US3142336A - Method and apparatus for injecting steam into subsurface formations - Google Patents
Method and apparatus for injecting steam into subsurface formations Download PDFInfo
- Publication number
- US3142336A US3142336A US43463A US4346360A US3142336A US 3142336 A US3142336 A US 3142336A US 43463 A US43463 A US 43463A US 4346360 A US4346360 A US 4346360A US 3142336 A US3142336 A US 3142336A
- Authority
- US
- United States
- Prior art keywords
- oil
- casing
- formation
- well
- tubing string
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015572 biosynthetic process Effects 0.000 title claims description 73
- 238000000034 method Methods 0.000 title claims description 12
- 238000005755 formation reaction Methods 0.000 title description 66
- 238000004891 communication Methods 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000000498 cooling water Substances 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 4
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 claims description 4
- 239000004568 cement Substances 0.000 description 9
- 238000010793 Steam injection (oil industry) Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000793686 Homo sapiens Azurocidin Proteins 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/001—Cooling arrangements
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
Definitions
- Apparatus for injecting steam into an oil-producing formation through a well drilled thereinto comprising a well casing extending from the surface downwardly into at least the top of the oil formation yand sealed in the well atleast at one point above said oil formation, perforations in said well casing opposite said oil formation, a tubing string suspended within said casing and extending to the level of the oil formation Iand in open communication with the casing at said level, an intermediate concentric pipe string between said tubing string and said casing forming inner and outer annular spaces extending substantially to the top of said oil formation, seal means closing the lower ends of said inner and outer annular spaces, closure means at the top of the well for closing said inner and outer annular spaces, rst port means through said closure means in communication with said inner annular space by which a partial vacuum to said space may be applied, second port means through said closure means in communication with said outer annular space for passing cooling water therethrough, and ow conduit means suspended from said closure means in said outer annular space substantially to the bottom thereof
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Description
July 28 1954 T. M. DoscHER METHOD AND APPARATUS FOR INJECTING STEAM INT0 suBsuRFAcE FORMATIONS Fild July 18, 1960 United States. Patent O 3 142 336 METHOD AND APPRTUS Fon INJECTING STEAM ENT() SUBSURFACE FORMATONS Todd M. Doscher, Beilaire, Tex., assigner to Shell 011 Company, New York, N.Y., a corporation of Delaware Filed July 13, 1960, Ser. No. 43,463 6 Ciaims. (Cl. 166-11) This invention relates to the producing of oil from underground formations and pertains more particularly to a method land apparatus `for treating an oil-bearing formation through an injection well to reduce the viscosity of the oil in the formation and drive it to a producing well in communication with the same formation.
The producing formations of many oil fields contain low-gravity oil whose viscosity is of a value high enough to prevent easy flow of the oil through the formation and into a well. In some fields of this type, steam ocding of the producing formation is carried out through one or more injection wells in order to reduce the viscosity of the production fluid and drive the heated oil to adjacent wells, in the same field, through which it is produced to the surface.
An oil -well is provided with a casing extending from the top of the lwell down to at least the top of the producing formation and generally Ibelow the producing formation in order to line the well. Prior to perforating the well casing opposite the oilproducing formation, the casing of -a steam injection well is cemented at a level immediately above the oil producing formation and also preferably immediately below the oil-producing formation in order to block the intrusion `of water from other formations and to prevent the escape of steam vertically along the surface of the well casing to other formations. Cement between a rwell casing and the wall of a well forms an effective fluid-tight seal against the passage of fluids thereby. However, steam injection wells are subjected to high temperatures which often cause differential expansion of the well casing and cement which results in a failure of the casing-cement bond, thus providing a path by which steam can escape to the surface and thereby destroy the effectiveness of the steam liood operations.
It is therefore a primary object of the present invention to provide fa method and apparatus for treating an oilbearing formation with steam through an injection well while preserving the casing-cement bond outside the casing to prevent the escape of steam to the surface or the intrusion of water from ladjacent formations.
A further object of the present invention is to provide apparatus whereby steam may be efficiently caused to flow down a well .and be injected into an oil-bearing formation to reduce the viscosity of the oil in the formation and drive it to other adjacent wells.
Another object to the present invention is to provide apparatus 4for steam injection through wells wherein the packing elements used therein are cooled during operations -by circulating water.
Still another object of the present invention is to provide steam injection well apparatus including packer elements wherein the steam pressure on one side of the packer elements is substantially counter-balanced by circulating water under pressure on the other side thereof to keep to a minimum the differential pressure across the packer elements.
These and other objects yof this invention will be understood from the following description taken with reference to the drawing, wherein:
FIGURE l isa diagrammatic view taken in longitudinal crossasection of la steam injection well installation in accordance with the present invention, and,
FIGURE 2 is ya diagrammatic View which forms the 3,142,336 Patented July 28, 1964 ICC downward extension of the apparatus illustrated in FIG- URE l.
Referring to the drawing, a well casing 11-12 is shown as comprising a length of large-diameter casing 11 connected to a length of small-diameter casing 12 by means of a reducer coupling 13 of any suitable type. Although the casing -is made up of sections of pipe of different diameter it will be considered as a single element for purposes of the present invention. The well casing 11-12 lis cemented in the well in 'any suitable manner well known to the art. An expansion joint 21 is installed in the casing 12 to prevent compression failure of the casing 12 due to thermal expansion. Accordingly, the casing 12 is fixed in position at the bottom of the well bore to prevent formation fill from dropping under casing 12 and injuring associated downhole equipment during alternate heating and cooling cycles. The lower end of the well casing 12 within the oilaproducing zone, such 'as the section of casing below coupling 16, is perforated in any suitable manner to permit the escape of steam from the casing.
At a level near the top of the oil-producing formation the well casing 12, before being lowered into the well, was provided with a metal petal basket 17 positioned below a cementing oat collar of any suitable type represented Iby ports 18 in the well casing 12. During cementing operations cement is circulated either down through the casing 11 or through a special cementing string (not shown) to be discharged through the ports 18. The metal basket 17 prevents the downward flow of cement which is forced to liow upwardly in the annulus between the well casing 11 and the borehole wall 15 yto form a sheath of cement 2t? which forms an effective seal preventing the escape of steam to the surface or the intrusion of water into the borehole. It is not essential, however, that the cement sheath 2t) extend all the way to the surface of the earth.
