US3151817A - Replaceable wearing parts for crushers with tilting bowls - Google Patents
Replaceable wearing parts for crushers with tilting bowls Download PDFInfo
- Publication number
- US3151817A US3151817A US106559A US10655961A US3151817A US 3151817 A US3151817 A US 3151817A US 106559 A US106559 A US 106559A US 10655961 A US10655961 A US 10655961A US 3151817 A US3151817 A US 3151817A
- Authority
- US
- United States
- Prior art keywords
- tilting
- main frame
- tilting ring
- upwardly
- opposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 229910000906 Bronze Inorganic materials 0.000 description 7
- 239000010974 bronze Substances 0.000 description 6
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 241000237858 Gastropoda Species 0.000 description 2
- 239000005041 Mylar™ Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 235000019013 Viburnum opulus Nutrition 0.000 description 1
- 244000071378 Viburnum opulus Species 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C2/00—Crushing or disintegrating by gyratory or cone crushers
- B02C2/02—Crushing or disintegrating by gyratory or cone crushers eccentrically moved
- B02C2/04—Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C2/00—Crushing or disintegrating by gyratory or cone crushers
- B02C2/005—Lining
Definitions
- the invention relates to an improvement in tilting plane structures for gyrating head crushers in which the bowl is releasable under overstress. It is illustrated in connection with a cone crusher of the general type shown in Patent No. 2,438,049, issued March 16, 1948.
- One purpose is improved means for preventing abnormal wear on the inner conical surface of the tilting ring of such a crusher.
- Another purpose is to prevent abnormal or adhesive wear on the opposed part of the frame of such a crusher.
- Another purpose is replaceable wearing parts for the tilting plane structure where wear is, in practice, greatest.
- FIGURE 1 is a vertical axial section showing the opposite sides of a cone crusher to which the present invention has been applied;
- FIGURE 2 is an enlarged section of a modified form of the opposed conic surfaces between the main frame and tilting ring in FIGURE 1;
- FIGURE 3 is a variation of FIGURE 2.
- 1 generally indicates a circumferential side frame member of the crusher.
- an outwardly extending flange 2 with an upward projection 3 At the upper end of the frame is shown an outwardly extending flange 2 with an upward projection 3.
- the upper part of the frame and flange 2 and projection 3 are formed to provide a conic inner seating surface 4.
- a bowl supporting or tilting ring 5 Positioned above the frame is a bowl supporting or tilting ring 5.
- This ring is shown as interiorly screw-threaded as at 6 to receive the corresponding screw threads 7 of a bowl structure generally indicated at 8.
- the details of the bowl structure are not of themselves part of the present invention. It will be understood, however, that a conic head is gyrated within the bowl 7, the head and bowl defining together a crushing zone or space.
- the tilting ring is shown as having a conic surface 10 opposed to the conic surface 4 of the frame.
- the ring 5 is seated upon the frame about its entire circumference, with the conic surfaces 4 and 10 abutting throughout the circumference of the machine.
- the conical surfaces match or have the same included angle so that they contact during normal operation throughout their length as well as circumference.
- the parts are held in such position by any suitable compression means, for example, the springs 15, which are compressed between any suitable bottom abutments 16 and the lower surface of the frame flange 2.
- Any suitable tension members 17, such as bolts or the like connect the abutments 16, preferably adjustably, to the tilting ring 5.
- tension members are shown as bolts provided with suitable nuts 18 but they might be otherwise.
- the bolts pass through suitable apertures in the frame flange 2.
- the gyrating head applies an ever-moving wave of rotary upthrust against the bowl during crushing.
- the upthrust wave may cause a minute movement of the tilting ring on the frame. If the tilting ring were free, it might slowly walk around the main frame, like a falling coin. To prevent this walk we use one or more dowels 19.
