US3209548A - Process for the manufacture of oxygen-enriched air - Google Patents
Process for the manufacture of oxygen-enriched air Download PDFInfo
- Publication number
- US3209548A US3209548A US260190A US26019063A US3209548A US 3209548 A US3209548 A US 3209548A US 260190 A US260190 A US 260190A US 26019063 A US26019063 A US 26019063A US 3209548 A US3209548 A US 3209548A
- Authority
- US
- United States
- Prior art keywords
- oxygen
- pressure
- liquid
- column
- conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04624—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04424—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
Definitions
- the present invention has for its object to permit the direct manufacture of oxygen-enriched air with about 70% by volume of oxygen by liquefaction and rectication, under very economical conditions, so that for the preparation of air enriched to this content or to lower contents of oxygen, the invention is to be preferred to the manufacture of substantially pure oxygen, followed by a mixture of this oxygen with air.
- the invention is concerned with a process for the manufacture of oxygen-enriched air with about 70% of oxygen by liquefaction and rectification of air at low temperature in two columns under different pressures in indirect heat exchange, in which the air is separated in the rectification column under high pressure into an oxygenenriched liquid, which is introduced into the low-pressure rectification column, and into gaseous nitrogen, of which a first part is condensed by heat exchange with a part of the oxygen-enriched liquid, and the second part by heat exchange with a second liquid with about 70% of oxygen, leaving the bottom of the low-pressure rectification column; it is also concerned with an apparatus for carrying this process into effect.
- This known process enables advantage to be taken of the lower purity of the oxygen separated at the bottom of the low-pressure column in order to reduce slightly the working pressure of the high-pressure column, and consequently the consumption of compression energy of the air to be separated.
- this gain is slight, since the vaporisation temperatures of pure oxygen and impure oxygen are not very different.
- the process according to the invention enables the high pressure of the first rectification ricc column to be reduced to a much greater degree and to be lowered from the usual value of 5 atmospheres absolute to 3.5 to 4 atmospheres, while reducing to a corresponding degree the consumption of compression energy, while still obtaining approximately 70% oxygen as final product.
- the oxygen-enriched liquid leaving the bottom of the high-pressure column is seperated into two fractions, the first of which is introduced in the liquid state into the central zone of the low-pressure rectification column, while the second fraction constitutes the part of the oxygen-enriched liquid which ensures, by its vaporisation, the condensation of the first part of the gaseous nitrogen at the head of the high-pressure column, is then blown into the bottom of the low-pressure column, and in that the second liquid with approximately 70% of oxygen is expanded before its vaporisation in heat exchange with the second part of the gaseous nitrogen to a pressure appreciably lower than that of the low-pressure column, and then, after reheating to the region of ambient temperature, is discharged at a pressure which is slightly below atmospheric pressure.
- the quantity of heat supplied by the condensation of the second part of the gaseous nitrogen under pressure may be insuflicient to assure a complete vaporisation of the approximately 70% liquid oxygen
- various means may be employed for completing this vaporisation; the most advantageous means consists, in accordance with a preferred embodiment of the invention, in withdrawing a gaseous fraction in the middle zone of the high-pressure column and in liquefying it, at least partly in heat exchange with the 70% oxygen, before returning it into the same column at a higher level.
- the air to be separated is introduced through the conduit 1 into the turbo-compressor 2, where it is compressed to between 3.5 and 4 atmospheres absolute.
- the major part (approximately 70%) then passes through the conduit 3 and the valves 4A and 4B into one of the heat regenerators 5A, 5B which are adapted for periodic change-over and are equipped with a heat storage stack of known type; during the period illustrated in the figure, the valves 4B and 6A are open and the valves 4A and 6B are closed, and the valve boxes 7A, 7B have the disposition as shown diagrammatically; the air enters the regenerator 5B where it is cooled to approximately 169 C., thereby depositing its moisture and its carbon dioxide gas in the solid state, while the regenerator 5A is traversed in the opposite direction by the separated cold nitrogen, which ensures the vaporisation of the moisture and the carbon dioxide gas previously deposited on the lining.