Suspended concentrically within the well casing 11-12 is a tubing string 22 extending from the surface of the earth down to a point in the lower end of the casing 12 where perforations 19 are provided for the escape of steam into the formation, and an intermediate casing or pipe string 23 which extends from the surface of the earth preferably down `to a point substantially level with the top of the oilaproducing formation. The lower end of the pipe string 23 and a predetermined portion of the tubing string 22 are welded to al closure or sealing assembly housing 24 which is provided with packer elements 25 and 26 mounted on a packer mandrel 27. The packer Kand seal assembly 24 is adapted to seat on shoulder 28 within the well casing 11 and seal the outer annular space 31 between the well casing and the pipe string 23 when the ring 29 below the packer element 26 seats on the shoulder 28 and is moved upwardly shearing pins 29a, moving axiallyslidable ring 26a upwardly and compressing packer elements V25 and 26 which expand outwardly in sealing position as ring 25a, threaded to mandrel 27 above packer element 25, remains stationary. By welding this seal assembly 24 to the outside of the pipe string 23 and the tubing string 22 at points 23a and 22a, respectively, a sea-l is provided for the inner annular space 32 formed between the pipe string 23 and the tubing 22. The packer and seal assembly 24 is also preferably provided with spring-loaded hold-down slips 33 which are designed to engage cooperating serrated elements or hold-down threads 34 formed on the inner surface of the well casing 11 just above the reducer coupling 13.
The top of the well installation illustrated in the drawing is closed in any suitable manner. For example, in the arrangement shown a ange 3S is Welded to the casing string 11. The intermediate pipe string 23 in turn is welded to a mating ange 36 which, when positioned on ange 35 closes the annular space 31 yat the top thereof.
In turn, a tubing head or cap 37 is threadedly connected to the top of the intermediate pipe string 23 to close the annular space 32 between the pipe string 23 and the tubing string 22. The packing within the tubing head 37 is of any suitable type such for example as asbestos or braided copper packing which is suitable of withstanding temperatures up to 1200 F.
The port in the tubing head 37 provides means by which a pipe communicates with the inner annular space 32 between the tubing string 22 and the pipe string 23. The upper flange 36 in turn is provided with a flow conduit 41 in communication with the outer annular space 31. Suspended from the closure flange 36 and extending downwardly in the outer annular space 31 to a point just above the packer elements 25 and 26 is a small-diameter water line 42. It is to be noted that the annular space 31 extends downwardly within the mandrel 27 0n which the packer elements are mounted thus providing a flow passage for cooling the mandrel and the packer elements mounted thereon. If desired, during cementing operations the seating shoulder 28 on the casing 11 and the hold-down threads 34 formed thereon may be covered by a removable seat protector (not shown) which is secured to seal assembly 24 by secondary thread 43.
In the operation of the method of the present invention by use of the apparatus illustrated in the drawing and described hereinabove, steam is injected from a suitable supply source (not shown) into the tubing string 22 at the top of the well and is owed down the tubing string to be discharged from the lower end thereof and thence through the perforations 19 and the casing string 12 from where it `flows into the oil producing formation between the cement plugs 14 and 20 in the borehole. At the same time the pipe 4l) in communication with the inner annular space 32 outside the tubing string 22 is connected to a source of vacuum (not shown) and a partial vacuum is created within the inner annular space 32 to decrease the convection heat losses to the pipe string 23 and the outer casing 11. Simultaneously, cooling water is circulated down the small-diameter water pipe 42 to be discharged from the lower end thereof near the bottom of the outer annular space 31 and near the packer elements 25 and 26. Water at the bottom of the annular space 31 flows upwardly and is discharged out the Water discharge pipe 41 at the top of the well. It is apparent that the flow of the cooling water could be reversed but it is preferred that it be injected into the well through pipe 42. The pressure of the circulating cooling water is selected at a value so as to keep to a minimum the differential pressure across the packer elements 25 and 26, thus minimizing any chance of failure of the packer elements. To further reduce radiation heat losses from Ithe inner tubing string 22, the inner surface of the intermediate pipe string 23 and the outer surface of string 22 is preferably lined or clad with a reflective material such as aluminum.
I claim as my invention:
1. In an oil-bearing formation traversed by an injection well and a producing well in communication with the same formation, and wherein said injection well is equipped with a cemented well casing in open fluid communication with the oil formation and an intermediate concentric pipe string and an inner tubing string within the casingforming inner and outer annular spaces extending substantially to said oil formation with a water line extending down the outer annular space and the tubing string being in open communication with the casing at the level of the oil formation, the methodof treating said oilbearing formations comprising flowing steam down said tubing string, injecting said steam into the oil formation for a time and at a pressure sufficient to reduce the viscosity of said oil and force it to a producing well in communication with the same oil formation, reducing the convection heat loss from said tubing string by creating a partial vacuum on said inner annular space, reducing heat loss from said tubing string by circulating cooling water in and out of said outer annular space to prevent thermal expansion of said casing.
2. In an oil-bearing formation traversed by an injection well and a producing well in communication with the same formation, and wherein said injection well is equipped with a cemented well casing in open iluid cornmunication with the oil formation and an intermediate concentric pipe string and an inner tubing string within the casing forming inner and outer annular spaces extending substantially to said oil formation with a water line extending down the outer annular space and the tubing string being in open communication with the casing at the level of the oil formation, the method of treating said oil-bearing formations comprising flowing steam down said tubing string, injecting said steam into the oil formation for a time and at a pressure suicient to reduce the viscosity of said oil and force it to a producing well in communication with the same oil formation, reducing the convection heat loss from said tubing string by creating a partial vacuum on said inner annular space, reducing the radiation heat loss from said tubing string and circulating cooling water in and out of said outer annular space to prevent thermal expansion of said casing.
3. A method of treating a subsurface oil-producing formation with steam to reduce the viscosity of the oil therein and drive said oil to at least one adjacent producing well, said method comprising the steps of installing in a well a string of well casing extending from the top thereof to at least the top of said oil-producing formation, sealing the space between the outside of said casing and the well wall at least near the top of said oil producing formation, installing within said casing a concentric intermediate pipe string extending to a level at least below a portion of the sealed space and simultaneously installing within said pipe string a tubing string in open communication with the casing at a level opposite the oil-producing formation with the space between the casing and the tubing string being sealed at the bottom of the pipe string to form inner and outer annular spaces around said tubing string, installing within said outer annular space a water line extending close to the bottom thereof, closing the tops of said inner and outer annular spaces while providing communication therewith, circulating cooling water down said water line and up the outer annular space, creating a vacuum within the inner annular space, and flowing steam down said tubing string and into said oil-producing formation.
