[go: up one dir, main page]

US3173105A - Microwave oscillator having improved cathode-ring connection structure - Google Patents

Microwave oscillator having improved cathode-ring connection structure Download PDF

Info

Publication number
US3173105A
US3173105A US135982A US13598261A US3173105A US 3173105 A US3173105 A US 3173105A US 135982 A US135982 A US 135982A US 13598261 A US13598261 A US 13598261A US 3173105 A US3173105 A US 3173105A
Authority
US
United States
Prior art keywords
contact
ring
cathode
tube
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US135982A
Inventor
John E Burbank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Interconnect Inc
Original Assignee
Trak Microwave Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trak Microwave Corp filed Critical Trak Microwave Corp
Priority to US135982A priority Critical patent/US3173105A/en
Application granted granted Critical
Publication of US3173105A publication Critical patent/US3173105A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1817Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a cavity resonator
    • H03B5/1835Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a cavity resonator the active element in the amplifier being a vacuum tube

Definitions

  • Another object is to provide such an oscillator in which the frequency of the generated signal can be varied by a single mechanical adjustment while maintaining high operating efficiency.
  • Another object is to provide a sturdy oscillator assembly which by virtue of the features described below is capable of withstanding severe shock and vibration thus suiting it to the needs of rigorous military requirements.
  • Still another object is to provide an oscillator which is small in size and which can be rapidly and economically fabricated by convention techniques from readily available materials.
  • Still another object is to provide such an oscillator capable of accepting oscillator tubes which have substantial variations in physical dimensions from tube to tube.
  • Another object of the invention is to provide an improved means for making electrical and mechanical contacts with the vacuum tube elements.
  • Still another object is to provide improved mechanical support, while maintaining efficient electrical operation, for the mechanical elements of the coaxial oscillator.
  • FIGURE 1 is a perspective view of a coaxial oscillator embodying the invention
  • FIGURE 2 is a longitudinal sectional view taken along line 2--2 of FIGURE 1;
  • FIGURE 3 is a perspective view of various parts of the oscillator
  • FIGURE 4 is an enlarged partial sectional view showing the engagement of the grid-contact ring with the grid sleeve and of operation of the cavity oscillator;
  • FIGURE 5 is a sectional view taken along line 5 5 of FIGURE 2;
  • FIGURE 6 is another sectional view of FIGURE 2.
  • the oscillator is housed within a cylindrical tubular shell 2 as shown in FIGURE 1.
  • This particular cavity makes use of a vacuum tube 4 (FIGURE 3) designated as type TK9127 by Trak Microwave Corporation of Tampa, Florida, and as type 7486 by General Electric Company.
  • the tube 4 is a vacuum tube of ceramic construction having planar cathode, grid and anode structures, the insulating portions of the tube being formed of ceramic and the active elements being formed primarily of titanium.
  • the tube 4 is generally cylindrical in shape with heater contact pins 6 and 8 (FIGURES 2 and 3) protruding from one end of the shell and an anode cap 10 protruding from the opposite end.
  • the cathode of the tube is connected to an annular cathodecontact ring 12 which encircles the tube and whose outer surface is recessed below the surface of the ceramic body of the tube. Its grid is connected to an annular gridcontact ring 14 which extends outwardly beyond ceramic body of the tube.
  • the tube is of small dimensions, and in comparison with the size of the tube, there may be substantial variations in the dimensions and positions of external connecting members.
  • the coaxial oscillator described here has been arranged to accommodate substantial dimensional variations in the tube structure.
  • the cathode and cathode-contact ring 12 are maintained at the potential of the outer shell 2. This is accomplished by means of two cathode-contact segments 16A and 16B, each of which is formed of a semiannular portion of a washer formed, for example, of soft brass.
  • the inner diameter of these cathode contact segments are cut to fit in intimate contact with the outer surface of the cathode-contact ring 12, and their outer surfaces are dimensioned to fit tightly against the inner surface of the shell 2. It is important for high frequency operation that the cathode contact segments 16A and 16B make contact as nearly as possible completely around the interior and exterior diameters.
  • a very slight annular taper is provided on the inner surface of shell 2 commencing at the point generally indicated at 18 in FIGURE 2 and decreasing in diameter to a shoulder generally indicated at 20, for example, a taper of 1 /2 to the longitudtnal axis is found to work advantageously in making a firm contact substantially all aroundthe contact ring 12 and substantially all around the inside of the outer shell.
  • the cathode contact segments 16A and 16B are positioned around the cathode-contact ring 12 and forced with the tube along the internal taper of shell 2 from point 18 into abutment with the annular shoulder 20, wedging cathode segments 16A and 16B tightly against both the inner surface of shell 2 and the cathode-contact ring 12.
  • the material of which the cathodecontact segments 16A and 16B is formed be of softer metal than the cathode-contact ring 12 and that it have substantially the same coeflicient of expansion as the metal from which the shell is formed.
  • the shell 2 is formed of brass, the cathode contact ring 12 of titanium and the cathode-contact segments 16A and 16B of one-half hard brass.
  • An annular spacer bushing 22 formed of Bakelite or other suitable insulating material is positioned adjacent the cathode-contact segments 16A and 16B.
  • heater pin sockets generally indicated at 24A and 24B.
  • Each of these heater pin sockets is provided with an enlarged head portion 26 having integrally formed spring fingers 28 which engage and press inwardly on the heater contact pins 6 and 8.
  • Each heater pin socket has an anchor pin 30 which extends axially from the tube 4 and consists of a section 32 of reduced diameter, and an enlarged head 34 portion 36 is formed for making electrical connection to the heater circuit.
  • the head 34 is dimensioned to pass through one of the openings 37 in a socket-support wafer 38 formed of Bakelite or other suitable material.
  • each heater pin socket 24A and 24B can move a significant amount laterally and angularly with respect to the socket-support wafer.
  • the heater contact pins 6 and 8 may be positioned in slightly different positions in different tubes and may even extend from the body of the tube 4 at an angle with respect to the longitudinal axis of the tube.
  • one of the heater pins 6 and 8 may extend further in the longitudinal direction than the other.