- the regenerator 5B has been heated to the point where it is no longer able to ensure a sufficient cooling, the circulations of
- the other part of the air to be separated (about 30%) is conveyed through the conduit 60 to the heat exchanger 61, where it is cooled to approximately 130 C. in indirect contact with the previously vaporised and separated oxygen under low pressure Which is slightly below atmospheric pressure. It then travels through the conduit 62 lto the exchanger 63, after the partial fiow of air originating from the regenerator 5B has been added thereto through the conduit 54B. It is cooled in said exchanger to approximately '180" C. in heat exchange with the separated cold oxygen and with the nitrogen under pressure originating from the highpressure rectification column which is conducted to an expansion turbine 48 and leaves the latter through the conduit 64.
- the rectification column 9 under pressure, receiving all the air to be separated by way of the conduit 8, is cooled at its upper end by a tube bundle 25, in which circulates the oxygen-enriched liquid (with approximately 40% of oxygen) which is separated in the bottom of this column and which is super-cooled, and then expanded in the valve 24.
- the air is separated in this column into an oxygen-enriched liquid (approximately 40%) which is drawn off through the conduit 10, and into gaseous nitrogen. Some of this nitrogen is condensed in contact with the tube system and is sent back in the liquid state as a reflux in the rectification zone.
- This condensation of the nitrogen is completed by a withdrawal through the conduit of gaseous nitrogen, which is directed to the heat exchanger 33, where the major part thereof is liquefied in indirect contact with the cold liquid oxygen originating from the low-pressure rectification column.
- the liquefied fraction is conveyed through the conduit 56, the supercooling tube system 57 of the exchanger 13, in heat exchange with cold nitrogen separated at low pressure, 4and the expansion Valve 58, into the head of the low-pressure rectification column 22, in which it forms the liquid refiux.
- the residual nonliquefied fraction returns through the conduit 41 into the column 9.
- a gaseous fraction is drawn off in the lower part of the column 9 and this fraction is conveyed through the conduit 42 to the exchanger 35, where it is liquefied in indirect contact with the low-pressure liquid 70% oxygen; it is then conducted through the conduit 43 to the column 9 at a higher level than that at which it was drawn off.
- the non-liquefied nitrogen under pressure in the column 9 is released at the top of the -latter by way of the conduit 44.
- the major part thereof (about is returned directly by the control valve 46 and the conduit 47 to the expansion turbine 48, while the other part enters the tube system 45 of the exchanger 63 in heat exchange with a part of the air undergoing cooling, the flow being regulatable by the valve 45A.
- This latter part thus reheated to C. approximately, is mixed with the main part, so that the nitrogen entering the expansion turbine is reheated to approximately C., thus avoiding the possibility of formation of liquid during the expansion and improving the refrigerating capacity of the latter.
- the nitrogen expanded from 3.3 to 1.25 atmospheres absolute in the turbine 48 is then combined by way of the conduit 49 with the low-pressure nitrogen separated in the lowpressure column 22.
- the liquid with 40% of oxygen and at a temperature of about C., withdrawn through the conduit 10 at the base of the column 9 under pressure is separated into two parts.
- the larger part is conveyed through the conduit 11 to the tube bundle 12 of the supercooler 13, in heat exchange with the low-pressure gaseous nitrogen, in which it is supercooled to about 187 C., and then travels with a flow which can be regulated by the valve V'14 to the liquid filters 15A, 15B.
- the other part of the loxygen-enriched liquid is conducted through the conduit 16 to the tube system 17 of the exchanger 18, where it is supercooled to approximately 183 C., whereafter it rejoins the first part through the conduit 19 and the valve 20.
- the enriched liquid then passes through one of the filters 15A, 15B which are adapted to retain the impurities which are liable to be present in the solid state, such as acetylene, and thus to avoid the dangerous accumulations of these impurities in the liquid oxygen.
- the filters 15A, 15B While one of the filters 15A, 15B is in operation, the other is undergoing regeneration by reheating.
- the oxygenenriched liquid is divided into two parts.
- the first part (about 25% of the total) is expanded in the usual manner to low pressure in the valve 21 and is introduced through the conduit 21A into the middle zone of the lowpressure column 22.
- the second is conveyed through the conduit 23 and the expansion valve 24 at low pressure into the tube bundle 25 disposed at the top of the highpressure column 9, then blown through the conduit 26 into the bottom of the low-pressure column 22, as already indicated above.