- uncrushable material when uncrushable material is present in the crushing zone or space between head and bowl, the bowl is tilted upwardly away from the head. In the course of this upward tilting movement some part of the ring 5 is tilted upwardly away from the flange 2 or the projection 3 of the frame. As a result, at one side of the crusher, the rings 5 may be lifted somewhat. The maximum withdrawal will be determined by the location of the uncrushable material.
- Such uncrushable material may include tramp iron, such as dipper teeth and the like.
- the surface 4 and 10 will separate at the bottom but will remain in limited contact toward the top.
- point contact is not achieved, nevertheless, the area of contact will be quite limited since the lower part of surfaces 4 and 10 on the left side will separate and the adjustment ring 5, at least initially, pivots about the upper portion of 4 and 10.
- the majority of the spring thrust will be concentrated in a quite limited area between 4 and 10. Since the surfaces 4 and 10 are on an angle to the vertical and the spring thrust can be assumed to act vertically, the left side of the adjustment ring will slip a small amount.
- the condition is primarily caused by or at least made worse by the fact that the opposed parts are of the same metal component, steel.
- the condition can be greatly ameliorated by applying covering elements or inserts to one or both of the opposed conic surfaces, which are either non-metallic or non-ferrous and different from the metal of the opposed surfaces.
- One of the advantages of using different materials in contact with each other, as in FIGURE 2 is that the surface will have :d ifferent.melti ng points. This means that as the temperature goes up, one surface will melt first. By the time the temperature gets up to the melting point of the other surface, the first surface gets out of the way, so to speak. Thus differential melting points prevent the skid-weld.
- FIGURE 2 we illustrate conic ring segments mounted on the conic surface 4 of the frame. Thesesegments may be of any desired length and number, but we find it advantageous to employ, say, three segments of about 120 degrees each. The segments may abut, edge to edge, but We find it advantageous to leave at least a slight space between adjacent segments.
- the segments may be secured in place by various means. For example, we may weld, braze or bond along each edge as at 21'and 22
- For the inserts for example, we may employ bronze, or some bronze alloy or any suitable nonferrous metal. This is given as an example. It is also practical to hold the segments 20 in position on the surface 4, in recesses, with or without a bottom flange or positioning support. Instead of welding, they may also be pinned or doweled in position.
- FIGURE 2 we illustrate inserts only in the conic surface 4, it will be understood that such inserts may be applied, as well or instead, on or in the surface 10.
- FIGURE 3 we illustrate such inserts at 30, the inserts being welded, brazed or otherwise bonded along each edge at 31 and 32. It will be understood, as shown in FIG- URE 3, that the inserts may be employed on either conic surface 4 or 10, or, if desired, on both.
- FIGURES 2 and 3 we have shown the inserts welded, bonded or otherwise mounted on the face of the surfaces 4 and 10, but they might be recessed into either or both surfaces, such as shown in FIGURE 1.
- the recess might be undercut or otherwise.
- an epoxy resin may be applied and permitted to harden.
- the resin has a relatively longwearing life, and may easily be removed when worn.
- the resin which has high adhesive characteristics, may be allowed to adhere to the opposed metallic surfaces of the ring 5 or the frame, or both.
- the metallic walls may be treated with grease or some substance to prevent adhesion, and the resin may be held in place by its shape. It may then the more easily be removed when worn, since it is not permitted to adhere to the metal.
- We may use a fabricated product such as Sorbtex, presently obtainable from Voss Engineering, Inc., Chicago, Illinois.
- the material is a cotton or fabric impregnated with neoprene with a Mylar surface.
- a self-lubricating plastic such as Teflon, for example.
- Teflon a self-lubricating plastic
- a large number of plastics will work, but something along the lines of Sorbtex is preferred since it has a hard wear-resistant surface of Mylar backed up by a tough but somewhat compressible and resilient body of neoprene impregnated fabric.
- They may be metallic or non-metallic, but it is important that the opposed surfaces are not of a metal, or combination ofmetals, which will fuse together or weld under heat and pressure, as may be the case with current use of cast iron or steel frames and tilting rings.
