 500 to about 1100 F., said mixture being outside of the explosive'range, and bringing said products into indirect heat exchange with said mixture and with said formation.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
A ril 5, 1966 H. GREKEL vEma. 3,244,231
I METHOD FOR CATALYTICALLY HEATING OIL BEARING FORMATIONS Filed April 9, 1963 4 Sheets-Sheet 1 HOWARD GREKEL KAROL L. HUJSAK INVENTORS. FIG-1 BY 2 ATTORNEY.
P 1955 H. GREKEL ETAL 3,244,331
METHOD FOR CATALYTIC-5L1 HEATING OIL BEARING FORMATIONS Filed April 9, 1963 4 SheetS Sheat 2 HOWARD GREKEL KAROL L. HUJSAK INVENTORS.
BY M4 Map 1.7
ATTORNEY.
9 1966 H. GREKEL ETAL 3,244,231
METHOD FOR CATALYTIOALLY HEATING OIL BEARING FORMATIONS Filed April 9, 1963 4 Sheets-Sheet s I 74 62\ ,r64 -f 68" 5 FlG.-9
HOWARD GREKEL KAROL L. HUJSAK INVENTORS.
ATTORNEY.
April 5, 1-966 H. GREKEL ETAL 3,244,231
METHOD FOR CATALYTICALLY HEATING OIL BEARING FORMATIONS Filed April 9, 1963 4 Sheets-Sheet 4 MOL PER CENT METHANOL IN FEED IOOC TEMPERATURE RISE 20 3O 4O 5O 6O 7O 8O SCF AlR/SCF METHANOL VAPOR Bi -"ll HOWAR D GREKEL KAROL L. HUJSAK INVENTORS.
ATTORNEY.
United States Patent Ofiice 3,244,231 Patented Apr. 5, 1966 METHOD FOR CATALYTICALLY HEATING OIL BEARING FGRMATIONS Howard Greirel and Karol L. Hujsak, Tulsa, Okla, as-
signors to Pan American Petroleum Corporation, Tulsa, Okla, a corporation of Delaware Filed Apr. 9, 1963, Ser. No. 271,664 13 Claims. (Cl. 166-38) The present invention relates to a method for heating and stimulating oil wells. More particularly, it is concerned with a method suitable for heating oil bearing or similar formations to a temperature sufficient either for stimulating the flow of oil therefrom or for igniting such formation to recover oil by means of combustion.
Briefly, our invention contemplates supplying heat to an oil bearing zone through the use of a catalytic heater especially adapted for the generation of heat by catalytic oxidation of any of a number of different fuels.
Many methods have been employed in the prior art for heating oil wells, e.g., by electrical means, by injecting heat transfer agents into the well such as steam, hot oil, etc., and by burning natural gas in the well bore. Considerable difficulty has been encountered in the application of electric well heating owing to the highly corrosive nature of oil field brine, sulfur compounds, and other components of the fluids produced through the well bore. These fluids penetrate the innermost parts of the well heater, and even traces of moisture cause short-circuiting of the apparatus necessitating shutdown, removal and repair. These difiiculties materially reduce the operating efliciency of such heating processes. Well bore liquids also penetrate and permeate the customary insulating materials rendering them practically useless. These problems are peculiar to the well heating art and are not generally encountered in other applications of electrical heating.
One of the principal drawbacks of the gas or liquid fueled heaters is that it is extremely difficult to avoid damage to the casing and any well equipment present in the area where heat is being applied. This is due to the fact that the temperature at which heaters of this kind operate cannot be maintained at levels which such equipment can withstand. One of the difficulties with electrical heaters is their tendency to short out owing to hot spots developing through poor heat exchange, generally resulting from coke formation on the surface. With increasing thickness of the coke layer on the exterior of the heater, the temperature tends to build up until it exceeds the melting point of the heating elements causing the latter to fail.
' It is another object of our invention to provide a method for heating oil bearing zones that permits easy and effective temperature control at reasonable operating costs. It is a further object of our invention to provide a method for stimulating the flow of oil from an underground deposit thereof by the use of heat without the formation of coke in objectionable amounts.
In the accompanying drawings a number of embodiments of our invention are illustrated:
FIGURE 1 shows an over-all, partly sectional, view of one embodiment of the apparatus used in accordance with our invention to heat an oil bearing zone by means of catalytic oxidation.
FIGURE 2 is a modification of-the design shown in FIGURE 1 in which the efliuent from the catalyst bed travels back up the annulus formed by the concentric arrangement of tubing thereby allowing further control of the heater skin temperature which, in turn, aids materially in preventing excessive deposition of coke on the unit.
FIGURE 3 is a detailed design, in section, of a cata-' lytic bottom hole heater or igniter which can be operated on a wire line and hung from tubing. The base of the heater is composed of a heavy stainless steel screen to permit passage of gases while still supporting the catalyst bed.
FIGURE 4 is a plan view of the top of heater shown in FIGURE 3, having suitable cross-pieces for attachment to the wire line.
FIGURE 5 is an elevational view, partly in section, showing an adaptation of our invention wherein the heater is in operation while the well is being pumped.
FIGURE 6 is a detailed design of one form of catalytice bottom hole heater mounted on tubing as contemplated by our invention.
FIGURE 7 is a cross-section of FIGURE 6 taken along line 6-6, showing in somewhat more detail the structure of the apparatus displayed in FIGURE 6.
FIGURE 8 is still another variation of the catalytic bottom hole heater mountable on tubing, as contemplated by our invention.
FIGURE 9 is a modification of the upper portion of the heater design shown in FIGURES 6 and 8.
FIGURE 10 is another sectional view illustrating a design of our invention wherein heating of the formation and simultaneous pumping of the well are effected with the use of a single string of tubing.
FIGURE 11 is a plot showing the volume ratio of air to fuel (methanol in this case) required to produce a given gas effluent temperature from the catalyst bed; it also shows the concentration of methanol in the feed in terms of mole percent to generate a given temperature.