  • the socket-support Wafer 38 is preferably one or two thousandths of an inch smaller than the internal diameter of the shell 2 so that the wafer 38 is free to cock slightly within the shell 2 and thus maintain each of the heater pin sockets 24A and 24B in firm contact with the pins 6 and 8.
  • the terminal portion 36 extends through the wafer 38, and heater voltage is applied to the oscillator by soldering appropriate leads to these terminals.
  • the socket-support wafer In order to force the heater pin sockets 24A and 24B into firm engagement with the heater contact pins 6 and 8 to maintain firm contact even under conditions of severe vibration, the socket-support wafer is held in place and urged toward the tube 4 by means of a snap ring 40 positioned within a counterbore 42 in the internal surface of the shell 2.
  • the snap ring 40 is formed of spring material and has, as can be seen in FIGURE 2, a permanent bow in the longitudinal direction of the cavity and thus applies continuous pressure to the heater circuit contacts.
  • Tuned circuits are provided within the shell 2 for both the grid and the anode circuits. These two tuned circuits are interrelated both mechanically and electrically, and the operation is not readily explained accurately in terms of lumped constants. In certain instances common mechanical parts form portions of both circuits.
  • An annular grid sleeve 44 which operates in the half-wave mode, is provided with a series of parallel cuts at one end which form spring fingers 46. The ends of these spring fingers are provided with an internal taper or chamfer 48 (FIG- URE 2) at the ends to permit the grid sleeve 44 to be pushed over the outer circumference of the grid-contact ring 14 until the grid-contact ring engages a counterbore 50 on the internal surface of the spring finger 46.
  • the internal surface of the counterbore 50 is generally semicircular in shape (see FIGURE 4) whereas the outer edge of the grid-contact ring 14 has square corners with a surface parallel with the longitudinal axis of the shell 2. This arrangement insures good electrical contact between each of the spring fingers 46 and the grid ring 14. This continuous peripheral contact is important for effective operation of the oscillator.
  • the outer surface of the grid sleeve 44 forms the inner conductor of a one-half wave resonant coaxial line of which the outer conductor is formed by the inner surface of the shell 2.
  • the free end of the grid sleeve 44 is supported by three radially-spaced supporting members 51 (FIGURE 3) extending between the grid sleeve 44 and inner surface of the shell 2.
  • the supporting members 52 are formed of low-loss insulating material and are structurally arranged to provide minimum disturbance.
  • the members are formed of a resilient plastic material, for example, such as Kel-F trifiuorochloroethylene plastic material, but other suitable dielectric material may be used.
  • Each of the support members 52 is pro- Cit vided with an anchor tip 54 which engages a hole 56 in the sleeve 44.
  • An enlarged base portion 58 engages the outer surface of the grid sleeve 44, and a disc-like head portion 60 engages the inner surface of shell 2.
  • the base 58 is connected to the head portion by a stem 62 of reduced cross section which is of the minimum size necessary to provide the desired mechanical support.
  • the head 60 is formed with a plane surface which fits against the shell 2. The surface of the head 60 is distorted by the radial force and made to conform with the curvature of the inner surface of the shell 2.
  • each of the supporting members 52 acts like a spring support because of the resistancy of the plastic material of which the members 52 are formed.
  • the head 60 in use may acquire a permanent set, and in the case of Kel-F material may actually adhere to the inner surface of the shell 2.
  • the anode circuit which in this example operates in the three-quarter-wave length mode, is formed by an anode line assembly generally indicated at 64.
  • An anode inner conductor generally indicated at 66 is provided with an enlarged anode socket portion 68, the open end of which is provided with spring fingers 70 which define an opening adapted to receive the anode cap 10, the spring fingers 70, assuring good peripheral contact with the anode cap 10.
  • a cylindrical line portion 72 of reduced diameter Extending longitudinally of the shell 2 and formed integrally with the socket 68 is a cylindrical line portion 72 of reduced diameter.
  • a short section of the line 72, indicated at 72A adjacent the head 68, has a slightly larger diameter, for example 1 or 2 thousandths than the remainder of the line 72.
  • a portion of reduced cross section 74 joins the line to an enlarged threaded section 76.
  • a solder terminal 78 is formed integrally with the line 72 for the application of 13+ voltage to the tube.
  • the other portion of the anode line assembly is formed by a tuning assembly, generally indicated at 80, which includes a quarter-Wave choke joint 82 which serves as a termination for the coaxial anode line and prevents radiation of R-F energy.
  • the quarter-wave choke joint 82 in this example is shown as having a short circuit on the end nearest the tube 4 and an open circuit at the opposite end. In practice, however, the choke joint may be reversed with the open end facing the tube 4.
  • the outer surface of the choke joint 82 is covered with a layer 84 of insulating material, for example, formed from a sheet of plastic material, for example, such as Teflon polytetrafiuoroethylene.
  • This dielectric material 84 insulates the choke joint from the shell 2 so far as direct current is concerned and also increases the capacity between the choke joint and the shell 2, thereby shortening the over-all length of the choke joint.
  • the insulation also provides mechanical damping of the choke structure to eliminate mechanical resonances that might cause microphonic response in the oscillator.
  • a cylindrical extension 86 formed integrally with the choke joint 82 extends from the face of the choke joint toward the tube 4.
  • the extension 86 whose outer diameter preferably is approximately the same as the outer diameter of the anode socket 68, has an internal bore 88 which receives the anode line 72.
  • the free end of the extension 86 is provided with spring fingers 90 which make contact with the outer surface of the portion 72A of the anode inner conductor.
  • the tuning assembly When the tuning assembly is positioned with the end of extension 86 immediately adjacent the socket 68, this extension forms the inner conductor of the anode line. In one sense it may be considered that a portion of the outer conductor of the anode line is formed by the inner surface of the grid sleeve 44.
  • a portion of the anode inner conductor 72A is exposed between the socket 68 and the end of the extension 86 which changes the characteristic impedance of the anode line.
  • the portion 72A of the anode inner conductor is of slightly larger diameter than the portion farther removed from the socket 68 beyond the point 87 to insure that contact between the extension 86 and the anode inner conductor 66 will be made only through the spring fingers 90.
  • a bearing member 92 (FIGURE 5) is mounted within the choke joint 92 and has a longitudinal opening 94 which serves as a bearing surface for the anode inner conductor 66.
