US3008205A - Shell type molds and cores - Google Patents
Shell type molds and cores Download PDFInfo
- Publication number
- US3008205A US3008205A US762120A US76212058A US3008205A US 3008205 A US3008205 A US 3008205A US 762120 A US762120 A US 762120A US 76212058 A US76212058 A US 76212058A US 3008205 A US3008205 A US 3008205A
- Authority
- US
- United States
- Prior art keywords
- mold
- binder
- pattern
- gas
- shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011230 binding agent Substances 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 27
- 238000000465 moulding Methods 0.000 claims description 19
- 230000002378 acidificating effect Effects 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 13
- 238000005058 metal casting Methods 0.000 claims description 5
- 239000011819 refractory material Substances 0.000 claims description 2
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 38
- 239000007789 gas Substances 0.000 description 36
- 239000000203 mixture Substances 0.000 description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- 239000002253 acid Substances 0.000 description 21
- 239000004576 sand Substances 0.000 description 19
- 230000008569 process Effects 0.000 description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 238000005266 casting Methods 0.000 description 7
- 239000000470 constituent Substances 0.000 description 7
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 7
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 7
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 238000010112 shell-mould casting Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000004610 Internal Lubricant Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 239000006082 mold release agent Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- IPKKHRVROFYTEK-UHFFFAOYSA-N dipentyl phthalate Chemical compound CCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCC IPKKHRVROFYTEK-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005495 investment casting Methods 0.000 description 2
- 235000021388 linseed oil Nutrition 0.000 description 2
- 239000000944 linseed oil Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101100379079 Emericella variicolor andA gene Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- 201000007450 intrahepatic cholangiocarcinoma Diseases 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- PWZUUYSISTUNDW-VAFBSOEGSA-N quinestrol Chemical compound C([C@@H]1[C@@H](C2=CC=3)CC[C@]4([C@H]1CC[C@@]4(O)C#C)C)CC2=CC=3OC1CCCC1 PWZUUYSISTUNDW-VAFBSOEGSA-N 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/12—Treating moulds or cores, e.g. drying, hardening
- B22C9/123—Gas-hardening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/162—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents use of a gaseous treating agent for hardening the binder
Definitions
- the shell molding7 process has come into rather extensive use in the United States and in various other countries. This process involves the formation and use of thin-walled dispensable molds and cores composed of sand and resinous binders.
- the shell molding process can be successfully employed to produce precision castings in a wide variety of metals, it is necessary to use heated metal patterns.
- a thermosetting resin must be used as the binder since it is essential that the heat from the pattern melt and set the binder. Thereafter additional heat normally must be applied to the mold in order to cure the binder and make the mold usable for metal casting operations.
- Shell molding patterns are relatively expensive since they must be formed of steel or other heat-resistant metal to satisfactorily withstand elevated temperatures. Pattern temperatures between 250 F. and 550 F. are typical, but temperatures as high as 700 F. or even higher may be employed under particular conditions. Ovens which are usually used to subsequently cure the molds are heated to temperatures between 300 F. and l50G F. In some instances the sand-resin mixture may be cured by applying heat to the mold by means of heating coils Within the pattern.V In any event, the patterns are subjected to high temperatures, whether internally or eX- ternally heated, and hence are exposed to the possibility of thermal distortion or warping. Of course, it is also relatively costly to provide the required apparatus for initially heating the metal the molds on the pattern.
- a principal object of the present invention is to provide a thin-walled dispensable mold which may be formed without the application of external heat.
- a further object of the invention is to provide an inexpensive and rapid method of forming smooth-surfaced, thin-walled foundry molds and cores in which it is unnecessary to employ aI heated metal pattern and which eliminates subsequent baking of the mold to cure the binder.
- the process described herein is an eflicient and lowcost method of producing precision molds and cores since the manipulative steps can be easily performed by unskilled labor with the facilities commonly available in the average foundry.
- the cost of producing these thin-walled, dispensable molds is substantially less than the cost of forming conventional shell molds, while the advantages of the shell molding process are retained.
- the binder for the mold may be any organic material which can be mixed with sand to provide it with the necessary green strength and which will cure under acid conditions or any reactive organic material which, when added to sand in the presence of a green strength addi-- tive, will cure under acid conditions.
- the binder In order for the binder to be properly catalyzed by the acid gas, it should be in liquid condition. Satisfactory results can be ob ⁇ - tained in some instances with normally solid binder constituents if they are made liquid or partially liquid by addition of a liquidizer.
- Binder constituents which may be mixed with sand and subsequently caused to polymerize by the gaseous ⁇ acid include furfuryl alcohol, furfuryl alcohol resin 4and other furfurylated materials which will set in the presence of the acid gas.