Referring now to FIGURE 1, a protective casing 2 is shown extending from the earth's surface down to an oil-bearing zone 4 which communicates with the casing via perforations 8. Within casing 2 is a string of production tubing 10 which may extend above, below or substantially within the vertical distance covered by perforations 8. concentrically disposed in tubing 10 is a second tubing 12 which may or may not extend into the well to the depth of perforations 8. At the base of tubing 12 is a seating nipple 14 into which catalytic heater 16 is lowered on wire line 18 and seated. A fuel-air mixture having a composition outside the explosive limit and in proper proportions for generating gas effluent temperatures from heater 16 of from about 500 to about 1000 F. is introduced into tubing 12 via valved flow line 20. On contacting the catalyst in heater 16 with the aforesaid mixture, the oxidation of the fuel creates combustion products having a temperature within the above-stated range. The combustion products, including excess air, are produced either through casing or through the annulus between tubing 12 and tubing 16v and out line 22 along with the produced oil. When the combustion products are produced with the oil, the amount of air used is regulated such that there is no possibility of developing explosive mixtures or excessive temperatures if it reacts with the produced oil.
In the case where it is desired to heat formation 4 to ignition temperature, i.e., preferably of the order of 800 to 1000 F., prior to conducting a combustion process, production tubing 10 is omitted. Well fluids are forced back into the formation by means of gas pressure until they have dropped to a level in the well below perforations 8. The hot combustion gases are then directed into formation 4 via perforations 8, or casing 2 may be landed near the top of formation 4 in which case the hot gases from heater 16 are directed to the walls of the open hole extending into said formation. In this heating step the well head and valved line 22 is closed, of course, so that the hot gases are directed to all of the formation 4. This same procedure may be used where it is desired merely to heat up the formation within a radius of 10 to 15 feet, for example, from the well bore in order to stimulate the flow of oil. It will also be appreciated, of course, that thistechnique may be employed in open hole preparatory to combustion operations. It should be pointed out that in case it is found desirable to preheat the fuelair mixture in tubing 12, valved line 22 may be left open slightly. so that a small stream of hot oxidation products flows up the annulus, thereby furnishing heat to said mixture.
If;the aforesaid heating step is carried outfor the purpose of initiating a combustion process, heater 16, after the formation ignition temperature is reached, is removed from the well and the latter becomes either a producing or an injection well, depending on whether it is being used. in a reverse or forward combustion drive. If the well is. employed as a producer, oil is produced through line 22, and if it is used as an injection well, air is introduced into the formation via line 26.
In FIGURE 2, heater 16. may be either in the form as shown in FIGURES l or 3, i.e., all of the fuel-air mixture flows through only. a portion of the catalyst bed or said mixture may flow through the entire bed.
Where it is desired to employ a bottom hole heater for the purpose of preventing accumulation of paraffin at or near the face of the formation and in the tubing, an arrangement such as that shown in FIGURE may be used. In this case, tubing 24, carrying heater 26, is secured to well head 28;. Heater 26 is threadedly or otherwise removably mounted to tubing 24 at 30. The necessary fuel-air mixture is supplied to the heater via valved line 32. The structure of heater 26 is shown in further detail in FIGURES 6 and 7, in which an elongated cylindrical vessel 33, measuring usually to 20 feet in length and about 2 inches O.D., is filled with a suitable oxidation catalyst 34. The catalyst is supported at a level near the base. of the-heater by means of a stainless steel screen 36.. At the mouth of heater 26 fuel line 32 extends into vessel 33. for a short distance above thetop of catalyst 34. Line 32,is held in alignment with the mouth of vessel 33 by meansof metal seal 38. Tubes 40 fit snugly against the exterior of vessel 33 and place into communication the space below screen 36 with the open area just above seal 38 in tubing 24. The total cross-sectional area of tubes 4,0.sho u1d be large enough, in proportion to that of vessel 33, to avoid excessive pressure drop.
The heater shown in FIGURE 8 can be substituted for the, one illustrated in FIGURE 5, shown in moredetail inFIGURE6. The device in FIGURE 8 is somewhat simpler indesign andincludes an elongated metal case 52 ,holclinga bed of catalyst 34supported at the base by a grate or screen 54. Screen 54 is secured both to the interior of case 52 and to the base of tubing 32. A similar. tructure57 is placed at the top of the bed to prevent entrainment. of the catalyst with the fluids flowing upwardly into the annulus between tubing strings 24 and 5.6; The upper portion of case 52 is engaged to tubing 24 at threaded connection 30.
I In operation of anassembly such as that shown in FIG- URES, asuitable fuel-air mixture is forced down line 32 into contact with the catalyst as shown in the heater of FIGURES; Rapidoxidation of the hydrocarbon or oxyg enated organic compound in the feed occurs, generating temperatures of the order of from 400 to 800 or 1000 F; Thehot products of combustion flow through catalyst 3.4- down to the base-of the heater and then flow upwardly through tubes 40. Heat in these tubes, as well as in vessel 33, is extracted therefrom and transferred to surrounding well fluids which, in turn, release this heat to formation 4. After the heat has been largely removed from the gaseous products in tubes 4!), said products flow, as indicated, into tubing 24 where the remainder of the heat is transferred to the fresh fuel-air mixture flowing downwardly in line 32 to catalyst 34.
In substituting the heater shown in FIGURE 8 for the one in FIGURES 5 and 6, the gas flow is somewhat different in that the fuel-air mixture passes through tubing 32 the full length of catalyst bed 34, then flows upwardly through the catalyst, and heat is generated by oxidation of the fuel. At the top of catalyst bed 34, the resulting combustion products are conducted up the well and out of the system via the annulus between tubing 32 and tubing 24. It will be appreciated, of course, that the fluid flow can be reversed, i.e., the fuel-air mixture passed down the annulus between tubing strings 24 and 32 and back up through tubing 24. In the event thetemperature in the vicinity of tubing 24 becomes excessive, i.e., the fuel-air mixture is preheated to too high a temperature before contacting the catalyst bed, suitable insulation can be placed about tubing 24, thereby avoiding such undesirably high temperatures.