  • the threaded portion 76 of the anode inner conductor is in engagement with a threaded opening 96 in an end cap 98.
  • the end cap 98 forms a sliding fit Within the shell 2 and preferably is constructed of phenolic plastic or another material having high radio-frequency losses to further reduce the chance of leakage of radio-frequency energy.
  • This end cap is maintained under continuous longitudinal pressure in the direction of the tube 4 by a bowed snap ring 100, similar to the snap ring 40, which is made of spring material and arranged to fit within a counterbore 102 in the shell 2.
  • the bowed portion of the snap ring 100 pushes against the end cap 98 and thus maintains the socket 68 at all times in firm engagement with the anode cap 10. It will be noted that this is made possible because the length of anode line 66 does not change during tuning, the only moving part is the tuning assembly 80 which rides on the line 66.
  • a screw 104 (FIGURE 2) extends through an opening 106 in the end cap 98 into threaded engagement with an internally threaded bushing 108 mounted in a member 110 within the choke joint 82.
  • the bushing 108 after threading, has been provided with two longitudinal cuts and then squeezed together so as to provide a tight fit with the threads of the adjusting screw 104 to eliminate backlash.
  • the head 114 of the screw 104 is positioned in a recessed threaded opening in the end cap 98.
  • a cupped spring washer 116 in the bottom of the recess maintains the screw 104 under continuous tension, thus further aiding in the prevention of backlash.
  • each of these bimetal strips 120 is secured to the sleeve 44 through a metal spacer 122 which may, for example, be approximately ten thousandths of an inch in thickness.
  • Each bimetal strip 120 extends beyond and around the free end of the grid sleeve 44. The free end of each bimetal strip moves radially with change in temperature. As the operating temperature of the oscillator increases, the metal of which the parts of the oscillator are formed expands, thus lowering the frequency of the signal generated.
  • the bi-metal strips 120 are arranged to move outwardly with increasing temperature and thereby decrease the capacity between the grid sleeve 44 and the anode line assembly 64 tending to produce an increase in frequency to compensate for the change in temperature.
  • the three bi-metal elements are positioned radially around the grid sleeve 44 which permits accurate tempera ture compensation even though the grid sleeve 44 may not be exactly coaxial with the center conductor 86.
  • FIGURES 1 and 3 coaxial fitting 124 mounted in the shell 2.
  • the inner conductor 126 of the connector is connected to one end of a pick-up loop 128 extending within the shell 2.
  • a capitance pick-up probe may be substituted for the loop 128.
  • the grid tank circuit is the primary frequency determining element.
  • the length of the grid sleeve is determined for proper operation at the center of the desired tuning range. It is important that the anode line have the proper characteristic impedance to match the dynamic impedance of the tube. A small difference in the diameter of the anode line and thus in its characteristic impedance makes a substantial difference in the output power.
  • the position of the choke joint primarily affects the phase of the energy fed back from the anode circuit to the grid circuit and is best determined experimentally.
  • the average characteristic impedance of the anode line changes as the adjusting screw 104 is turned.
  • the rate of change of characteristic impedance with linear movement depends upon the dimensions of the extension 86 and the anode inner conductor 66. This rate of change is adjusted so that the change in feed back characteristics produced by the simultaneous movement of the choke joint produces maximum power output over the desired tuning range.
  • the parts of the cavity are formed of brass, and all parts are silver plated to reduce R-F resistance.
  • spring fingers be formed of suitable spring material such as Phosphor bronze or beryllium copper.
  • the grid sleeve including the spring fingers 46 and the socket 68- with the fingers 70 may be formed of one-half hard brass.
  • a microwave oscillator comprising a housing having a conical section with a small angle of taper, a vacuum tube positioned in coaxial relationship with respect to said conical section, said vacuum tube having a contact ring extending therearound, and a plurality of arcuate contact elements engaging said contact ring and being held in position around said contact ring by a force-fit relationship Within said conical section, thereby providing firm electrical contact between said arcuate elements and said ring around substantially the entire periphery of said ring.
  • a microwave oscillator as claimed in claim 2 including spring means urging said arcuate contact elements against said annular shoulder.
  • a microwave oscillator comprising a housing having a gradually tapered conical section, an annular recess within said housing and spaced away from the small diameter end of said conical section, a vaccum tube positioned coaxially of said conical section, said vacuum tube having an annular groove therein extending around said tube, an electrode contact ring extending around said tube in said groove, said contact ring being below the surface of said tube, a plurality of planar arcuate contact elements having their inner edges fitting down into said groove for engaging said electrode contact ring, and a bowed spring clip seated in said annular recess and pressing the outer edges of said contact elements toward the small diameter end of said conical section for forcing the inner edges of said elements down into said groove to provide firm electrical contact with said ring around substantially the entire perimeter of said ring.
  • planar arcuate contact elements are formed of a 7 metal material which is softer than said electrode contact ring and which has the same coefficient of expansion as said housing.
  • a pair of C-shaped planar, arcuate contact segments one of said segments having a slightly larger circumferential extent than the other.
  • a coaxial oscillator having a vacuum tube with a cathode, a grid and an anode, said tube having an annular recess extending around the tube with a metal cathode contact ring formed integrally with the tube extending around the tube in the bottom of said recess, a first coaxial line coupled to the grid, at second coaxial line coupled to the anode, an outer cylindrical metal shell, 21 cathode-contact assembly comprising two flat semi-annular cathode-contact segments each having an internal curved edge surface adapted to fit down into said recess to engage the outer surface of said recessed cathode-contact ring, said outer shell having adjacent one end thereof an inwardly tapered surface terminating at a shoulder, whereby when said cathode-contact segments are positioned around said tube and the outer edge of said cathodecontact segments is forced along said tapered section of said outer shell into abutment with said shoulder substantial radial force is exerted by the inner edge of said cathode-contact segments