- the low-pressure column 22 In the low-pressure column 22, it is separated into firstly, at its bottom, a liquid with approximately 70% of oxygen, substantially in equilibrium with the gas introduced through the Conduit 26, and secondly, at the tOp, substantially pure nitrogen. These constituents are reheated as indicated below.
- the impure oxygen approximately 70%, which is drawn off under a pressure of about 1.4 atmospheres through the conduit 27, is forced by the pump 28 into one of the filters 29A, 29B of a battery designed to ensure a final purification of the liquid oxygen, with the object of avoiding any danger of explosion during the vaporisation thereof. It is then expanded by the valve 31 to about 1.1 atmospheres and vaporised in the tubular bundles 32 and 34 of the exchangers 33 and 35 in heat exchange with the nitrogen under pressure and a gaseous fraction withdrawn in the column 9 under pressure, as already indicated. It is then reheated to approximately 181 C., in heat exchange with a fraction of the oxygen-enriched liquid in the exchanger 18 already referred to. It is finally heated to approximately 133 C.
- regenerators used for cooling the air can be replaced by reversing exchangers or even by exchangers of conventional type.
- the drying and the decarbonation of the air can be carried out not only by simple cooling, but also either by chemical means or by passage over absorbent beds.
- the cold production can be obtained by expansion with external work of a fraction of the air to be separated instead of the expansion of nitrogen which has been described.
- a process for the manufacture of oxygen-enriched air with about 70% oxygen comprising the steps of producing an oxygen-enriched liquid and gaseous nitrogen under pressure, separating said liquid into two parts, introducing one of said parts in a substantially liquid state into the middle zone of a rectification column, expanding the second of said parts to about the pressure of said rectification column, vaporizing said second part by heat exchange with a first part of said gaseous nitrogen under pressure, which is thereby condensed, and introducing the vapor at the bottom of the rectification co1- umn, withdrawing from the bottom of said column a liquid with about 70% of oxygen, expanding and at least partly vaporizing said liquid by heat exchange with a second part of said gaseous nitrogen under pressure, which is thereby condensed, war-ming up said vaporized liquid to about ambient temperature, and evacuating it under a pressure slightly below atmospheric.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR889349A FR1330154A (fr) | 1962-02-27 | 1962-02-27 | Procédé de fabrication d'air suroxygéné |
Publications (1)
Publication Number | Publication Date |
---|---|
US3209548A true US3209548A (en) | 1965-10-05 |
Family
ID=8773599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US260190A Expired - Lifetime US3209548A (en) | 1962-02-27 | 1963-02-21 | Process for the manufacture of oxygen-enriched air |
Country Status (8)
Country | Link |
---|---|
US (1) | US3209548A (it) |
BE (1) | BE628776A (it) |
DE (1) | DE1234747B (it) |
ES (1) | ES285478A1 (it) |
FR (1) | FR1330154A (it) |
GB (1) | GB977220A (it) |
LU (1) | LU43236A1 (it) |
NL (2) | NL144052B (it) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3312074A (en) * | 1964-05-06 | 1967-04-04 | Hydrocarbon Research Inc | Air separation plant |
US3319427A (en) * | 1964-05-06 | 1967-05-16 | Hydrocarbon Research Inc | Air separation with a nitrogen refrigeration circuit |
US3340697A (en) * | 1964-05-06 | 1967-09-12 | Hydrocarbon Research Inc | Heat exchange of crude oxygen and expanded high pressure nitrogen |
US3340695A (en) * | 1963-09-17 | 1967-09-12 | Hitachi Ltd | Method of separating carbon monoxide from oxygenized converter gas |
US3348385A (en) * | 1964-12-23 | 1967-10-24 | Gas Equipment Engineering Corp | Separation of gas mixtures |