The apparatus shown in FIGURE 9 may be used with any type of heater of the general design illustrated in FIGURES 6 and 8. The modification shown in FIG- URE 9 comprising tubing 62, has metal seal 64, holding pipe 66 and maintains the latter substantially concentric with tubing 62 at or near the juncture of seal 64 with pipe 66 or perforations 68. This entire assembly may be attached at the lower end thereof to a heater such as shown in FIGURE 5. The modification in tubing arrangement, as shown in FIGURE 9 may be safely used where the combustible gas production from the oil is low enough that there will be no danger of formation of an explosive mixture in the casing. Thus, the fuel-air mixture flows downwardly to the heater via tubing 62 until it reaches seal 64 located, for example, 4 or 5 feet above the catalyst bed. The. entire flow is then directed into pipe 66 where it continues on its way and comes in contact with the oxidation catalyst, as previously described; Combustion or oxidation products are conducted away from the heater via annulus 70 and then leave the latter through perforations 68, traveling upwardly inside the casing and are then removed from the well.
The heat contained in the combustion products generated in the various ways mentioned above is transferred through the well fluids to formation 4, heating the oil therein and preventing parafiin or materials of a similar nature from solidifying at or near the formation face. The hot oil thus produced into the well and lifted to the surface via tubing 42, likewise, tends to prevent the deposition of paraffin in said tubingas well as in flow line 50.
The modification shown in FIGURE 10 eliminates the dual tubing arrangement used in the previously illustrated embodiment and is suitable for simultaneously pumping oil and heating an oil-containing formation penetrated by a well. In this. particular embodiment the assembly illustrated may replace the equipment shown in FIGURE 5. A heater 72 containing catalyst 34 is mounted on tubing 74* and located opposite perforations 8 and oilbearing formation 4. Inside tubing 74' is hollow sucker rod 76 carrying pump 46. A seal 78 is placed substantially midway of heater 72 to prevent flow of fluids upwardly through annulus 80. At the base of tubing 74 is standing valve 82 which allows hot produced oil to flow into the variable volume chamber defined by said valve and pump 46. Near the lower end of hollow sucker rod 76 are ports 84 which permit the fuel air mixture to fiow out of the rod and into lower ports 86 in heater 72. After the temperature of catalyst bed 34-has reached the desired level, air alone is sent down sucker rod 76 and the produced crude used as the fuel for heating. The
air rate is regulated to obtain substantially complete consumption of air in the catalyst bed to avoid burning or possible formation of explosive mixtures on the way to the surface. Produced oil flows into and through heater 7?. and out upper ports 88 along with oxidation products formed when the mixture of oil and air comes in contact with catalyst 34. The produced oil and combustion products are then removed from the well via annulus 90.
The fuel portion of the feed which is to be contacted with the catalyst in accordance with our invention may be selected from a wide variety of substances, such as, for example, light hydrocarbons, typically natural gas, propane, butane and unsaturated derivatives thereof, kerosene, crude oil, oxygenated organic chemicals, such as the lower molecular Weight alcohols, for example, methanol, and the like. Mixtures, of course, of two or more of the foregoing materials may be used-in gaseous or liquid formas the fuel component of the feed. In general, we prefer to employ air or oxygen-rich fuel mixtures, however, our invention also contemplates the use of fuel-rich mixtures. Tests using feed mixtures of propane and air and propylene and air were carried out under the conditions outlined below.
Table I 1 Platinum Oxide on Alumina. 2 Propane. 3 Propylene.
The above results, translated in terms of field requirements, show that to generate one million B.t.u./day, a total of 12 gallons of hydrocarbon and 87,000 s.c. f.d. of air are needed. To handle this feed mixture, approximately 0.14 cubic foot of catalyst is used. This corresponds to a column of catalyst 6 feet long in a 2-inch I.D. pipe.
The space velocities employed will vary with the nature of the fuel employed. Generally speaking, when methanol is used as the fuel, space velocities as high as 100,000 s.c.f.h. per cubic foot of catalyst may be employed. With fuels less readily oxidized, the space velocities ordinarily will be in the range of from about 10,000 to about 25,000 s.c.f.h. per cubic foot of catalyst. These figures, in both instances, refer to the combined fuel-air mixture.
The table below illustrates the temperature rise produced by contacting varying methane-air and propane-air mixtures with a supported platinum oxide catalyst so as to effect complete combustion of the fuel in an adiabatic system.
Table II Volume Ratio Temperature Volume Ratio Temperature s.c.f.-Air/CH Rise, F. s.c.f.-Air/ Rise, F.
Propane Preferred volume ratios of air to methane and air to propane (s.c.f.) are from about to 130 and from about 60 to about 200, respectively.
The effluent temperature from the catalyst bed can also be regulated by limiting the contact time of the fuel-air mixture with the catalyst so as to limit the amount of reaction obtained. Ordinarily, temperatures in excess of about 1500 F should not be employed.
. The catalysts used may be selected from a wide list of materials and form no part of our invention. Typically, catalysts suitable for oxidation of the feeds contemplated herein include the oxides of platinum, palladium, rhodium, etc. These oxides are preferably used in very dilute concentrations, e.g., 0.05 to about 0.5 weight percent, and may be supported on materials having a large surface area, such as pumice, aluminum oxide, metal wool, for example, stainless steel wool, and the like. Supported platinum oxide catalyst suitable for this purpose is manu factured by the Chemetron Corporation of Louisville, Ky., and is identified as catalyst (3-43. In operation, the portion of catalyst apparently entering into the oxidation reaction is that with which the feed mixture first comes in contact.
It is to be understood that while our invention is particularly applicable to the recovery of hydrocarbons from liquid petroleum reservoirs, it is equally suited to the recovery of valuable products from other sub-surface combustible materials such as, for example, oil shale, tar sand, coal and the like.
We claim:
1. A method for heating a subsurface formation containing combustible material, said formation being penetrated by a well, which comprises placing a body of an oxidation catalyst in said well at the approximate level of said formation, thereafter conducting a fuel-air mixture through said catalyst, said mixture being outside the explosive range, and passing the resulting hot oxidation products in heat exchange relation with said formation, said products having a temperature of from about 500 to about 1100 F.
2. The method of claim 1 in which the fuel component of said mixture is a light hydrocarbon.
3. The method of claim 1 in which the fuel component of said mixture is methanol.
4. The method of claim 1 in which the fuel component of said mixture is propane.
5. The method of claim 1 in which the fuel component of said mixture is propylene.
6. The method or" claim 1 in which the fuel component of said mixture is natural gas.
7. The method of claim 1 in which the combustible material is a heavy viscous crude.
8. The method of claim 7 in which said catalyst is in the form of a confined mass and the temperature of the oxidation products ranges from about 500 to about 1000 F.