Landscapes

  • Particle Accelerators (AREA)

Description

March 9, 1965 J. E. BURBANK MICROWAVE OSCILLATOR HAVING IMPROVED CATHODE-RING CONNECTION STRUCTURE 3 Sheets-Sheet 1 Filed Sept. 5, 19 1 March 9, 1965 J. E. BURBANK MICROWAVE OSCILLATOR HAVING IMPROVED CATHODE-RING CONNECTION STRUCTURE 3 Sheets-Sheet 2 Filed Sept. 5, 1961 March 9, 1965 J. E. BURBANK 3,
MICROWAVE OSCILLATOR HAVING IMPROVED CATHODE-RING CONNECTION STRUCTURE Filed Sept. 5. 1961 3 Sheets-Sheet 3 United States Patent 3,173,105 MICROWAVE OSCILLATOR HAVING IMPROVED CATHODE-RING CONNECTION STRUCTURE John E. Burbank, Tampa, Fla, assignor to Trak Microwave Corporation, Tampa, Fla. Filed Sept. 5, 1961, Ser. No. 135,982 7 Claims. (Cl. 331-98) This invention relates to the generation of highfrequency electrical signals and is described as embodied in a reentrant type coaxial oscillator for the generation of microwave signals.
It is an object of this invention to provide an oscillator capable of etficient and stable operation over relatively wide ranges of frequencies.
Another object is to provide such an oscillator in which the frequency of the generated signal can be varied by a single mechanical adjustment while maintaining high operating efficiency.
Another object is to provide a sturdy oscillator assembly which by virtue of the features described below is capable of withstanding severe shock and vibration thus suiting it to the needs of rigorous military requirements.
Still another object is to provide an oscillator which is small in size and which can be rapidly and economically fabricated by convention techniques from readily available materials.
Still another object is to provide such an oscillator capable of accepting oscillator tubes which have substantial variations in physical dimensions from tube to tube.
Another object of the invention is to provide an improved means for making electrical and mechanical contacts with the vacuum tube elements.
Still another object is to provide improved mechanical support, while maintaining efficient electrical operation, for the mechanical elements of the coaxial oscillator.
These and other objects and advantages will become apparent from consideration of the following detailed description of one embodiment of the invention considered in conjunction with the accompanying drawings, in which:
FIGURE 1 is a perspective view of a coaxial oscillator embodying the invention;
FIGURE 2 is a longitudinal sectional view taken along line 2--2 of FIGURE 1;
FIGURE 3 is a perspective view of various parts of the oscillator;
FIGURE 4 is an enlarged partial sectional view showing the engagement of the grid-contact ring with the grid sleeve and of operation of the cavity oscillator; and
FIGURE 5 is a sectional view taken along line 5 5 of FIGURE 2;
FIGURE 6 is another sectional view of FIGURE 2.
The oscillator is housed within a cylindrical tubular shell 2 as shown in FIGURE 1. This particular cavity makes use of a vacuum tube 4 (FIGURE 3) designated as type TK9127 by Trak Microwave Corporation of Tampa, Florida, and as type 7486 by General Electric Company. The tube 4 is a vacuum tube of ceramic construction having planar cathode, grid and anode structures, the insulating portions of the tube being formed of ceramic and the active elements being formed primarily of titanium. The tube 4 is generally cylindrical in shape with heater contact pins 6 and 8 (FIGURES 2 and 3) protruding from one end of the shell and an anode cap 10 protruding from the opposite end. The cathode of the tube is connected to an annular cathodecontact ring 12 which encircles the tube and whose outer surface is recessed below the surface of the ceramic body of the tube. Its grid is connected to an annular gridcontact ring 14 which extends outwardly beyond ceramic body of the tube. In order to achieve operation at high frequencies, the tube is of small dimensions, and in comparison with the size of the tube, there may be substantial variations in the dimensions and positions of external connecting members. The coaxial oscillator described here has been arranged to accommodate substantial dimensional variations in the tube structure.
In operation, the cathode and cathode-contact ring 12 are maintained at the potential of the outer shell 2. This is accomplished by means of two cathode- contact segments 16A and 16B, each of which is formed of a semiannular portion of a washer formed, for example, of soft brass. The inner diameter of these cathode contact segments are cut to fit in intimate contact with the outer surface of the cathode-contact ring 12, and their outer surfaces are dimensioned to fit tightly against the inner surface of the shell 2. It is important for high frequency operation that the cathode contact segments 16A and 16B make contact as nearly as possible completely around the interior and exterior diameters. In order to accomplish this, a very slight annular taper is provided on the inner surface of shell 2 commencing at the point generally indicated at 18 in FIGURE 2 and decreasing in diameter to a shoulder generally indicated at 20, for example, a taper of 1 /2 to the longitudtnal axis is found to work advantageously in making a firm contact substantially all aroundthe contact ring 12 and substantially all around the inside of the outer shell. Thus, in mounting the tube in shell 2, the cathode contact segments 16A and 16B are positioned around the cathode-contact ring 12 and forced with the tube along the internal taper of shell 2 from point 18 into abutment with the annular shoulder 20, wedging cathode segments 16A and 16B tightly against both the inner surface of shell 2 and the cathode-contact ring 12.
The fit of these contact segments 16A and 16B is critical. An effective way to make them work well is to select a washer with a hole having an internal diameter which is the same as the outside diameter of the cathodecontact ring 12. Then a very narrow slice taken along a diameter of the washer is cut out, thus forming the two semi-circular segments. For example, with a tube as described this narrow slice is only 0.002 of an inch wide. After the slice has been cut out, then the two resulting segments are used as a pair and are not mixed up with other segments formed from other washers. It is found preferable to cut the slice parallel to, but displaced by, about 0.001 of an inch to one side of a diameter of the washer. Thus, one of the resulting segments is slightly larger than the other and will slightly embrace, i.e. hang on, the cathode contact ring. The lead from the grid resistor is then soldered to this larger of the pair of contact segments.