US3375673A (en) * | 1966-06-22 | 1968-04-02 | Hydrocarbon Research Inc | Air separation process employing work expansion of high and low pressure nitrogen |
US3375674A (en) * | 1965-08-19 | 1968-04-02 | Linde Ag | Prepurification of gas mixtures before separation thereof by low temperature rectification |
US3401531A (en) * | 1965-05-19 | 1968-09-17 | Linde Ag | Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production |
US3412567A (en) * | 1966-09-06 | 1968-11-26 | Air Reduction | Oxygen-enriched air production employing successive work expansion of effluent nitrogen |
US3436925A (en) * | 1965-09-21 | 1969-04-08 | Linde Ag | Rectification of liquefied coke oven gas portion by contact between liquefied and revaporized portions thereof |
US3508412A (en) * | 1966-08-12 | 1970-04-28 | Mc Donnell Douglas Corp | Production of nitrogen by air separation |
US3589137A (en) * | 1967-10-12 | 1971-06-29 | Mc Donnell Douglas Corp | Method and apparatus for separating nitrogen and hydrocarbons by fractionation using the fluids-in-process for condenser and reboiler duty |
US3798917A (en) * | 1970-05-12 | 1974-03-26 | Messer Griesheim Gmbh | Fractionation of air to obtain oxygen of about seventy percent purity |
US4557735A (en) * | 1984-02-21 | 1985-12-10 | Union Carbide Corporation | Method for preparing air for separation by rectification |
US5740683A (en) * | 1997-03-27 | 1998-04-21 | Praxair Technology, Inc. | Cryogenic rectification regenerator system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1377370A (fr) * | 1963-08-21 | 1964-11-06 | Air Liquide | Procédé de séparation d'oxygène et d'air suroxygéné à partir de l'air |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2620637A (en) * | 1946-10-09 | 1952-12-09 | Air Prod Inc | Air fractionating cycle and apparatus |
US2753698A (en) * | 1952-03-05 | 1956-07-10 | Linde Eismasch Ag | Method and apparatus for fractionating air and power production |
US2850880A (en) * | 1955-01-05 | 1958-09-09 | Linde Eismasch Ag | Process and an apparatus for the separation of compressed air |
US3086371A (en) * | 1957-09-12 | 1963-04-23 | Air Prod & Chem | Fractionation of gaseous mixtures |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE589916C (de) * | 1932-07-21 | 1933-12-20 | Linde Eismasch Ag | Verfahren zur Gewinnung von an Sauerstoff angereicherten Gemischen aus Luft |
DE846406C (de) * | 1942-04-30 | 1952-08-11 | Adolf Messer G M B H | Verfahren zur Zerlegung von Luft |
US2548377A (en) * | 1945-05-15 | 1951-04-10 | Kapitza Peter Leonidovitch | Means for producing liquid air rich in oxygen |
DE932019C (de) * | 1952-03-05 | 1955-08-22 | Linde Eismasch Ag | Verfahren zur Erweiterung des Anwendungsbereiches von Entspannungsturbinen in Luftzerlegungsanlagen |
-
0
- BE BE628776D patent/BE628776A/xx unknown
- NL NL289327D patent/NL289327A/xx unknown
-
1962
- 1962-02-27 FR FR889349A patent/FR1330154A/fr not_active Expired
-
1963
- 1963-02-21 LU LU43236A patent/LU43236A1/xx unknown
- 1963-02-21 US US260190A patent/US3209548A/en not_active Expired - Lifetime
- 1963-02-22 NL NL63289327A patent/NL144052B/xx not_active IP Right Cessation
- 1963-02-25 DE DEA42418A patent/DE1234747B/de active Pending
- 1963-02-26 ES ES285478A patent/ES285478A1/es not_active Expired
- 1963-02-26 GB GB7774/63A patent/GB977220A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2620637A (en) * | 1946-10-09 | 1952-12-09 | Air Prod Inc | Air fractionating cycle and apparatus |
US2753698A (en) * | 1952-03-05 | 1956-07-10 | Linde Eismasch Ag | Method and apparatus for fractionating air and power production |
US2850880A (en) * | 1955-01-05 | 1958-09-09 | Linde Eismasch Ag | Process and an apparatus for the separation of compressed air |
US3086371A (en) * | 1957-09-12 | 1963-04-23 | Air Prod & Chem | Fractionation of gaseous mixtures |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3340695A (en) * | 1963-09-17 | 1967-09-12 | Hitachi Ltd | Method of separating carbon monoxide from oxygenized converter gas |