4. A method of treating a subsurface oil-producing formation with steam to reduce the viscosity of the oil therein and drive said oil to at least one adjacent producing well, said method comprising the steps of drilling a well into an oil-producing formation, installing a string of well casing in said well extending from the top thereof to at least the top of said oil-producing formation, sealing the space between the outside of said casing and the well wall at least near the top of said oil-producing formation, installing within said casing a concentric intermediate pipe string extending to a level at least below a portion of the sealed space and simultaneously installing within said pipe string a tubing string in open communication with the casing at a level opposite the oil-producing formation with the space between the casing and the tubing string being sealed at the bottom of the pipe string to form inner and outer annular spaces around said tubing string, installing within said outer annular space a water line extending close to the bottom thereof, closing the tops of said inner and outer annular spaces while providing communication therewith, circulating cooling water down said water line and up the outer annular space, creating a vacuum within the inner annular space, flowing high pressure steam down said tubing string and into said oilproducing formation, and continuing the injection of the steam into the formation to reduce the viscosity of the oil and force it to a producing well in communication with the same formation.
5. Apparatus for injecting steam into an oil-producing formation through a well drilled thereinto, said apparatus comprising a well casing extending from the surface downwardly into at least the top of the oil formation yand sealed in the well atleast at one point above said oil formation, perforations in said well casing opposite said oil formation, a tubing string suspended within said casing and extending to the level of the oil formation Iand in open communication with the casing at said level, an intermediate concentric pipe string between said tubing string and said casing forming inner and outer annular spaces extending substantially to the top of said oil formation, seal means closing the lower ends of said inner and outer annular spaces, closure means at the top of the well for closing said inner and outer annular spaces, rst port means through said closure means in communication with said inner annular space by which a partial vacuum to said space may be applied, second port means through said closure means in communication with said outer annular space for passing cooling water therethrough, and ow conduit means suspended from said closure means in said outer annular space substantially to the bottom thereof for circulating cooling water therethrough.
6. Apparatus for injecting steam into an oil-producing formation through a well drilled thereinto, said apparatus comprising a well casing extending from the surface downwardly through at least the top of the oil formation and sealed in the Well at least at one point above said oil formation, perforations in said well casing opposite said oil formation, a tubing string suspended within said casing and extending to the level of the oil formation and in open communication with the casing at said level, and intermediate concentric pipe string between said tubing string and said casing forming inner and outer annular spaces extending substantially to the top of said oil formation, seal means closing the lower ends of said inner and outer annular spaces, cooperating anchoring means carried by said casing and said intermediate pipe string for anchoring said pipe string, an expansion joint in said casing opposite the oil formation, closure means at the top of the well for closing said inner and outer annularspaces, first port means through said closure means in communication with said inner annular space by which a partial vacuum to said space may be applied, second port means through said closure means in communication with said outer annular space for passing cooling water therethrough, and flow conduit means suspended from said closure means in said outer annular space substantially to the bottom thereof for circulating cooling water therethrough.
References Cited in the iile of this patent UNITED STATES PATENTS 895,612 Baker Aug. 11, 1908 1,413,197 Swan Apt. 18, 1922 2,341,573 Reed Feb. 15, 1944 2,584,606 Merriam et al Feb. 5, 1952 2,929,451 Hurlstone et al Mar. 22, 1960
Claims (1)
1. IN AN OIL-BEARING FORMATION TRAVERSED BY AN INJECTION WELL AND A PRODUCING WELL IN COMMUNICATION WITH THE SAME FORMATION, AND WHEREIN SAID INJECTION WELL IS EQUIPPED WITH A CEMENTED WELL CASING IN OPEN FLUID COMMUNICATION WITH THE OIL FORMATION AND AN INTERMEDIATE CONCENTRIC PIPE STRING AND AN INNER TUBING STRING WITHIN THE CASING FORMING INNER AND OUTER ANNULAR SPACES EXTENDING SUBSTANTIALLY TO SAID OIL FORMATION WITH A WATER LINE EXTENDING DOWN THE OUTER ANNULAR SPACE AND THE TUBING STRING BEING IN OPEN COMMUNICATION WITH THE CASING AT THE LEVEL OF THE OIL FORMATION, THE METHOD OF TREATING SAID OILBEARING FORMATIONS COMPRISING FLOWING STEAM DOWN SAID TUBING STRING, INJECTING SAID STEAM INTO THE OIL FORMATION FOR A TIME AND AT A PRESSURE SUFFICIENT TO REDUCE THE VISCOSITY OF SAID OIL AND FORCE IT TO A PRODUCING WELL IN COMMUNICATION WITH THE SAME OIL FORMATION, REDUCING THE CONVECTION HEAT LOSS FROM SAID TUBING STRING BY CREATING A PARTIAL VACUUM ON SAID INNER ANNULAR SPACE, REDUCING HEAT LOSS FROM SAID TUBING STRING BY CIRCULATING COOLING WATER IN AND OUT OF SAID OUTER ANNULAR SPACE TO PREVENT THERMAL EXPANSION OF SAID CASING.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43463A US3142336A (en) | 1960-07-18 | 1960-07-18 | Method and apparatus for injecting steam into subsurface formations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43463A US3142336A (en) | 1960-07-18 | 1960-07-18 | Method and apparatus for injecting steam into subsurface formations |
Publications (1)
Publication Number | Publication Date |
---|---|
US3142336A true US3142336A (en) | 1964-07-28 |
Family
ID=21927302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US43463A Expired - Lifetime US3142336A (en) | 1960-07-18 | 1960-07-18 | Method and apparatus for injecting steam into subsurface formations |
Country Status (1)
Country | Link |
---|---|
US (1) | US3142336A (en) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3221813A (en) * | 1963-08-12 | 1965-12-07 | Shell Oil Co | Recovery of viscous petroleum materials |
US3280909A (en) * | 1964-01-20 | 1966-10-25 | Shell Oil Co | Method of producing an oil bearing formation |
US3380530A (en) * | 1966-04-01 | 1968-04-30 | Malcolm F. Mcconnell | Steam stimulation of oil-bearing formations |
US3385363A (en) * | 1966-09-14 | 1968-05-28 | Shell Oil Co | Method for metal coating a tubing string in situ in a well |