It is important that the material of which the cathodecontact segments 16A and 16B is formed be of softer metal than the cathode-contact ring 12 and that it have substantially the same coeflicient of expansion as the metal from which the shell is formed. In this particular instance the shell 2 is formed of brass, the cathode contact ring 12 of titanium and the cathode- contact segments 16A and 16B of one-half hard brass.
An annular spacer bushing 22 formed of Bakelite or other suitable insulating material is positioned adjacent the cathode- contact segments 16A and 16B.
Connection to the heater contact pins 6 and 8 is made respectively by heater pin sockets generally indicated at 24A and 24B. Each of these heater pin sockets is provided with an enlarged head portion 26 having integrally formed spring fingers 28 which engage and press inwardly on the heater contact pins 6 and 8. Each heater pin socket has an anchor pin 30 which extends axially from the tube 4 and consists of a section 32 of reduced diameter, and an enlarged head 34 portion 36 is formed for making electrical connection to the heater circuit. The head 34 is dimensioned to pass through one of the openings 37 in a socket-support wafer 38 formed of Bakelite or other suitable material. As can be seen in FIG- URE 2, the reduced section 32 of each socket is smaller in diameter than the opening 37 in the support wafer so that each heater pin socket 24A and 24B can move a significant amount laterally and angularly with respect to the socket-support wafer.
This freedom to accommodate movement of the heater pin sockets 24A and 24B is important because the heater contact pins 6 and 8 may be positioned in slightly different positions in different tubes and may even extend from the body of the tube 4 at an angle with respect to the longitudinal axis of the tube. In addition, one of the heater pins 6 and 8 may extend further in the longitudinal direction than the other. For this reason the socket-support Wafer 38 is preferably one or two thousandths of an inch smaller than the internal diameter of the shell 2 so that the wafer 38 is free to cock slightly within the shell 2 and thus maintain each of the heater pin sockets 24A and 24B in firm contact with the pins 6 and 8. The terminal portion 36 extends through the wafer 38, and heater voltage is applied to the oscillator by soldering appropriate leads to these terminals.
In order to force the heater pin sockets 24A and 24B into firm engagement with the heater contact pins 6 and 8 to maintain firm contact even under conditions of severe vibration, the socket-support wafer is held in place and urged toward the tube 4 by means of a snap ring 40 positioned within a counterbore 42 in the internal surface of the shell 2. The snap ring 40 is formed of spring material and has, as can be seen in FIGURE 2, a permanent bow in the longitudinal direction of the cavity and thus applies continuous pressure to the heater circuit contacts.
Tuned circuits are provided within the shell 2 for both the grid and the anode circuits. These two tuned circuits are interrelated both mechanically and electrically, and the operation is not readily explained accurately in terms of lumped constants. In certain instances common mechanical parts form portions of both circuits. An annular grid sleeve 44, which operates in the half-wave mode, is provided with a series of parallel cuts at one end which form spring fingers 46. The ends of these spring fingers are provided with an internal taper or chamfer 48 (FIG- URE 2) at the ends to permit the grid sleeve 44 to be pushed over the outer circumference of the grid-contact ring 14 until the grid-contact ring engages a counterbore 50 on the internal surface of the spring finger 46. The internal surface of the counterbore 50 is generally semicircular in shape (see FIGURE 4) whereas the outer edge of the grid-contact ring 14 has square corners with a surface parallel with the longitudinal axis of the shell 2. This arrangement insures good electrical contact between each of the spring fingers 46 and the grid ring 14. This continuous peripheral contact is important for effective operation of the oscillator.
In one sense, the outer surface of the grid sleeve 44 forms the inner conductor of a one-half wave resonant coaxial line of which the outer conductor is formed by the inner surface of the shell 2.
The free end of the grid sleeve 44 is supported by three radially-spaced supporting members 51 (FIGURE 3) extending between the grid sleeve 44 and inner surface of the shell 2. Any dielectric material positioned within this portion of the coaxial line disturbs the field, and for this reason the supporting members 52 are formed of low-loss insulating material and are structurally arranged to provide minimum disturbance. In this particular example, the members are formed of a resilient plastic material, for example, such as Kel-F trifiuorochloroethylene plastic material, but other suitable dielectric material may be used. Each of the support members 52 is pro- Cit vided with an anchor tip 54 which engages a hole 56 in the sleeve 44. An enlarged base portion 58 engages the outer surface of the grid sleeve 44, and a disc-like head portion 60 engages the inner surface of shell 2. The base 58 is connected to the head portion by a stem 62 of reduced cross section which is of the minimum size necessary to provide the desired mechanical support. The head 60 is formed with a plane surface which fits against the shell 2. The surface of the head 60 is distorted by the radial force and made to conform with the curvature of the inner surface of the shell 2. With this arrangement each of the supporting members 52 acts like a spring support because of the resistancy of the plastic material of which the members 52 are formed. When these members are formed of thermoplastic material, the head 60 in use may acquire a permanent set, and in the case of Kel-F material may actually adhere to the inner surface of the shell 2.