- Various other resins 4and resinous materials such as novolak, resole, urea formaldehyde, melamine formaldehyde and phenol formaldehyde resins, as well as other organic"l materials which will polymerize or set under acid conditions, also may be employed.
- the gaseous catalyst which is used to treat the molding mixture must be acidic or capable of forming an acid in the chemical environment of the molding mixture.
- suitable acid compounds which are ⁇ normally gaseous or which may be made gaseous to practice the present invention include hydrogen chloride',i
- acid gas and gaseous acidic catalyst are used herein to include the Lewis type acid gases which in a broad sense are rnaterials capable of accepting a pair of electrons and in a more restricted sense' include materials which are proton donors, As is well known, Lewis type acidsinclude proton donors and it is believed that the protons are responsible for the catalytic action of the above gases.
- Lewis acids contributes to the polymerization. or settingV process.
- the aboveusted. haloseaated compounds are readily available commercially and are easy to gasify.
- phthalic anhydride, phthalic acid, -maleic acid andrnaleic anhydride also maybe consid'- ered to be Lewis -acidsandcan be employed as satisfactoryY catalysts.
- the selection yof the particular acid gas to be used in ⁇ polymerizingfor partially polymerizing the liquid hinder-'component in the molding lmixture is determined primarily by the nature of the binder.
- hydrogen chloride gas' andV chlorine-'gas have been found to,y be ⁇ excellent.polymerization Aagents for f urfuryl alcohoLySincc the particular chemicalV mechanism causing the acidv gases to catalyze the organic binders involved in the present invention is not well understood; the above theoretical explanation is not-intended as limita- 'tion of ,the process involved in the invention.v
- Other suitable comminuted refractory substances can be employed, of course,-and silica hour-orsimilar iine facing materials. likewise may be included in the molding. mix:V toprovide the molds with exceptionally smooth working surfaces.
- the use of a mixcontaining a tine refractory powder is especially desirable n1 .castingsteel or-other high-melting metals.
- Furfurylxy alcohol is -a ⁇ preferred binder becauseitis inexpensive andproduces excellent results. ⁇ As is well known, the relatively high costof'the organicbinder is.
- iappliedrtora contouredpattern .10 preferably/:madeof an epoxy-resin tlledaluminumpowder or lother'. suitable; material-.to forma thin layer l12pt,predetermined.- thickness which covers the. moldaforrning surfaceof thev ⁇ Pattern Thismay @accomplished-by blow-instale ture Onthepattern er by a dumpiilsframmnaorspnkling. procedure orl the like.
- ducts 18 may be distributed by suitable ducts 18; or the. manifold may be in the form of a simple,v container which envelope the upperz surfaces of the: mold layer 12;
- vents 2G are provided in the pattern and extend from thel lower surface of the. shell layer 12 through thepattem.
- a Althoughlfthe gassing head can be designed so that the venting ducts are located within the head,. t he above-described. arrangement isgen-- erally preferable since maximum penetration of the gas throughout the sand-resin layer results when the gas passes through the layer to the greatest possible extent.
- SuitableVV seals 22 are shown as locatedbetweenthepattern and the gassing head to preventloss, of the .acid ⁇ gas during the curing operation.
- the gas readily permeates the layer 12 and catalyzes the liquid binder constituent in the mix.
- the polymerized binder therefore sets and bonds the individual sand particles into an integral shell of desired thickness and rigidity.
- V a relatively low pressure is preferred.
- the gas may bie-introduced into the mold at a pressure only slightly above-atmospheric, pressures of approximately 10 to 20 pounds 'per squareinch being satisfactory.
- the acidic material remaining in the cured shell or core is neutralized by subjecting it to a neutralizing gas such as ammonia.
- a neutralizing gas such as ammonia. This may be accomplished by forcing the ammonia gas under pressure through the inlet opening 16 of the gassing head in a manner similar to the application of the acidic material.
- the ammonia introduction step may be preceded by introducing a blast of air through the inlet 16 whereby a substantial portion of the acidic material is blown out through the vents 20.
- the acidic material may be neutralized by subjecting the gassed mold or core to an ammonia blast of a period of only l to 2 seconds.
- the step of neutralizing the acidic material is extremely beneficial to the process regardless of the type of binder or curing gas used.
- the neutralization step is essential to provide a mold or core of adequate strength.
- a shell mix was prepared of 100 parts of lake sand and 3 parts of furfuryl alcohol monomer.
- a core forming box basically similar to the apparatus shown in the drawing was used to prepare a number of test samples. The samples were gassed with hydrogen chloride for a period of 4 seconds.