US3397745A (en) * | 1966-03-08 | 1968-08-20 | Carl Owens | Vacuum-insulated steam-injection system for oil wells |
US3424249A (en) * | 1966-10-19 | 1969-01-28 | Shell Oil Co | Cleaning steam injection well tubing string in situ |
US3434534A (en) * | 1967-12-26 | 1969-03-25 | Mobil Oil Corp | System for automatic injection of coolant into thermal recovery wells |
US3451479A (en) * | 1967-06-12 | 1969-06-24 | Phillips Petroleum Co | Insulating a casing and tubing string in an oil well for a hot fluid drive |
US3456734A (en) * | 1968-01-05 | 1969-07-22 | Phillips Petroleum Co | Protection of well casing from thermal overstressing |
US3478826A (en) * | 1969-02-04 | 1969-11-18 | Willard Barnes | Method and apparatus for washing solids away from single or multiple tubing strings in well |
US3498381A (en) * | 1968-07-25 | 1970-03-03 | Marathon Oil Co | Method for injection of hot fluids into an underground formation |
US3608640A (en) * | 1969-10-20 | 1971-09-28 | Continental Oil Co | Method of assembling a prestressed conduit in a wall |
US3613792A (en) * | 1969-12-11 | 1971-10-19 | British Petroleum Co | Oil well and method for production of oil through permafrost zone |
US3680631A (en) * | 1970-10-02 | 1972-08-01 | Atlantic Richfield Co | Well production apparatus |
US3703929A (en) * | 1970-11-06 | 1972-11-28 | Union Oil Co | Well for transporting hot fluids through a permafrost zone |
US3720267A (en) * | 1970-10-02 | 1973-03-13 | Atlantic Richfield Co | Well production method for permafrost zones |
US3763931A (en) * | 1972-05-26 | 1973-10-09 | Mc Donnell Douglas Corp | Oil well permafrost stabilization system |
US3897826A (en) * | 1972-07-24 | 1975-08-05 | Chevron Res | Method for well workover operations |
US3967448A (en) * | 1974-07-29 | 1976-07-06 | Sperry Rand Corporation | Geothermal energy well casing seal |
US4396064A (en) * | 1981-05-14 | 1983-08-02 | Atlantic Richfield Company | Method and apparatus for injecting a gaseous stream into a subterranean zone |
US4399867A (en) * | 1981-05-14 | 1983-08-23 | Atlantic Richfield Company | Method for injecting a gaseous stream into a hot subterranean zone |
US4458758A (en) * | 1982-03-08 | 1984-07-10 | Mobil Oil Corporation | Selected well completion for improving vertical conformance of steam drive process |
US4496001A (en) * | 1982-09-30 | 1985-01-29 | Chevron Research Company | Vacuum system for reducing heat loss |
US4886118A (en) * | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US5025862A (en) * | 1989-11-30 | 1991-06-25 | Union Oil Company Of California | Steam injection piping |
US5095974A (en) * | 1990-02-12 | 1992-03-17 | Forschungszentrum Julich Gmbh | Assembly for introducing steam into an oil-bearing stratum |
US5255742A (en) * | 1992-06-12 | 1993-10-26 | Shell Oil Company | Heat injection process |
US5297626A (en) * | 1992-06-12 | 1994-03-29 | Shell Oil Company | Oil recovery process |
US5862866A (en) * | 1994-05-25 | 1999-01-26 | Roxwell International Limited | Double walled insulated tubing and method of installing same |
WO2000045099A2 (en) * | 1999-01-29 | 2000-08-03 | Schlumberger Technology Corporation | Cooling system for downhole tools |
US20030102126A1 (en) * | 2001-04-24 | 2003-06-05 | Sumnu-Dindoruk Meliha Deniz | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US20030131993A1 (en) * | 2001-04-24 | 2003-07-17 | Etuan Zhang | In situ thermal processing of an oil shale formation with a selected property |
US20030131995A1 (en) * | 2001-04-24 | 2003-07-17 | De Rouffignac Eric Pierre | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US20030173085A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Upgrading and mining of coal |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6932155B2 (en) | 2001-10-24 | 2005-08-23 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US20070095536A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7320364B2 (en) | 2004-04-23 | 2008-01-22 | Shell Oil Company | Inhibiting reflux in a heated well of an in situ conversion system |
US20080038144A1 (en) * | 2006-04-21 | 2008-02-14 | Maziasz Phillip J | High strength alloys |
US20080128134A1 (en) * | 2006-10-20 | 2008-06-05 | Ramesh Raju Mudunuri | Producing drive fluid in situ in tar sands formations |
US7435037B2 (en) | 2005-04-22 | 2008-10-14 | Shell Oil Company | Low temperature barriers with heat interceptor wells for in situ processes |
US20090071652A1 (en) * | 2007-04-20 | 2009-03-19 | Vinegar Harold J | In situ heat treatment from multiple layers of a tar sands formation |
US20090189617A1 (en) * | 2007-10-19 | 2009-07-30 | David Burns | Continuous subsurface heater temperature measurement |
US20090260824A1 (en) * | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20100089586A1 (en) * | 2008-10-13 | 2010-04-15 | John Andrew Stanecki | Movable heaters for treating subsurface hydrocarbon containing formations |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US895612A (en) * | 1902-06-11 | 1908-08-11 | Delos R Baker | Apparatus for extracting the volatilizable contents of sedimentary strata. |
US1413197A (en) * | 1919-02-10 | 1922-04-18 | John C Swan | Apparatus for excluding water from drilled wells for oil |
US2341573A (en) * | 1937-08-10 | 1944-02-15 | Fohs Oil Company | Method of sealing earth formations |
US2584606A (en) * | 1948-07-02 | 1952-02-05 | Edmund S Merriam | Thermal drive method for recovery of oil |
US2929451A (en) * | 1957-01-03 | 1960-03-22 | Frank J Hurlstone | Method and apparatus for freeing of and preventing formation of paraffin and asphaltand like obstructions in oil wells, natural gas wells and the like |
-
1960
- 1960-07-18 US US43463A patent/US3142336A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US895612A (en) * | 1902-06-11 | 1908-08-11 | Delos R Baker | Apparatus for extracting the volatilizable contents of sedimentary strata. |
US1413197A (en) * | 1919-02-10 | 1922-04-18 | John C Swan | Apparatus for excluding water from drilled wells for oil |
US2341573A (en) * | 1937-08-10 | 1944-02-15 | Fohs Oil Company | Method of sealing earth formations |
US2584606A (en) * | 1948-07-02 | 1952-02-05 | Edmund S Merriam | Thermal drive method for recovery of oil |
US2929451A (en) * | 1957-01-03 | 1960-03-22 | Frank J Hurlstone | Method and apparatus for freeing of and preventing formation of paraffin and asphaltand like obstructions in oil wells, natural gas wells and the like |
Cited By (366)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3221813A (en) * | 1963-08-12 | 1965-12-07 | Shell Oil Co | Recovery of viscous petroleum materials |
US3280909A (en) * | 1964-01-20 | 1966-10-25 | Shell Oil Co | Method of producing an oil bearing formation |
US3397745A (en) * | 1966-03-08 | 1968-08-20 | Carl Owens | Vacuum-insulated steam-injection system for oil wells |
US3380530A (en) * | 1966-04-01 | 1968-04-30 | Malcolm F. Mcconnell | Steam stimulation of oil-bearing formations |