The anode circuit, which in this example operates in the three-quarter-wave length mode, is formed by an anode line assembly generally indicated at 64. An anode inner conductor generally indicated at 66 is provided with an enlarged anode socket portion 68, the open end of which is provided with spring fingers 70 which define an opening adapted to receive the anode cap 10, the spring fingers 70, assuring good peripheral contact with the anode cap 10.
Extending longitudinally of the shell 2 and formed integrally with the socket 68 is a cylindrical line portion 72 of reduced diameter. A short section of the line 72, indicated at 72A adjacent the head 68, has a slightly larger diameter, for example 1 or 2 thousandths than the remainder of the line 72. At the opposite end of the line 72, a portion of reduced cross section 74 joins the line to an enlarged threaded section 76. In this example, a solder terminal 78 is formed integrally with the line 72 for the application of 13+ voltage to the tube.
The other portion of the anode line assembly is formed by a tuning assembly, generally indicated at 80, which includes a quarter-Wave choke joint 82 which serves as a termination for the coaxial anode line and prevents radiation of R-F energy. The quarter-wave choke joint 82 in this example is shown as having a short circuit on the end nearest the tube 4 and an open circuit at the opposite end. In practice, however, the choke joint may be reversed with the open end facing the tube 4. The outer surface of the choke joint 82 is covered with a layer 84 of insulating material, for example, formed from a sheet of plastic material, for example, such as Teflon polytetrafiuoroethylene. This dielectric material 84 insulates the choke joint from the shell 2 so far as direct current is concerned and also increases the capacity between the choke joint and the shell 2, thereby shortening the over-all length of the choke joint. The insulation also provides mechanical damping of the choke structure to eliminate mechanical resonances that might cause microphonic response in the oscillator.
A cylindrical extension 86 formed integrally with the choke joint 82 extends from the face of the choke joint toward the tube 4. The extension 86, whose outer diameter preferably is approximately the same as the outer diameter of the anode socket 68, has an internal bore 88 which receives the anode line 72. The free end of the extension 86 is provided with spring fingers 90 which make contact with the outer surface of the portion 72A of the anode inner conductor.
There is a reduction in diameter of the anode inner conductor beyond the point 87. When the tuning assembly is positioned with the end of extension 86 immediately adjacent the socket 68, this extension forms the inner conductor of the anode line. In one sense it may be considered that a portion of the outer conductor of the anode line is formed by the inner surface of the grid sleeve 44. When the extension 86 is moved away from the socket 68, a portion of the anode inner conductor 72A is exposed between the socket 68 and the end of the extension 86 which changes the characteristic impedance of the anode line. The portion 72A of the anode inner conductor is of slightly larger diameter than the portion farther removed from the socket 68 beyond the point 87 to insure that contact between the extension 86 and the anode inner conductor 66 will be made only through the spring fingers 90.
A bearing member 92 (FIGURE 5) is mounted within the choke joint 92 and has a longitudinal opening 94 which serves as a bearing surface for the anode inner conductor 66. The threaded portion 76 of the anode inner conductor is in engagement with a threaded opening 96 in an end cap 98. The end cap 98 forms a sliding fit Within the shell 2 and preferably is constructed of phenolic plastic or another material having high radio-frequency losses to further reduce the chance of leakage of radio-frequency energy. This end cap is maintained under continuous longitudinal pressure in the direction of the tube 4 by a bowed snap ring 100, similar to the snap ring 40, which is made of spring material and arranged to fit within a counterbore 102 in the shell 2.
The bowed portion of the snap ring 100 pushes against the end cap 98 and thus maintains the socket 68 at all times in firm engagement with the anode cap 10. It will be noted that this is made possible because the length of anode line 66 does not change during tuning, the only moving part is the tuning assembly 80 which rides on the line 66.
To provide manual adjustment of the operating frequency of the oscillator, a screw 104 (FIGURE 2) extends through an opening 106 in the end cap 98 into threaded engagement with an internally threaded bushing 108 mounted in a member 110 within the choke joint 82. The bushing 108, after threading, has been provided with two longitudinal cuts and then squeezed together so as to provide a tight fit with the threads of the adjusting screw 104 to eliminate backlash.
The head 114 of the screw 104 is positioned in a recessed threaded opening in the end cap 98. A cupped spring washer 116 in the bottom of the recess maintains the screw 104 under continuous tension, thus further aiding in the prevention of backlash. When the screw 104 is turned, the tuning assembly 80 is moved longitudinally within the shell 2, thus simultaneously adjusting the dis tance between the end of extension 86 and the adjacent surface of the socket 68 and the length of the anode line between the anode cap and choke joint 82. A locknut 118 holds the screw head.
To compensate automatically for the effect of change in the temperature, three generally L-shaped bimetal strips 120 are mounted on the grid sleeve 44. Each of these bimetal strips is secured to the sleeve 44 through a metal spacer 122 which may, for example, be approximately ten thousandths of an inch in thickness. Each bimetal strip 120 extends beyond and around the free end of the grid sleeve 44. The free end of each bimetal strip moves radially with change in temperature. As the operating temperature of the oscillator increases, the metal of which the parts of the oscillator are formed expands, thus lowering the frequency of the signal generated. The bi-metal strips 120 are arranged to move outwardly with increasing temperature and thereby decrease the capacity between the grid sleeve 44 and the anode line assembly 64 tending to produce an increase in frequency to compensate for the change in temperature.