9. In a process for recovering crude oil from a pumping well penetrating an oil-bearing formation and wherein production of said oil is hindered by the deposition of solid solid materials from said oil on the face of said formation, the improvement which comprises placing a body of oxidation catalyst in said Well and near the face of said formation, thereafter contacting a fuel-air mixture with said catalyst, said mixture being outside the explosive range, passing the resultant products of oxidation having a temperature of from about 500 to about 1100 F. in direct heat exchange relation with said formation whereby said deposition of materials is at least minimized, and recovering the heated oil via said Well from said formation.
10. The process of claim 9 in which the oil from said formation is employed as the fuel.
11. In a process for recovering crude oil from a pumping well penetrating an oil bearing formation and wherein production of said oil is hindered by the deposition of solid materials from said oil on the face of said formation, the improvement which comprises placing a confined mass of oxidation catalyst in said well and at the approximate level of said formation, thereafter contacting said catalyst with a fuel-oxygen-containing gas mixture having a composition sufficient to produce oxidation products having a temperature range from about 500 to about 1100 F., said mixture being outside of the explosive range, thereafter passing said products in heat exchange relationship with said formation,- and recovering the heated oil via said Well from said formation.
12. A method for treating an oil-bearing formation to promote the flow of oil therefrom, said formation being penetrated by a Well, which comprises placing a confined body of an oxidation catalyst in said Well and near the face of said formation, thereafter conducting a fuel-oxygen-containing gas mixture upwardly through said catalyst to produce oxidation products having a temperature of from about 500 to about 1100 F., said mixture being outside of the explosive'range, and bringing said products into indirect heat exchange with said mixture and with said formation.
13. In a method for heating to ignition temperature an underground formation containing a combustible material, said formation being penetrated by a Well, the improvement which comprises placing a confined body of an oxidation catalyst opposite said formation, thereafter conducting a fuel-oxygen-containing gas mixture through said catalyst in the absence of liquid in said well at the level of said body of catalyst, said mixture being outside the explosive range, and passing the resulting hot oxidation products in direct heat exchange with said formation until the latter has been heated to said ignition temperature.
References Cited by the Examiner UNITED STATES PATENTS 1,678,592 7/1928 Garner et al. 166-59 2,675,081 4/1954 NoWak 166-59 X 2,847,071 8/ 1958 De Priester 166-39 2,890,755 6/1959 Eurenius et a1 16659 2,997,105 8/1961 Campion et al 166-59 3,010,516 11/1961 Schleicher 16659 3,026,937 3/1962 Simm 166-39 3,055,427 9/1962 Pryor et al. 16659 3,070,178 12/1962. Graham et al 175-17 3,107,728 10/1963 Kehn 166-39 X 3,113,623 12/1963 Krueger 16659 3,127,935 4/1964 Poettman' et al 166-11 OTHER REFERENCES Haslazn and Russell: Fuels and Their Combustion, 1st edition, McGraw-Hill Book Co., New York, 1926 (pages 304 and 305) TP 318.113.
Hackhs Chemical Dictionary, 3rd edition (1944), The Blakiston Co., Phila, Pa., page 5 32.
The Condensed Chemical Dictionary, 6th edition, Reinhold Publishing Corporation, New York, 1961, pages 51, 52 and 794.
CHARLES E. OCONNELL, Primary Examiner.
BENJAMIN HERSH, Examiner.
Claims (1)
1. A METHOD FOR HEATING A SUBSURFACE FORMATION CONTAINING COMBUSTIBLE MATERIAL, SAID FORMATION BEING PENETRATED BY A WELL, WHICH COMPRISES PLACING A BODY OF AN OXIDATION CATALYST IN SAID WELL AT THE APPROXIMATE LEVEL OF SAID FORMATION, THEREAFTER CONDUCTING A FUEL-AIR MIXTURE THROUGH SAID CATALYST, SAID MIXTURE BEING OUTSIDE THE EXPLOSIVE RANGE, AND PASSING THE RESULTING HOT OXIDATION PRODUCTS IN HEAT EXCHANGE RELATION WITH SAID FORMATION SAID PRODUCTS HAVING A TEMPERATURE OF FROM ABOUT 500* TO ABOUT 1100*F.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US271664A US3244231A (en) | 1963-04-09 | 1963-04-09 | Method for catalytically heating oil bearing formations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US271664A US3244231A (en) | 1963-04-09 | 1963-04-09 | Method for catalytically heating oil bearing formations |
Publications (1)
Publication Number | Publication Date |
---|---|
US3244231A true US3244231A (en) | 1966-04-05 |
Family
ID=23036536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US271664A Expired - Lifetime US3244231A (en) | 1963-04-09 | 1963-04-09 | Method for catalytically heating oil bearing formations |
Country Status (1)
Country | Link |
---|---|
US (1) | US3244231A (en) |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3376932A (en) * | 1966-03-04 | 1968-04-09 | Pan American Petroleum Corp | Catalytic heater |
US3420300A (en) * | 1966-10-27 | 1969-01-07 | Sinclair Research Inc | Method and apparatus for heating a subsurface formation |
US3481399A (en) * | 1968-06-10 | 1969-12-02 | Pan American Petroleum Corp | Recovery of oil by flashing of heated connate water |
US3497000A (en) * | 1968-08-19 | 1970-02-24 | Pan American Petroleum Corp | Bottom hole catalytic heater |
US3680636A (en) * | 1969-12-30 | 1972-08-01 | Sun Oil Co | Method and apparatus for ignition and heating of earth formations |
US3804163A (en) * | 1972-06-08 | 1974-04-16 | Sun Oil Co | Catalytic wellbore heater |
US3817332A (en) * | 1969-12-30 | 1974-06-18 | Sun Oil Co | Method and apparatus for catalytically heating wellbores |
US3880235A (en) * | 1969-12-30 | 1975-04-29 | Sun Oil Co Delaware | Method and apparatus for igniting well heaters |
US4250962A (en) * | 1979-12-14 | 1981-02-17 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
FR2573049A1 (en) * | 1984-11-14 | 1986-05-16 | Fournier Lab Sa | PACKAGING BOX |
US4687491A (en) * | 1981-08-21 | 1987-08-18 | Dresser Industries, Inc. | Fuel admixture for a catalytic combustor |
US4930454A (en) * | 1981-08-14 | 1990-06-05 | Dresser Industries, Inc. | Steam generating system |
US5082055A (en) * | 1990-01-24 | 1992-01-21 | Indugas, Inc. | Gas fired radiant tube heater |
US5224542A (en) * | 1990-01-24 | 1993-07-06 | Indugas, Inc. | Gas fired radiant tube heater |
US20020029884A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US20020029885A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation using a movable heating element |