US3385363A (en) * | 1966-09-14 | 1968-05-28 | Shell Oil Co | Method for metal coating a tubing string in situ in a well |
US3424249A (en) * | 1966-10-19 | 1969-01-28 | Shell Oil Co | Cleaning steam injection well tubing string in situ |
US3451479A (en) * | 1967-06-12 | 1969-06-24 | Phillips Petroleum Co | Insulating a casing and tubing string in an oil well for a hot fluid drive |
US3434534A (en) * | 1967-12-26 | 1969-03-25 | Mobil Oil Corp | System for automatic injection of coolant into thermal recovery wells |
US3456734A (en) * | 1968-01-05 | 1969-07-22 | Phillips Petroleum Co | Protection of well casing from thermal overstressing |
US3498381A (en) * | 1968-07-25 | 1970-03-03 | Marathon Oil Co | Method for injection of hot fluids into an underground formation |
US3478826A (en) * | 1969-02-04 | 1969-11-18 | Willard Barnes | Method and apparatus for washing solids away from single or multiple tubing strings in well |
US3608640A (en) * | 1969-10-20 | 1971-09-28 | Continental Oil Co | Method of assembling a prestressed conduit in a wall |
US3613792A (en) * | 1969-12-11 | 1971-10-19 | British Petroleum Co | Oil well and method for production of oil through permafrost zone |
US3680631A (en) * | 1970-10-02 | 1972-08-01 | Atlantic Richfield Co | Well production apparatus |
US3720267A (en) * | 1970-10-02 | 1973-03-13 | Atlantic Richfield Co | Well production method for permafrost zones |
US3703929A (en) * | 1970-11-06 | 1972-11-28 | Union Oil Co | Well for transporting hot fluids through a permafrost zone |
US3763931A (en) * | 1972-05-26 | 1973-10-09 | Mc Donnell Douglas Corp | Oil well permafrost stabilization system |
US3897826A (en) * | 1972-07-24 | 1975-08-05 | Chevron Res | Method for well workover operations |
US3967448A (en) * | 1974-07-29 | 1976-07-06 | Sperry Rand Corporation | Geothermal energy well casing seal |
US4396064A (en) * | 1981-05-14 | 1983-08-02 | Atlantic Richfield Company | Method and apparatus for injecting a gaseous stream into a subterranean zone |
US4399867A (en) * | 1981-05-14 | 1983-08-23 | Atlantic Richfield Company | Method for injecting a gaseous stream into a hot subterranean zone |
US4458758A (en) * | 1982-03-08 | 1984-07-10 | Mobil Oil Corporation | Selected well completion for improving vertical conformance of steam drive process |
US4496001A (en) * | 1982-09-30 | 1985-01-29 | Chevron Research Company | Vacuum system for reducing heat loss |
US4886118A (en) * | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US5025862A (en) * | 1989-11-30 | 1991-06-25 | Union Oil Company Of California | Steam injection piping |
US5095974A (en) * | 1990-02-12 | 1992-03-17 | Forschungszentrum Julich Gmbh | Assembly for introducing steam into an oil-bearing stratum |
US5255742A (en) * | 1992-06-12 | 1993-10-26 | Shell Oil Company | Heat injection process |
US5297626A (en) * | 1992-06-12 | 1994-03-29 | Shell Oil Company | Oil recovery process |
USRE35696E (en) * | 1992-06-12 | 1997-12-23 | Shell Oil Company | Heat injection process |
US5862866A (en) * | 1994-05-25 | 1999-01-26 | Roxwell International Limited | Double walled insulated tubing and method of installing same |
WO2000045099A2 (en) * | 1999-01-29 | 2000-08-03 | Schlumberger Technology Corporation | Cooling system for downhole tools |
WO2000045099A3 (en) * | 1999-01-29 | 2001-02-01 | Schlumberger Technology Corp | Cooling system for downhole tools |
US6336408B1 (en) * | 1999-01-29 | 2002-01-08 | Robert A. Parrott | Cooling system for downhole tools |
US6866097B2 (en) | 2000-04-24 | 2005-03-15 | Shell Oil Company | In situ thermal processing of a coal formation to increase a permeability/porosity of the formation |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6591906B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content |
US6591907B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a coal formation with a selected vitrinite reflectance |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US7096941B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer |
US6607033B2 (en) | 2000-04-24 | 2003-08-19 | Shell Oil Company | In Situ thermal processing of a coal formation to produce a condensate |
US6609570B2 (en) | 2000-04-24 | 2003-08-26 | Shell Oil Company | In situ thermal processing of a coal formation and ammonia production |
US7086468B2 (en) | 2000-04-24 | 2006-08-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6702016B2 (en) | 2000-04-24 | 2004-03-09 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6712137B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6715547B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US6719047B2 (en) | 2000-04-24 | 2004-04-13 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6722430B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US6725921B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6725928B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation using a distributed combustor |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6729395B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US6729396B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6732795B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US6732794B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
US6953087B2 (en) | 2000-04-24 | 2005-10-11 | Shell Oil Company | Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6745837B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6752210B2 (en) | 2000-04-24 | 2004-06-22 | Shell Oil Company | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US6758268B2 (en) | 2000-04-24 | 2004-07-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US6761216B2 (en) | 2000-04-24 | 2004-07-13 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US6769485B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US7036583B2 (en) | 2000-04-24 | 2006-05-02 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US7017661B2 (en) | 2000-04-24 | 2006-03-28 | Shell Oil Company | Production of synthesis gas from a coal formation |
US6871707B2 (en) | 2000-04-24 | 2005-03-29 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US6877554B2 (en) | 2000-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control |
US6997255B2 (en) | 2000-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a reducing environment |
US6880635B2 (en) | 2000-04-24 | 2005-04-19 | Shell Oil Company | In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio |
US6889769B2 (en) | 2000-04-24 | 2005-05-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected moisture content |
US6896053B2 (en) | 2000-04-24 | 2005-05-24 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources |
US6902004B2 (en) | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a movable heating element |
US6902003B2 (en) | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content |
US6910536B2 (en) | 2000-04-24 | 2005-06-28 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US6913078B2 (en) | 2000-04-24 | 2005-07-05 | Shell Oil Company | In Situ thermal processing of hydrocarbons within a relatively impermeable formation |