The three bi-metal elements are positioned radially around the grid sleeve 44 which permits accurate tempera ture compensation even though the grid sleeve 44 may not be exactly coaxial with the center conductor 86.
Power is withdrawn from the oscillator through a conventional coaxial fitting 124 (FIGURES 1 and 3) mounted in the shell 2. The inner conductor 126 of the connector is connected to one end of a pick-up loop 128 extending within the shell 2. A capitance pick-up probe may be substituted for the loop 128.
In the construction of a coaxial oscillator of the type described here, the dimensions can be in part calculated by proven methods and in part best determined empirically. The grid tank circuit is the primary frequency determining element. The length of the grid sleeve is determined for proper operation at the center of the desired tuning range. It is important that the anode line have the proper characteristic impedance to match the dynamic impedance of the tube. A small difference in the diameter of the anode line and thus in its characteristic impedance makes a substantial difference in the output power. The position of the choke joint primarily affects the phase of the energy fed back from the anode circuit to the grid circuit and is best determined experimentally.
As stated above, the average characteristic impedance of the anode line changes as the adjusting screw 104 is turned. The rate of change of characteristic impedance with linear movement depends upon the dimensions of the extension 86 and the anode inner conductor 66. This rate of change is adjusted so that the change in feed back characteristics produced by the simultaneous movement of the choke joint produces maximum power output over the desired tuning range.
In general, the parts of the cavity are formed of brass, and all parts are silver plated to reduce R-F resistance. Wherever possible, it is desirable that spring fingers be formed of suitable spring material such as Phosphor bronze or beryllium copper. The grid sleeve including the spring fingers 46 and the socket 68- with the fingers 70 may be formed of one-half hard brass.
From the foregoing it will be seen that the coaxial oscillator described herein is Well adapted to achieve the ends and objects set forth above and that its simplified mechanical structure results in a rugged oscillator that can be readily and economically manufactured by conventional manufacturing methods.
What is claimed is:
1. A microwave oscillator comprising a housing having a conical section with a small angle of taper, a vacuum tube positioned in coaxial relationship with respect to said conical section, said vacuum tube having a contact ring extending therearound, and a plurality of arcuate contact elements engaging said contact ring and being held in position around said contact ring by a force-fit relationship Within said conical section, thereby providing firm electrical contact between said arcuate elements and said ring around substantially the entire periphery of said ring.
2. A microwave oscillator as claimed in claim 1 and wherein said conical section is terminated at an internal annular shoulder, said arcuate contact elements being held against said annular shoulder.
3. A microwave oscillator as claimed in claim 2 including spring means urging said arcuate contact elements against said annular shoulder.
4. A microwave oscillator comprising a housing having a gradually tapered conical section, an annular recess within said housing and spaced away from the small diameter end of said conical section, a vaccum tube positioned coaxially of said conical section, said vacuum tube having an annular groove therein extending around said tube, an electrode contact ring extending around said tube in said groove, said contact ring being below the surface of said tube, a plurality of planar arcuate contact elements having their inner edges fitting down into said groove for engaging said electrode contact ring, and a bowed spring clip seated in said annular recess and pressing the outer edges of said contact elements toward the small diameter end of said conical section for forcing the inner edges of said elements down into said groove to provide firm electrical contact with said ring around substantially the entire perimeter of said ring.
5. A microwave oscillator as claimed in claim 4 wherein said planar arcuate contact elements are formed of a 7 metal material which is softer than said electrode contact ring and which has the same coefficient of expansion as said housing.
6. In a microwave oscillator as claimed in claim 4, a pair of C-shaped planar, arcuate contact segments, one of said segments having a slightly larger circumferential extent than the other.
7. A coaxial oscillator having a vacuum tube with a cathode, a grid and an anode, said tube having an annular recess extending around the tube with a metal cathode contact ring formed integrally with the tube extending around the tube in the bottom of said recess, a first coaxial line coupled to the grid, at second coaxial line coupled to the anode, an outer cylindrical metal shell, 21 cathode-contact assembly comprising two flat semi-annular cathode-contact segments each having an internal curved edge surface adapted to fit down into said recess to engage the outer surface of said recessed cathode-contact ring, said outer shell having adjacent one end thereof an inwardly tapered surface terminating at a shoulder, whereby when said cathode-contact segments are positioned around said tube and the outer edge of said cathodecontact segments is forced along said tapered section of said outer shell into abutment with said shoulder substantial radial force is exerted by the inner edge of said cathode-contact segments on said cathode-contact ring, said cathode-contact segments being formed of softer material than said cathode-contact ring, an annular bushing of insulating material positioned within said shell adjacent said cathode-contact segments, a grid resistor connected between one of said cathode-contact segments and said grid, and spring means urging said bushing against said cathode-contact segments for forcing them along said tapered section.
References Cited by the Examiner UNITED STATES PATENTS 2,605,421 7/52 Schultz et al 33198 2,763,783 9/56 Lorenzen 331--98 2,859,434 11/58 Auer et al 33 l98 ROY LAKE, Primary Examiner.
JOHN KOMINSKI, Examiner.