US20030062154A1 (en) * | 2000-04-24 | 2003-04-03 | Vinegar Harold J. | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US20030062164A1 (en) * | 2000-04-24 | 2003-04-03 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US20030066644A1 (en) * | 2000-04-24 | 2003-04-10 | Karanikas John Michael | In situ thermal processing of a coal formation using a relatively slow heating rate |
US20030085034A1 (en) * | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US20030100451A1 (en) * | 2001-04-24 | 2003-05-29 | Messier Margaret Ann | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US20030130136A1 (en) * | 2001-04-24 | 2003-07-10 | Rouffignac Eric Pierre De | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US20030141066A1 (en) * | 2001-04-24 | 2003-07-31 | Karanikas John Michael | In situ thermal processing of an oil shale formation while inhibiting coking |
US20030183390A1 (en) * | 2001-10-24 | 2003-10-02 | Peter Veenstra | Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US20060260814A1 (en) * | 2005-05-23 | 2006-11-23 | Pfefferle William C | Reducing the energy requirements for the production of heavy oil |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US20080296018A1 (en) * | 2007-05-29 | 2008-12-04 | Zubrin Robert M | System and method for extracting petroleum and generating electricity using natural gas or local petroleum |
US20090229815A1 (en) * | 2006-03-29 | 2009-09-17 | Pioneer Energy, Inc. | Apparatus and Method for Extracting Petroleum from Underground Sites Using Reformed Gases |
US20090236093A1 (en) * | 2006-03-29 | 2009-09-24 | Pioneer Energy, Inc. | Apparatus and Method for Extracting Petroleum from Underground Sites Using Reformed Gases |
US20090321073A1 (en) * | 2006-01-03 | 2009-12-31 | Pfefferle William C | Method for in-situ combustion of in-place oils |
US20100108305A1 (en) * | 2005-05-23 | 2010-05-06 | Pfefferle William C | Reducing the energy requirements for the production of heavy oil |
US8616294B2 (en) | 2007-05-20 | 2013-12-31 | Pioneer Energy, Inc. | Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery |
US8785699B2 (en) | 2008-07-17 | 2014-07-22 | Pioneer Energy, Inc. | Methods of higher alcohol synthesis |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1678592A (en) * | 1923-02-03 | 1928-07-24 | Standard Oil Dev Co | Art of treating oil wells |
US2675081A (en) * | 1950-10-23 | 1954-04-13 | Union Oil Co | Method and apparatus for pumping and heating oil wells |
US2847071A (en) * | 1955-09-20 | 1958-08-12 | California Research Corp | Methods of igniting a gas air-burner utilizing pelletized phosphorus |
US2890755A (en) * | 1953-12-19 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2997105A (en) * | 1956-10-08 | 1961-08-22 | Pan American Petroleum Corp | Burner apparatus |
US3010516A (en) * | 1957-11-18 | 1961-11-28 | Phillips Petroleum Co | Burner and process for in situ combustion |
US3026937A (en) * | 1957-05-17 | 1962-03-27 | California Research Corp | Method of controlling an underground combustion zone |
US3055427A (en) * | 1959-07-13 | 1962-09-25 | Phillips Petroleum Co | Self contained igniter-burner and process |
US3070178A (en) * | 1961-08-28 | 1962-12-25 | Jersey Prod Res Co | Method of drilling wells with air |
US3107728A (en) * | 1961-10-16 | 1963-10-22 | Jersey Prod Res Co | Down-hole heater |
US3113623A (en) * | 1959-07-20 | 1963-12-10 | Union Oil Co | Apparatus for underground retorting |
US3127935A (en) * | 1960-04-08 | 1964-04-07 | Marathon Oil Co | In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs |
-
1963
- 1963-04-09 US US271664A patent/US3244231A/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1678592A (en) * | 1923-02-03 | 1928-07-24 | Standard Oil Dev Co | Art of treating oil wells |
US2675081A (en) * | 1950-10-23 | 1954-04-13 | Union Oil Co | Method and apparatus for pumping and heating oil wells |
US2890755A (en) * | 1953-12-19 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2847071A (en) * | 1955-09-20 | 1958-08-12 | California Research Corp | Methods of igniting a gas air-burner utilizing pelletized phosphorus |
US2997105A (en) * | 1956-10-08 | 1961-08-22 | Pan American Petroleum Corp | Burner apparatus |
US3026937A (en) * | 1957-05-17 | 1962-03-27 | California Research Corp | Method of controlling an underground combustion zone |
US3010516A (en) * | 1957-11-18 | 1961-11-28 | Phillips Petroleum Co | Burner and process for in situ combustion |
US3055427A (en) * | 1959-07-13 | 1962-09-25 | Phillips Petroleum Co | Self contained igniter-burner and process |
US3113623A (en) * | 1959-07-20 | 1963-12-10 | Union Oil Co | Apparatus for underground retorting |
US3127935A (en) * | 1960-04-08 | 1964-04-07 | Marathon Oil Co | In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs |
US3070178A (en) * | 1961-08-28 | 1962-12-25 | Jersey Prod Res Co | Method of drilling wells with air |
US3107728A (en) * | 1961-10-16 | 1963-10-22 | Jersey Prod Res Co | Down-hole heater |
Cited By (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3376932A (en) * | 1966-03-04 | 1968-04-09 | Pan American Petroleum Corp | Catalytic heater |
US3420300A (en) * | 1966-10-27 | 1969-01-07 | Sinclair Research Inc | Method and apparatus for heating a subsurface formation |
US3481399A (en) * | 1968-06-10 | 1969-12-02 | Pan American Petroleum Corp | Recovery of oil by flashing of heated connate water |
US3497000A (en) * | 1968-08-19 | 1970-02-24 | Pan American Petroleum Corp | Bottom hole catalytic heater |
US3817332A (en) * | 1969-12-30 | 1974-06-18 | Sun Oil Co | Method and apparatus for catalytically heating wellbores |
US3680636A (en) * | 1969-12-30 | 1972-08-01 | Sun Oil Co | Method and apparatus for ignition and heating of earth formations |
US3880235A (en) * | 1969-12-30 | 1975-04-29 | Sun Oil Co Delaware | Method and apparatus for igniting well heaters |
US3804163A (en) * | 1972-06-08 | 1974-04-16 | Sun Oil Co | Catalytic wellbore heater |
US4250962A (en) * | 1979-12-14 | 1981-02-17 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4930454A (en) * | 1981-08-14 | 1990-06-05 | Dresser Industries, Inc. | Steam generating system |
US4687491A (en) * | 1981-08-21 | 1987-08-18 | Dresser Industries, Inc. | Fuel admixture for a catalytic combustor |
FR2573049A1 (en) * | 1984-11-14 | 1986-05-16 | Fournier Lab Sa | PACKAGING BOX |
US5082055A (en) * | 1990-01-24 | 1992-01-21 | Indugas, Inc. | Gas fired radiant tube heater |
US5224542A (en) * | 1990-01-24 | 1993-07-06 | Indugas, Inc. | Gas fired radiant tube heater |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US6902004B2 (en) | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a movable heating element |
US20020029882A1 (en) * | 2000-04-24 | 2002-03-14 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US20020029885A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation using a movable heating element |