US3312074A (en) * | 1964-05-06 | 1967-04-04 | Hydrocarbon Research Inc | Air separation plant |
US3319427A (en) * | 1964-05-06 | 1967-05-16 | Hydrocarbon Research Inc | Air separation with a nitrogen refrigeration circuit |
US3340697A (en) * | 1964-05-06 | 1967-09-12 | Hydrocarbon Research Inc | Heat exchange of crude oxygen and expanded high pressure nitrogen |
US3348385A (en) * | 1964-12-23 | 1967-10-24 | Gas Equipment Engineering Corp | Separation of gas mixtures |
US3401531A (en) * | 1965-05-19 | 1968-09-17 | Linde Ag | Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production |
US3375674A (en) * | 1965-08-19 | 1968-04-02 | Linde Ag | Prepurification of gas mixtures before separation thereof by low temperature rectification |
US3436925A (en) * | 1965-09-21 | 1969-04-08 | Linde Ag | Rectification of liquefied coke oven gas portion by contact between liquefied and revaporized portions thereof |
US3375673A (en) * | 1966-06-22 | 1968-04-02 | Hydrocarbon Research Inc | Air separation process employing work expansion of high and low pressure nitrogen |
US3508412A (en) * | 1966-08-12 | 1970-04-28 | Mc Donnell Douglas Corp | Production of nitrogen by air separation |
US3412567A (en) * | 1966-09-06 | 1968-11-26 | Air Reduction | Oxygen-enriched air production employing successive work expansion of effluent nitrogen |
US3589137A (en) * | 1967-10-12 | 1971-06-29 | Mc Donnell Douglas Corp | Method and apparatus for separating nitrogen and hydrocarbons by fractionation using the fluids-in-process for condenser and reboiler duty |
US3798917A (en) * | 1970-05-12 | 1974-03-26 | Messer Griesheim Gmbh | Fractionation of air to obtain oxygen of about seventy percent purity |
US4557735A (en) * | 1984-02-21 | 1985-12-10 | Union Carbide Corporation | Method for preparing air for separation by rectification |
US5740683A (en) * | 1997-03-27 | 1998-04-21 | Praxair Technology, Inc. | Cryogenic rectification regenerator system |
Also Published As
Publication number | Publication date |
---|---|
BE628776A (it) | |
NL144052B (nl) | 1974-11-15 |
LU43236A1 (it) | 1963-04-22 |
DE1234747B (de) | 1967-02-23 |
GB977220A (en) | 1964-12-02 |
ES285478A1 (es) | 1963-07-01 |
NL289327A (it) | |
FR1330154A (fr) | 1963-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3209548A (en) | Process for the manufacture of oxygen-enriched air | |
US4222756A (en) | Tonnage nitrogen generator | |
US2873583A (en) | Dual pressure cycle for air separation | |
US3886758A (en) | Processes for the production of nitrogen and oxygen | |
US3218816A (en) | Process for cooling a gas mixture to a low temperature | |
US2850880A (en) | Process and an apparatus for the separation of compressed air | |
US2918802A (en) | Process of separation of air into its elements | |
CA1253818A (en) | Purification of carbon dioxide for use in brewing | |
US2534478A (en) | Gas purifying method and apparatus | |
US3932154A (en) | Refrigerant apparatus and process using multicomponent refrigerant | |
US3327489A (en) | Method for separating gaseous mixtures | |
US3886756A (en) | Separation of gases | |
US2526996A (en) | Method and apparatus for separating mixed gases | |
US2685181A (en) | Separation of the constituents of gaseous mixtures | |
US3203193A (en) | Production of nitrogen | |
US2146197A (en) | Method of and apparatus for separating mixed gases and vapors | |
US2825212A (en) | Process for separating a compressed gas mixture | |
US2959021A (en) | Process for air separation by liquefaction and rectification | |
US3210947A (en) | Process for purifying gaseous streams by rectification | |
US3058314A (en) | Process and apparatus for the low temperature separation of air | |
US2982108A (en) | Separation of air | |
US3173778A (en) | Separation of gaseous mixtures including argon | |
US2918801A (en) | Process and apparatus for separating gas mixtures | |
US4308043A (en) | Production of oxygen by air separation | |
US2433604A (en) | Separation of the constituents of gaseous mixtures |