Claims (1)

1. A MICROWAVE OSCILLATOR COMPRISING A HOUSING HAVING A CONICAL SECTION WITH A SMALL ANGLE OF TAPER, A VACUUM TUBE POSITIONED IN COAXIAL RELATIONSHIP WITH RESPECT TO SAID CONICAL SECTION, SAID VACUUM TUBE HAVING A CONTACT RING EXTENDING THEREAROUND, AND A PLURALITY OF ARCUATE CONTACT ELEMENTS ENGAGING SAID CONTACT RING AND BEING HELD IN POSITION AROUND SAID CONTACT RING BY A FORCE-FIT RELATIONSHIP WITHIN SAID CONICAL SECTION, THEREBY PROVIDING FIRM ELECTIRCAL CONTACT BETWEEN SAID ARCUATE ELEMTNS AND SAID RING AROUND SUBSTANTIALLY THE ENTIRE PERIPHERY OF SAID RING.
US135982A 1961-09-05 1961-09-05 Microwave oscillator having improved cathode-ring connection structure Expired - Lifetime US3173105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US135982A US3173105A (en) 1961-09-05 1961-09-05 Microwave oscillator having improved cathode-ring connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US135982A US3173105A (en) 1961-09-05 1961-09-05 Microwave oscillator having improved cathode-ring connection structure

Publications (1)

Publication Number Publication Date
US3173105A true US3173105A (en) 1965-03-09

Family

ID=22470686

Family Applications (1)

Application Number Title Priority Date Filing Date
US135982A Expired - Lifetime US3173105A (en) 1961-09-05 1961-09-05 Microwave oscillator having improved cathode-ring connection structure

Country Status (1)

Country Link
US (1) US3173105A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2605421A (en) * 1945-09-17 1952-07-29 Howard L Schultz Tuner for lighthouse tube cavity resonators
US2763783A (en) * 1946-04-05 1956-09-18 Howard O Lorenzen High frequency oscillator
US2859434A (en) * 1955-11-08 1958-11-04 Gen Railway Signal Co Speed measuring apparatus for railroad classification yards

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2605421A (en) * 1945-09-17 1952-07-29 Howard L Schultz Tuner for lighthouse tube cavity resonators
US2763783A (en) * 1946-04-05 1956-09-18 Howard O Lorenzen High frequency oscillator
US2859434A (en) * 1955-11-08 1958-11-04 Gen Railway Signal Co Speed measuring apparatus for railroad classification yards

Similar Documents

Publication Publication Date Title
US3750053A (en) Coaxial transmission line rf switch
US2486285A (en) Electrical contact member
US3325752A (en) Microwave connector
US2378944A (en) Detector system for very short electric waves
US4051447A (en) Radio frequency coupler
US3173106A (en) Microwave oscillator with bimetal temperature compensation
US3443244A (en) Coaxial resonator structure for solid-state negative resistance devices
US3173105A (en) Microwave oscillator having improved cathode-ring connection structure
US2563613A (en) Translating means for ultra-short
US3173104A (en) Coaxial microwave oscillator
US2561727A (en) Tuning of electrical resonators
US3444486A (en) Dielectric supported positionable inductive tuner for resonators
US2600278A (en) Variable capacity cavity tuning
US3212015A (en) Broadband crystal diode detector
US3688219A (en) Electrically and mechanically tunable microwave power oscillator
US2994042A (en) Radio frequency oscillation system
US2429823A (en) Crystal detector
US2780727A (en) Resonant circuit
US4002957A (en) Trimmable fixed hermetically sealed capacitor
US2400619A (en) Capacity switch
US2764742A (en) Variable tuning structures
US2797324A (en) Space resonant system
US2605421A (en) Tuner for lighthouse tube cavity resonators
US2774017A (en) Trimmer
US3249890A (en) Cavity termination for microwave oscillators