US20020033257A1 (en) * | 2000-04-24 | 2002-03-21 | Shahin Gordon Thomas | In situ thermal processing of hydrocarbons within a relatively impermeable formation |
US20020033256A1 (en) * | 2000-04-24 | 2002-03-21 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
US20020033255A1 (en) * | 2000-04-24 | 2002-03-21 | Fowler Thomas David | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US20020033253A1 (en) * | 2000-04-24 | 2002-03-21 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using insulated conductor heat sources |
US20020034380A1 (en) * | 2000-04-24 | 2002-03-21 | Maher Kevin Albert | In situ thermal processing of a coal formation with a selected moisture content |
US20020035307A1 (en) * | 2000-04-24 | 2002-03-21 | Vinegar Harold J. | In situ thermal processing of a coal formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US20020038069A1 (en) * | 2000-04-24 | 2002-03-28 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce a mixture of olefins, oxygenated hydrocarbons, and aromatic hydrocarbons |
US20020036103A1 (en) * | 2000-04-24 | 2002-03-28 | Rouffignac Eric Pierre De | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US20020036089A1 (en) * | 2000-04-24 | 2002-03-28 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation using distributed combustor heat sources |
US20020036084A1 (en) * | 2000-04-24 | 2002-03-28 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US20020036083A1 (en) * | 2000-04-24 | 2002-03-28 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US20020039486A1 (en) * | 2000-04-24 | 2002-04-04 | Rouffignac Eric Pierre De | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US20020038710A1 (en) * | 2000-04-24 | 2002-04-04 | Maher Kevin Albert | In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content |
US20020038709A1 (en) * | 2000-04-24 | 2002-04-04 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US20020040177A1 (en) * | 2000-04-24 | 2002-04-04 | Maher Kevin Albert | In situ thermal processing of a hydrocarbon containig formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US20020038712A1 (en) * | 2000-04-24 | 2002-04-04 | Vinegar Harold J. | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US20020038711A1 (en) * | 2000-04-24 | 2002-04-04 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US20020038705A1 (en) * | 2000-04-24 | 2002-04-04 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US20020040779A1 (en) * | 2000-04-24 | 2002-04-11 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a mixture containing olefins, oxygenated hydrocarbons, and/or aromatic hydrocarbons |
US20020040780A1 (en) * | 2000-04-24 | 2002-04-11 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a selected mixture |
US20020043367A1 (en) * | 2000-04-24 | 2002-04-18 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation |
US20020043365A1 (en) * | 2000-04-24 | 2002-04-18 | Berchenko Ilya Emil | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US20020046838A1 (en) * | 2000-04-24 | 2002-04-25 | Karanikas John Michael | In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration |
US20020046832A1 (en) * | 2000-04-24 | 2002-04-25 | Etuan Zhang | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US20020052297A1 (en) * | 2000-04-24 | 2002-05-02 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US20020050352A1 (en) * | 2000-04-24 | 2002-05-02 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to control product composition |
US20020050357A1 (en) * | 2000-04-24 | 2002-05-02 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US20020050353A1 (en) * | 2000-04-24 | 2002-05-02 | Berchenko Ilya Emil | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US20020050356A1 (en) * | 2000-04-24 | 2002-05-02 | Vinegar Harold J. | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US20020053435A1 (en) * | 2000-04-24 | 2002-05-09 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US20020053429A1 (en) * | 2000-04-24 | 2002-05-09 | Stegemeier George Leo | In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control |
US20020053431A1 (en) * | 2000-04-24 | 2002-05-09 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas |
US20020053432A1 (en) * | 2000-04-24 | 2002-05-09 | Berchenko Ilya Emil | In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources |
US20020057905A1 (en) * | 2000-04-24 | 2002-05-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids |
US20020056551A1 (en) * | 2000-04-24 | 2002-05-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation in a reducing environment |
US20020062051A1 (en) * | 2000-04-24 | 2002-05-23 | Wellington Scott L. | In situ thermal processing of a hydrocarbon containing formation with a selected moisture content |
US20020062052A1 (en) * | 2000-04-24 | 2002-05-23 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US20020062959A1 (en) * | 2000-04-24 | 2002-05-30 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US20020062961A1 (en) * | 2000-04-24 | 2002-05-30 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US20020066565A1 (en) * | 2000-04-24 | 2002-06-06 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
US20020077515A1 (en) * | 2000-04-24 | 2002-06-20 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range |
US20020074117A1 (en) * | 2000-04-24 | 2002-06-20 | Shahin Gordon Thomas | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US20020084074A1 (en) * | 2000-04-24 | 2002-07-04 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US20020096320A1 (en) * | 2000-04-24 | 2002-07-25 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US20020104654A1 (en) * | 2000-04-24 | 2002-08-08 | Shell Oil Company | In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products |
US20020108753A1 (en) * | 2000-04-24 | 2002-08-15 | Vinegar Harold J. | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US20020117303A1 (en) * | 2000-04-24 | 2002-08-29 | Vinegar Harold J. | Production of synthesis gas from a hydrocarbon containing formation |
US20020170708A1 (en) * | 2000-04-24 | 2002-11-21 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US20020191969A1 (en) * | 2000-04-24 | 2002-12-19 | Wellington Scott Lee | In situ thermal processing of a coal formation in reducing environment |
US20020191968A1 (en) * | 2000-04-24 | 2002-12-19 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US20030006039A1 (en) * | 2000-04-24 | 2003-01-09 | Etuan Zhang | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US20030019626A1 (en) * | 2000-04-24 | 2003-01-30 | Vinegar Harold J. | In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio |
US20030024699A1 (en) * | 2000-04-24 | 2003-02-06 | Vinegar Harold J. | In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio |
US20030051872A1 (en) * | 2000-04-24 | 2003-03-20 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer |
US20030062154A1 (en) * | 2000-04-24 | 2003-04-03 | Vinegar Harold J. | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US20030062164A1 (en) * | 2000-04-24 | 2003-04-03 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US20030066644A1 (en) * | 2000-04-24 | 2003-04-10 | Karanikas John Michael | In situ thermal processing of a coal formation using a relatively slow heating rate |
US20030085034A1 (en) * | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US7096941B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US20030141065A1 (en) * | 2000-04-24 | 2003-07-31 | Karanikas John Michael | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US7086468B2 (en) | 2000-04-24 | 2006-08-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US20030164238A1 (en) * | 2000-04-24 | 2003-09-04 | Vinegar Harold J. | In situ thermal processing of a coal formation using a controlled heating rate |
US20030164234A1 (en) * | 2000-04-24 | 2003-09-04 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation using a movable heating element |
US7036583B2 (en) | 2000-04-24 | 2006-05-02 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US20030213594A1 (en) * | 2000-04-24 | 2003-11-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US20040015023A1 (en) * | 2000-04-24 | 2004-01-22 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6719047B2 (en) | 2000-04-24 | 2004-04-13 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US20040069486A1 (en) * | 2000-04-24 | 2004-04-15 | Vinegar Harold J. | In situ thermal processing of a coal formation and tuning production |
US6722430B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US20020029884A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US20040108111A1 (en) * | 2000-04-24 | 2004-06-10 | Vinegar Harold J. | In situ thermal processing of a coal formation to increase a permeability/porosity of the formation |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6758268B2 (en) | 2000-04-24 | 2004-07-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US6769485B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US20020029881A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US7017661B2 (en) | 2000-04-24 | 2006-03-28 | Shell Oil Company | Production of synthesis gas from a coal formation |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US6871707B2 (en) | 2000-04-24 | 2005-03-29 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
US6880635B2 (en) | 2000-04-24 | 2005-04-19 | Shell Oil Company | In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US6889769B2 (en) | 2000-04-24 | 2005-05-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected moisture content |
US6896053B2 (en) | 2000-04-24 | 2005-05-24 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources |
US6902003B2 (en) | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content |
US6997255B2 (en) | 2000-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a reducing environment |
US6910536B2 (en) | 2000-04-24 | 2005-06-28 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US6913078B2 (en) | 2000-04-24 | 2005-07-05 | Shell Oil Company | In Situ thermal processing of hydrocarbons within a relatively impermeable formation |
US6994160B2 (en) | 2000-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range |
US6994161B2 (en) | 2000-04-24 | 2006-02-07 | Kevin Albert Maher | In situ thermal processing of a coal formation with a selected moisture content |
US6994168B2 (en) | 2000-04-24 | 2006-02-07 | Scott Lee Wellington | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
US6991031B2 (en) | 2000-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products |
US6923258B2 (en) | 2000-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6973967B2 (en) | 2000-04-24 | 2005-12-13 | Shell Oil Company | Situ thermal processing of a coal formation using pressure and/or temperature control |
US6966372B2 (en) | 2000-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids |
US6959761B2 (en) | 2000-04-24 | 2005-11-01 | Shell Oil Company | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US6948563B2 (en) | 2000-04-24 | 2005-09-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content |
US6953087B2 (en) | 2000-04-24 | 2005-10-11 | Shell Oil Company | Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US20030100451A1 (en) * | 2001-04-24 | 2003-05-29 | Messier Margaret Ann | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US6964300B2 (en) | 2001-04-24 | 2005-11-15 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US6966374B2 (en) | 2001-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US20030141066A1 (en) * | 2001-04-24 | 2003-07-31 | Karanikas John Michael | In situ thermal processing of an oil shale formation while inhibiting coking |
US7225866B2 (en) | 2001-04-24 | 2007-06-05 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US6981548B2 (en) | 2001-04-24 | 2006-01-03 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation |
US6991036B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | Thermal processing of a relatively permeable formation |
US6991033B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing while controlling pressure in an oil shale formation |
US6991032B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US6923257B2 (en) | 2001-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a condensate |
US20030130136A1 (en) * | 2001-04-24 | 2003-07-10 | Rouffignac Eric Pierre De | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US6994169B2 (en) | 2001-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of an oil shale formation with a selected property |
US7096942B1 (en) | 2001-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a relatively permeable formation while controlling pressure |
US6918443B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range |
US6915850B2 (en) | 2001-04-24 | 2005-07-12 | Shell Oil Company | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US6782947B2 (en) | 2001-04-24 | 2004-08-31 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US6997518B2 (en) | 2001-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing and solution mining of an oil shale formation |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US7004251B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | In situ thermal processing and remediation of an oil shale formation |
US6880633B2 (en) | 2001-04-24 | 2005-04-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a desired product |
US7013972B2 (en) | 2001-04-24 | 2006-03-21 | Shell Oil Company | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US6877555B2 (en) * | 2001-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of an oil shale formation while inhibiting coking |
US7032660B2 (en) | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US6929067B2 (en) | 2001-04-24 | 2005-08-16 | Shell Oil Company | Heat sources with conductive material for in situ thermal processing of an oil shale formation |