- a tilting ring being mounted on the outstanding flange and having an upwardly and outwardly conical circumferential surface corresponding to and adapted to oppose the upwardly and outwardly conical circumferential surface on the main frame, yielding means releasably holding the tilting ring on the main frame so that when the tilting ring tends to move up on one side due to an overload, such as tramp iron in the cavity, the surface on the opposite side of the tilting ring tends to slip on the opposed surface on the main frame under the pressure of the yielding means, and a circumferential removable lining between said opposed surfaces, the lining being of a non-ferrous material and having a melting point substantially lower than that of steel, to thereby resist adhesive fusion.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Crushing And Grinding (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US106559A US3151817A (en) | 1960-08-05 | 1961-05-01 | Replaceable wearing parts for crushers with tilting bowls |
DEN20133A DE1169764B (de) | 1960-08-05 | 1961-06-02 | Kreiselbrecher |
ES0267968A ES267968A1 (es) | 1960-08-05 | 1961-06-03 | Una maquina machacadora de conos |
FR868553A FR1296176A (fr) | 1960-08-05 | 1961-07-20 | Pièces d'usure remplaçables pour broyeurs à cuvette basculante |
GB28613/61A GB982795A (en) | 1960-08-05 | 1961-08-08 | Improvements in or relating to gyratory crushers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4785660A | 1960-08-05 | 1960-08-05 | |
US106559A US3151817A (en) | 1960-08-05 | 1961-05-01 | Replaceable wearing parts for crushers with tilting bowls |
Publications (1)
Publication Number | Publication Date |
---|---|
US3151817A true US3151817A (en) | 1964-10-06 |
Family
ID=34525702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US106559A Expired - Lifetime US3151817A (en) | 1960-08-05 | 1961-05-01 | Replaceable wearing parts for crushers with tilting bowls |
Country Status (5)
Country | Link |
---|---|
US (1) | US3151817A (de) |
DE (1) | DE1169764B (de) |
ES (1) | ES267968A1 (de) |
FR (1) | FR1296176A (de) |
GB (1) | GB982795A (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4688727A (en) * | 1983-03-02 | 1987-08-25 | F. Kurt Retsch Gmbh & Co. Kg | Fine grinding apparatus for laboratory experiments |
EP3184174A1 (de) * | 2015-12-27 | 2017-06-28 | Kabushiki Kaisha Earthtechnica | Kreiselnder brecher |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4773604A (en) * | 1982-09-23 | 1988-09-27 | Johnson Louis W | Seat member for gyratory rock crusher bowls |
AU557477B2 (en) * | 1982-09-23 | 1986-12-24 | Cedarapids, Inc | Seat member for gyratory rock crusher bowls |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1691553A (en) * | 1926-12-20 | 1928-11-13 | Smith Engineering Works | Crusher |
US1717894A (en) * | 1927-08-22 | 1929-06-18 | Smith Engineering Works | Crusher |
US2017108A (en) * | 1927-09-19 | 1935-10-15 | Nordberg Manufacturing Co | Crushing apparatus |
US2158778A (en) * | 1937-01-30 | 1939-05-16 | Smith Engineering Works | Crusher |
US2553987A (en) * | 1946-11-29 | 1951-05-22 | Dominion Eng Works Ltd | Gyratory crusher |
US2555064A (en) * | 1947-04-28 | 1951-05-29 | Dominion Eng Works Ltd | Gyratory crusher |
US2875955A (en) * | 1956-09-13 | 1959-03-03 | Appleton Mach | Wood grinding machine |
US2970775A (en) * | 1958-05-02 | 1961-02-07 | Nordberg Manufacturiang Compan | Method of backing crusher parts |