US6994168B2 (en) * | 2000-04-24 | 2006-02-07 | Scott Lee Wellington | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
US6994161B2 (en) | 2000-04-24 | 2006-02-07 | Kevin Albert Maher | In situ thermal processing of a coal formation with a selected moisture content |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US6994160B2 (en) | 2000-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range |
US6923258B2 (en) | 2000-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6991031B2 (en) | 2000-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products |
US6973967B2 (en) | 2000-04-24 | 2005-12-13 | Shell Oil Company | Situ thermal processing of a coal formation using pressure and/or temperature control |
US6948563B2 (en) | 2000-04-24 | 2005-09-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content |
US6959761B2 (en) | 2000-04-24 | 2005-11-01 | Shell Oil Company | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US6918442B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation in a reducing environment |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US6948562B2 (en) | 2001-04-24 | 2005-09-27 | Shell Oil Company | Production of a blending agent using an in situ thermal process in a relatively permeable formation |
US6964300B2 (en) | 2001-04-24 | 2005-11-15 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US6966374B2 (en) | 2001-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US20030102126A1 (en) * | 2001-04-24 | 2003-06-05 | Sumnu-Dindoruk Meliha Deniz | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US6981548B2 (en) | 2001-04-24 | 2006-01-03 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation |
US6991032B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US6991033B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing while controlling pressure in an oil shale formation |
US6929067B2 (en) | 2001-04-24 | 2005-08-16 | Shell Oil Company | Heat sources with conductive material for in situ thermal processing of an oil shale formation |
US6991036B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | Thermal processing of a relatively permeable formation |
US20030131993A1 (en) * | 2001-04-24 | 2003-07-17 | Etuan Zhang | In situ thermal processing of an oil shale formation with a selected property |
US6923257B2 (en) | 2001-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a condensate |
US6994169B2 (en) | 2001-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of an oil shale formation with a selected property |
US6918443B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range |
US6915850B2 (en) | 2001-04-24 | 2005-07-12 | Shell Oil Company | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US6880633B2 (en) | 2001-04-24 | 2005-04-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a desired product |
US6997518B2 (en) | 2001-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing and solution mining of an oil shale formation |
US7096942B1 (en) | 2001-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a relatively permeable formation while controlling pressure |
US7004251B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | In situ thermal processing and remediation of an oil shale formation |
US6877555B2 (en) | 2001-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of an oil shale formation while inhibiting coking |
US7013972B2 (en) | 2001-04-24 | 2006-03-21 | Shell Oil Company | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US20030131995A1 (en) * | 2001-04-24 | 2003-07-17 | De Rouffignac Eric Pierre | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US7032660B2 (en) | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20040211557A1 (en) * | 2001-04-24 | 2004-10-28 | Cole Anthony Thomas | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US7040399B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of an oil shale formation using a controlled heating rate |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US7040398B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively permeable formation in a reducing environment |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
US20030136558A1 (en) * | 2001-04-24 | 2003-07-24 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce a desired product |
US7051807B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with quality control |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US6951247B2 (en) | 2001-04-24 | 2005-10-04 | Shell Oil Company | In situ thermal processing of an oil shale formation using horizontal heat sources |
US7225866B2 (en) | 2001-04-24 | 2007-06-05 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US20030141067A1 (en) * | 2001-04-24 | 2003-07-31 | Rouffignac Eric Pierre De | In situ thermal processing of an oil shale formation to increase permeability of the formation |
US20030142964A1 (en) * | 2001-04-24 | 2003-07-31 | Wellington Scott Lee | In situ thermal processing of an oil shale formation using a controlled heating rate |
US20030146002A1 (en) * | 2001-04-24 | 2003-08-07 | Vinegar Harold J. | Removable heat sources for in situ thermal processing of an oil shale formation |
US7066257B2 (en) | 2001-10-24 | 2006-06-27 | Shell Oil Company | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US6932155B2 (en) | 2001-10-24 | 2005-08-23 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US20030173085A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Upgrading and mining of coal |
US7086465B2 (en) | 2001-10-24 | 2006-08-08 | Shell Oil Company | In situ production of a blending agent from a hydrocarbon containing formation |
US7077198B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using barriers |
US7100994B2 (en) | 2001-10-24 | 2006-09-05 | Shell Oil Company | Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7114566B2 (en) | 2001-10-24 | 2006-10-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7051808B1 (en) | 2001-10-24 | 2006-05-30 | Shell Oil Company | Seismic monitoring of in situ conversion in a hydrocarbon containing formation |
US7128153B2 (en) | 2001-10-24 | 2006-10-31 | Shell Oil Company | Treatment of a hydrocarbon containing formation after heating |
US7156176B2 (en) | 2001-10-24 | 2007-01-02 | Shell Oil Company | Installation and use of removable heaters in a hydrocarbon containing formation |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US6991045B2 (en) | 2001-10-24 | 2006-01-31 | Shell Oil Company | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7063145B2 (en) | 2001-10-24 | 2006-06-20 | Shell Oil Company | Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations |
US7461691B2 (en) | 2001-10-24 | 2008-12-09 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7219734B2 (en) | 2002-10-24 | 2007-05-22 | Shell Oil Company | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7121341B2 (en) | 2002-10-24 | 2006-10-17 | Shell Oil Company | Conductor-in-conduit temperature limited heaters |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7360588B2 (en) | 2003-04-24 | 2008-04-22 | Shell Oil Company | Thermal processes for subsurface formations |
US7640980B2 (en) | 2003-04-24 | 2010-01-05 | Shell Oil Company | Thermal processes for subsurface formations |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7383877B2 (en) | 2004-04-23 | 2008-06-10 | Shell Oil Company | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7353872B2 (en) | 2004-04-23 | 2008-04-08 | Shell Oil Company | Start-up of temperature limited heaters using direct current (DC) |
US7320364B2 (en) | 2004-04-23 | 2008-01-22 | Shell Oil Company | Inhibiting reflux in a heated well of an in situ conversion system |
US7510000B2 (en) | 2004-04-23 | 2009-03-31 | Shell Oil Company | Reducing viscosity of oil for production from a hydrocarbon containing formation |
US7490665B2 (en) | 2004-04-23 | 2009-02-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7481274B2 (en) | 2004-04-23 | 2009-01-27 | Shell Oil Company | Temperature limited heaters with relatively constant current |
US7357180B2 (en) | 2004-04-23 | 2008-04-15 | Shell Oil Company | Inhibiting effects of sloughing in wellbores |
US7370704B2 (en) | 2004-04-23 | 2008-05-13 | Shell Oil Company | Triaxial temperature limited heater |
US7431076B2 (en) | 2004-04-23 | 2008-10-07 | Shell Oil Company | Temperature limited heaters using modulated DC power |
US7424915B2 (en) | 2004-04-23 | 2008-09-16 | Shell Oil Company | Vacuum pumping of conductor-in-conduit heaters |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US7575052B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | In situ conversion process utilizing a closed loop heating system |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US7500528B2 (en) | 2005-04-22 | 2009-03-10 | Shell Oil Company | Low temperature barrier wellbores formed using water flushing |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US7546873B2 (en) | 2005-04-22 | 2009-06-16 | Shell Oil Company | Low temperature barriers for use with in situ processes |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US7575053B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | Low temperature monitoring system for subsurface barriers |
US7527094B2 (en) | 2005-04-22 | 2009-05-05 | Shell Oil Company | Double barrier system for an in situ conversion process |
US7435037B2 (en) | 2005-04-22 | 2008-10-14 | Shell Oil Company | Low temperature barriers with heat interceptor wells for in situ processes |
US7591310B2 (en) | 2005-10-24 | 2009-09-22 | Shell Oil Company | Methods of hydrotreating a liquid stream to remove clogging compounds |
US7549470B2 (en) | 2005-10-24 | 2009-06-23 | Shell Oil Company | Solution mining and heating by oxidation for treating hydrocarbon containing formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US7581589B2 (en) | 2005-10-24 | 2009-09-01 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US7635025B2 (en) | 2005-10-24 | 2009-12-22 | Shell Oil Company | Cogeneration systems and processes for treating hydrocarbon containing formations |
US20070095536A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7584789B2 (en) | 2005-10-24 | 2009-09-08 | Shell Oil Company | Methods of cracking a crude product to produce additional crude products |
US7556096B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Varying heating in dawsonite zones in hydrocarbon containing formations |
US7556095B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US7559368B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Solution mining systems and methods for treating hydrocarbon containing formations |
US7559367B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Temperature limited heater with a conduit substantially electrically isolated from the formation |
US7562706B2 (en) | 2005-10-24 | 2009-07-21 | Shell Oil Company | Systems and methods for producing hydrocarbons from tar sands formations |
US20080107577A1 (en) * | 2005-10-24 | 2008-05-08 | Vinegar Harold J | Varying heating in dawsonite zones in hydrocarbon containing formations |
US20070131419A1 (en) * | 2005-10-24 | 2007-06-14 | Maria Roes Augustinus W | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US20070127897A1 (en) * | 2005-10-24 | 2007-06-07 | John Randy C | Subsurface heaters with low sulfidation rates |
US7610962B2 (en) | 2006-04-21 | 2009-11-03 | Shell Oil Company | Sour gas injection for use with in situ heat treatment |
US7635023B2 (en) | 2006-04-21 | 2009-12-22 | Shell Oil Company | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US20080173444A1 (en) * | 2006-04-21 | 2008-07-24 | Francis Marion Stone | Alternate energy source usage for in situ heat treatment processes |
US20080035348A1 (en) * | 2006-04-21 | 2008-02-14 | Vitek John M | Temperature limited heaters using phase transformation of ferromagnetic material |
US20080174115A1 (en) * | 2006-04-21 | 2008-07-24 | Gene Richard Lambirth | Power systems utilizing the heat of produced formation fluid |
US20080173442A1 (en) * | 2006-04-21 | 2008-07-24 | Vinegar Harold J | Sulfur barrier for use with in situ processes for treating formations |
US7533719B2 (en) | 2006-04-21 | 2009-05-19 | Shell Oil Company | Wellhead with non-ferromagnetic materials |
US20080173450A1 (en) * | 2006-04-21 | 2008-07-24 | Bernard Goldberg | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US7597147B2 (en) | 2006-04-21 | 2009-10-06 | Shell Oil Company | Temperature limited heaters using phase transformation of ferromagnetic material |
US7604052B2 (en) | 2006-04-21 | 2009-10-20 | Shell Oil Company | Compositions produced using an in situ heat treatment process |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US20080035705A1 (en) * | 2006-04-21 | 2008-02-14 | Menotti James L | Welding shield for coupling heaters |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US20080038144A1 (en) * | 2006-04-21 | 2008-02-14 | Maziasz Phillip J | High strength alloys |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US20080035346A1 (en) * | 2006-04-21 | 2008-02-14 | Vijay Nair | Methods of producing transportation fuel |
US7631689B2 (en) | 2006-04-21 | 2009-12-15 | Shell Oil Company | Sulfur barrier for use with in situ processes for treating formations |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7631690B2 (en) | 2006-10-20 | 2009-12-15 | Shell Oil Company | Heating hydrocarbon containing formations in a spiral startup staged sequence |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7635024B2 (en) | 2006-10-20 | 2009-12-22 | Shell Oil Company | Heating tar sands formations to visbreaking temperatures |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US20080135254A1 (en) * | 2006-10-20 | 2008-06-12 | Vinegar Harold J | In situ heat treatment process utilizing a closed loop heating system |