US7040398B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively permeable formation in a reducing environment |
US6948562B2 (en) | 2001-04-24 | 2005-09-27 | Shell Oil Company | Production of a blending agent using an in situ thermal process in a relatively permeable formation |
US7040399B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of an oil shale formation using a controlled heating rate |
US7051807B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with quality control |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
US6918442B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation in a reducing environment |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US6951247B2 (en) | 2001-04-24 | 2005-10-04 | Shell Oil Company | In situ thermal processing of an oil shale formation using horizontal heat sources |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US7066257B2 (en) | 2001-10-24 | 2006-06-27 | Shell Oil Company | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7063145B2 (en) | 2001-10-24 | 2006-06-20 | Shell Oil Company | Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations |
US7051808B1 (en) | 2001-10-24 | 2006-05-30 | Shell Oil Company | Seismic monitoring of in situ conversion in a hydrocarbon containing formation |
US7077198B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using barriers |
US20030183390A1 (en) * | 2001-10-24 | 2003-10-02 | Peter Veenstra | Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US6991045B2 (en) | 2001-10-24 | 2006-01-31 | Shell Oil Company | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US7156176B2 (en) | 2001-10-24 | 2007-01-02 | Shell Oil Company | Installation and use of removable heaters in a hydrocarbon containing formation |
US7100994B2 (en) | 2001-10-24 | 2006-09-05 | Shell Oil Company | Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7114566B2 (en) | 2001-10-24 | 2006-10-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US6932155B2 (en) | 2001-10-24 | 2005-08-23 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US7128153B2 (en) | 2001-10-24 | 2006-10-31 | Shell Oil Company | Treatment of a hydrocarbon containing formation after heating |
US7086465B2 (en) | 2001-10-24 | 2006-08-08 | Shell Oil Company | In situ production of a blending agent from a hydrocarbon containing formation |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7121341B2 (en) | 2002-10-24 | 2006-10-17 | Shell Oil Company | Conductor-in-conduit temperature limited heaters |
US7219734B2 (en) | 2002-10-24 | 2007-05-22 | Shell Oil Company | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7360588B2 (en) | 2003-04-24 | 2008-04-22 | Shell Oil Company | Thermal processes for subsurface formations |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7640980B2 (en) | 2003-04-24 | 2010-01-05 | Shell Oil Company | Thermal processes for subsurface formations |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US20100108305A1 (en) * | 2005-05-23 | 2010-05-06 | Pfefferle William C | Reducing the energy requirements for the production of heavy oil |
US20060260814A1 (en) * | 2005-05-23 | 2006-11-23 | Pfefferle William C | Reducing the energy requirements for the production of heavy oil |
US7874350B2 (en) | 2005-05-23 | 2011-01-25 | Precision Combustion, Inc. | Reducing the energy requirements for the production of heavy oil |
US7665525B2 (en) * | 2005-05-23 | 2010-02-23 | Precision Combustion, Inc. | Reducing the energy requirements for the production of heavy oil |
US8167036B2 (en) | 2006-01-03 | 2012-05-01 | Precision Combustion, Inc. | Method for in-situ combustion of in-place oils |
US20090321073A1 (en) * | 2006-01-03 | 2009-12-31 | Pfefferle William C | Method for in-situ combustion of in-place oils |
US20090229815A1 (en) * | 2006-03-29 | 2009-09-17 | Pioneer Energy, Inc. | Apparatus and Method for Extracting Petroleum from Underground Sites Using Reformed Gases |
US20090236093A1 (en) * | 2006-03-29 | 2009-09-24 | Pioneer Energy, Inc. | Apparatus and Method for Extracting Petroleum from Underground Sites Using Reformed Gases |
US8602095B2 (en) * | 2006-03-29 | 2013-12-10 | Pioneer Energy, Inc. | Apparatus and method for extracting petroleum from underground sites using reformed gases |
US9605522B2 (en) | 2006-03-29 | 2017-03-28 | Pioneer Energy, Inc. | Apparatus and method for extracting petroleum from underground sites using reformed gases |
US8616294B2 (en) | 2007-05-20 | 2013-12-31 | Pioneer Energy, Inc. | Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery |
US9605523B2 (en) | 2007-05-20 | 2017-03-28 | Pioneer Energy, Inc. | Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery |
US20080296018A1 (en) * | 2007-05-29 | 2008-12-04 | Zubrin Robert M | System and method for extracting petroleum and generating electricity using natural gas or local petroleum |
US8785699B2 (en) | 2008-07-17 | 2014-07-22 | Pioneer Energy, Inc. | Methods of higher alcohol synthesis |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3244231A (en) | Method for catalytically heating oil bearing formations | |
US3097690A (en) | Process for heating a subsurface formation | |
US2793696A (en) | Oil recovery by underground combustion | |
US3993132A (en) | Thermal recovery of hydrocarbons from tar sands | |
US3456721A (en) | Downhole-burner apparatus | |
US6412557B1 (en) | Oilfield in situ hydrocarbon upgrading process | |
US4006778A (en) | Thermal recovery of hydrocarbon from tar sands | |
US4085803A (en) | Method for oil recovery using a horizontal well with indirect heating | |
US4706751A (en) | Heavy oil recovery process | |
US4474237A (en) | Method for initiating an oxygen driven in-situ combustion process | |
US4597441A (en) | Recovery of oil by in situ hydrogenation | |
US3196945A (en) | Method of forward in situ combustion with water injection | |
US3223166A (en) | Method of controlled catalytic heating of a subsurface formation | |
RU2060378C1 (en) | Method for developing oil stratum | |
EA014196B1 (en) | Systems and methods for producing hydrocarbons from tar sands with heat created drainage paths | |
US5255740A (en) | Secondary recovery process | |
RU2306410C1 (en) | Method for thermal gaseous hydrate field development | |
US3107728A (en) | Down-hole heater | |
US3024841A (en) | Method of oil recovery by in situ combustion | |
US3376932A (en) | Catalytic heater | |
US3147804A (en) | Method of heating underground formations and recovery of oil therefrom | |
US3500915A (en) | Method of producing an oil bearing stratum of a subterranean formation in a steeply dipping reservoir | |
US3620571A (en) | Single-well heated gas mining method and apparatus | |
US3349846A (en) | Production of heavy crude oil by heating | |
US3070178A (en) | Method of drilling wells with air |