US2970783A (en) * | 1958-05-01 | 1961-02-07 | Nordberg Manufacturing Co | Composite wearing parts for crushers and the like |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2438049A (en) * | 1943-11-13 | 1948-03-16 | Nordberg Manufacturing Co | Pedestal type gyratory crusher |
US2901189A (en) * | 1954-08-23 | 1959-08-25 | Pettibone Mulliken Corp | Cone crushing mechanism |
-
1961
- 1961-05-01 US US106559A patent/US3151817A/en not_active Expired - Lifetime
- 1961-06-02 DE DEN20133A patent/DE1169764B/de active Pending
- 1961-06-03 ES ES0267968A patent/ES267968A1/es not_active Expired
- 1961-07-20 FR FR868553A patent/FR1296176A/fr not_active Expired
- 1961-08-08 GB GB28613/61A patent/GB982795A/en not_active Expired
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1691553A (en) * | 1926-12-20 | 1928-11-13 | Smith Engineering Works | Crusher |
US1717894A (en) * | 1927-08-22 | 1929-06-18 | Smith Engineering Works | Crusher |
US2017108A (en) * | 1927-09-19 | 1935-10-15 | Nordberg Manufacturing Co | Crushing apparatus |
US2158778A (en) * | 1937-01-30 | 1939-05-16 | Smith Engineering Works | Crusher |
US2553987A (en) * | 1946-11-29 | 1951-05-22 | Dominion Eng Works Ltd | Gyratory crusher |
US2555064A (en) * | 1947-04-28 | 1951-05-29 | Dominion Eng Works Ltd | Gyratory crusher |
US2875955A (en) * | 1956-09-13 | 1959-03-03 | Appleton Mach | Wood grinding machine |
US2970783A (en) * | 1958-05-01 | 1961-02-07 | Nordberg Manufacturing Co | Composite wearing parts for crushers and the like |
US2970775A (en) * | 1958-05-02 | 1961-02-07 | Nordberg Manufacturiang Compan | Method of backing crusher parts |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4688727A (en) * | 1983-03-02 | 1987-08-25 | F. Kurt Retsch Gmbh & Co. Kg | Fine grinding apparatus for laboratory experiments |
EP3184174A1 (de) * | 2015-12-27 | 2017-06-28 | Kabushiki Kaisha Earthtechnica | Kreiselnder brecher |
Also Published As
Publication number | Publication date |
---|---|
FR1296176A (fr) | 1962-06-15 |
ES267968A1 (es) | 1961-11-16 |
DE1169764B (de) | 1964-05-06 |
GB982795A (en) | 1965-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007511358A (ja) | 粒状材料を加圧粉砕するための粉砕ローラ | |
JPH0239939B2 (de) | ||
US3151817A (en) | Replaceable wearing parts for crushers with tilting bowls | |
US2970783A (en) | Composite wearing parts for crushers and the like | |
US3582008A (en) | Bimetal crusher liner | |
US3455517A (en) | Rotary impact crusher | |
US3000577A (en) | Shear pin drive for gyratory crushers | |
US3355264A (en) | Composite impact and abrasion resistant material | |
US3682227A (en) | Method of making bi-metal crusher liner | |
US2843331A (en) | Jaws for hinged rock crushers | |
US2449746A (en) | Wear plate for jaw crushers | |
US2453596A (en) | Liner plate for jaw crushers | |
US3587987A (en) | Segmented crusher liner | |
US3612421A (en) | Wearing parts for crushers | |
CN206435760U (zh) | 一种合金料破碎装置 | |
US3131876A (en) | Feed distributor assembly for cone crushers or the like | |
US3269668A (en) | Ball mill with tensional and wear-resistant linings | |
US3250478A (en) | Wear ring and locking nut structure for gyratory crushers | |
US3539120A (en) | Bowl liner securing device | |
US1096307A (en) | Multiple-compartment rock-crusher. | |
US3850376A (en) | Mantle for a gyratory crusher | |
US3503563A (en) | Gyratory rock crusher | |
US1777605A (en) | Mill | |
US3477651A (en) | Gyratory or cone crusher with a crusher cone including a core and a mantle | |
US2014588A (en) | Crushing structure |