US20080142216A1 (en) * | 2006-10-20 | 2008-06-19 | Vinegar Harold J | Treating tar sands formations with dolomite |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US20080135253A1 (en) * | 2006-10-20 | 2008-06-12 | Vinegar Harold J | Treating tar sands formations with karsted zones |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US20080142217A1 (en) * | 2006-10-20 | 2008-06-19 | Roelof Pieterson | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7562707B2 (en) | 2006-10-20 | 2009-07-21 | Shell Oil Company | Heating hydrocarbon containing formations in a line drive staged process |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US20090014180A1 (en) * | 2006-10-20 | 2009-01-15 | George Leo Stegemeier | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US20080217004A1 (en) * | 2006-10-20 | 2008-09-11 | De Rouffignac Eric Pierre | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US20090014181A1 (en) * | 2006-10-20 | 2009-01-15 | Vinegar Harold J | Creating and maintaining a gas cap in tar sands formations |
US20080135244A1 (en) * | 2006-10-20 | 2008-06-12 | David Scott Miller | Heating hydrocarbon containing formations in a line drive staged process |
US20080128134A1 (en) * | 2006-10-20 | 2008-06-05 | Ramesh Raju Mudunuri | Producing drive fluid in situ in tar sands formations |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US20080277113A1 (en) * | 2006-10-20 | 2008-11-13 | George Leo Stegemeier | Heating tar sands formations while controlling pressure |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US20090090509A1 (en) * | 2007-04-20 | 2009-04-09 | Vinegar Harold J | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US20090095477A1 (en) * | 2007-04-20 | 2009-04-16 | Scott Vinh Nguyen | Heating systems for heating subsurface formations |
US20090095479A1 (en) * | 2007-04-20 | 2009-04-16 | John Michael Karanikas | Production from multiple zones of a tar sands formation |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US20090095476A1 (en) * | 2007-04-20 | 2009-04-16 | Scott Vinh Nguyen | Molten salt as a heat transfer fluid for heating a subsurface formation |
US20090126929A1 (en) * | 2007-04-20 | 2009-05-21 | Vinegar Harold J | Treating nahcolite containing formations and saline zones |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US20090071652A1 (en) * | 2007-04-20 | 2009-03-19 | Vinegar Harold J | In situ heat treatment from multiple layers of a tar sands formation |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US20090078461A1 (en) * | 2007-04-20 | 2009-03-26 | Arthur James Mansure | Drilling subsurface wellbores with cutting structures |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US20090084547A1 (en) * | 2007-04-20 | 2009-04-02 | Walter Farman Farmayan | Downhole burner systems and methods for heating subsurface formations |
US20090200854A1 (en) * | 2007-10-19 | 2009-08-13 | Vinegar Harold J | Solution mining and in situ treatment of nahcolite beds |
US20090200031A1 (en) * | 2007-10-19 | 2009-08-13 | David Scott Miller | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US20090200025A1 (en) * | 2007-10-19 | 2009-08-13 | Jose Luis Bravo | High temperature methods for forming oxidizer fuel |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US20090194524A1 (en) * | 2007-10-19 | 2009-08-06 | Dong Sub Kim | Methods for forming long subsurface heaters |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US20090189617A1 (en) * | 2007-10-19 | 2009-07-30 | David Burns | Continuous subsurface heater temperature measurement |
US20090194282A1 (en) * | 2007-10-19 | 2009-08-06 | Gary Lee Beer | In situ oxidation of subsurface formations |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US20090194329A1 (en) * | 2007-10-19 | 2009-08-06 | Rosalvina Ramona Guimerans | Methods for forming wellbores in heated formations |
US20090194269A1 (en) * | 2007-10-19 | 2009-08-06 | Vinegar Harold J | Three-phase heaters with common overburden sections for heating subsurface formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US20090260824A1 (en) * | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20090260823A1 (en) * | 2008-04-18 | 2009-10-22 | Robert George Prince-Wright | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20090272578A1 (en) * | 2008-04-18 | 2009-11-05 | Macdonald Duncan Charles | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US20090272533A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US20090272535A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Using tunnels for treating subsurface hydrocarbon containing formations |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US20100089586A1 (en) * | 2008-10-13 | 2010-04-15 | John Andrew Stanecki | Movable heaters for treating subsurface hydrocarbon containing formations |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US20100096137A1 (en) * | 2008-10-13 | 2010-04-22 | Scott Vinh Nguyen | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US20100108310A1 (en) * | 2008-10-13 | 2010-05-06 | Thomas David Fowler | Offset barrier wells in subsurface formations |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US20100101783A1 (en) * | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Using self-regulating nuclear reactors in treating a subsurface formation |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US20100101784A1 (en) * | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3142336A (en) | Method and apparatus for injecting steam into subsurface formations | |
US5803178A (en) | Downwell isolator | |
US3397745A (en) | Vacuum-insulated steam-injection system for oil wells | |
US2846014A (en) | Landing nipple for well tubing | |
US2749989A (en) | Method and means of completing a well | |
US3083771A (en) | Single tubing string dual installation | |
US20040163804A1 (en) | Screen assembly with flow through connectors | |
USRE34758E (en) | Travelling disc valve apparatus | |
US2298834A (en) | Means for producing oil wells | |
NO852498L (en) | PROCEDURE AND DEVICE FOR GRILL PACKAGING THROUGH CONNECTIONS. | |
US2798558A (en) | Well completion apparatus | |
US3160208A (en) | Production well assembly for in situ combustion | |
US3053321A (en) | Thermodynamic packer | |
US3024846A (en) | Dual completion packer tool | |
US2229493A (en) | Method and apparatus for completing wells | |
US3438442A (en) | Low-temperature packer | |
US3497004A (en) | Tubing to tubing flow controlling retrievable sub-surface valve | |
US4403656A (en) | Permanent thermal packer | |
US3280914A (en) | Method for controlling flow within a well | |
US2433942A (en) | Flow device | |
US3329205A (en) | Thermal production process for oil wells and method of equipping such wells | |
US2776014A (en) | Tool for fracturing earth formations | |
US3262499A (en) | Upper zone gravel pack | |
US3148732A (en) | Zone selector tubing joint | |
US3428128A (en) | Method and apparatus for use in gravel packing wells |