- a rst group of samples were stripped from the core box and merely permitted to stand in a normal foundry environment for three days.
- a second group was stripped from the core box and heated to about 180 F. for about minutes and then permitted to stand in a normal foundry environment for a period of three days.
- a third group was neutralized with ammonia gas immediately after the gassing step in the manner above described, stripped from the core box and then permitted to stand in a normal foundry environment for three days.
- a fourth group was gassed, neutralized, heated to about 180 F. for about 10 minutes and then stripped from the pattern and permitted to stand in a normal foundry environment for three days. It was found that the first group gradually lost tensile strength on standing.
- a shell mold mix was prepared using a binder consisting of 70 parts of a mixture including substantially 60% formaldehyde, urea, 15% water, 0.3% methanol and no free formic acid; 30 parts of urea powder; and 20 parts of furfuryl alcohol monomer.
- a sand-resin mix consisting of 100 parts of lake sand and 3 parts of the above binder was mixed and a number of test samples were prepared as in the case of the first example.
- a rst group of samples were stripped from the core box after gassing and merely allowed to stand in a normal foundry environment for thre days.
- a second group was stripped from the core box and thereafter heated to about 180 F. for about 10 minutes and then allowed to stand in a normal foundry environment for three days.
- a third group was neutralized with ammonia gas as above described and then permitted to rest in a normal foundry environment for three days.
- a fourth group was gassed, neutralized and -inally heated to about 180 F. for about 10 minutes. It was found that on standing the first group gradually lost tensile strength. The second group lost in tensile strength very rapidly as a consequence of the heating step.V
- the third group showed a marked improvement in tensile strength over a three day period.
- the fourth group showed a rapid increase in tensile strength after the heating step to a point substantially equal to the third group which did not diminish on standing over a three day period.
- the pattern and adhering mold are separated from the gassing head. This may be accomplished, of course, by either lowering the pattern or by raising the gassing head.
- the cured mold is then stripped from the patternand is ready for use. Mold sections or cores thus formed can be assembled in association with other mold parts in conventional fashion to receive molten casting metal. These thin-walled molds have suiicient strength and stiffness to make them suitable for many cast-ing operations.
- an internal lubricant in the molding mix to aid in releasing the cured mold from the pattern.
- the internal lubricant may be either liquid or solid. However, it likewise must have inherent lubricating properties which are independent of the application of heat.
- the aforementioned external mold release agents also are examples of materials which can be satisfactorily employed asinternal lubricants.
- the amount of mold release agent to be used will vary with the type of pattern, of course, as well as with the type of sand employed and quantity of binder in the molding mixture. 'Normally an internal lubricant content of approximately 0.05% to 1% by weight -is appropriate since it tends to reduce the strength of the resultant mold if it is present in an excessive amount.
- the molding mix Since a liquid binder is employed, the molding mix has satisfactory green strength for almost all applications. Generally this mix packs properly in the blowhead and can be blown without diiculty. Hence it is normally unnecessary to use any special green strength additive. In the event it is found desirable to employ such an additive for blowing a particular type of shell, however, dibutyl phthalate can be used satisfactorily.
- Usable green strength additives also include other dialkyl phthalates having one to five carbon atoms in each alkyl group, such as dimethyl phthalate, diethyl phthalate and diamyl phthalate, linseed oil, and a mixture of linseed oil fraction and non-curing phenolic resin. These materials likewise aid in mixing the binder with the refractory constituent or constituents in the molding mix. Ordinarily about 0.5% to 2% by weight of dibutyl phthalate or similar green strength Iadditive is appropriate.
- moldf as used herein, is applied inV its. generic sense, to mean a casting. form which vincludes both molds and cores, .this invention not being limited to.
- theword-Ypattern is used herein asv including both mold patterns and core hores,
- a method of forminga foundry mold for metal casting operations comprising applying.Y to a pattern of moldingj mixcoxnprising a major proportion ofcornminuted refractory material and a minor proportion of an organic hinder which ishardenablein ⁇ the presence, of an acidic catalyst, exposing said molding mix while on.
- a rapid and inexpensive method of producing a sand-resin*foundryl mold which comprises forming a molding mixture consisting essentiallyjofa smallgamount ofV an acid catalyzed poly? merizableorganic hinder-and the balance substantially all sand, applying saidi mixture to a pattern td forni a laYQr -45 thereon,n thereafter positioning a manifold; over said layer and said pattern, forcing an vacid gas intot said. manifold and causing said gas to penetrate said layer fora period of twoo, twenty ⁇ seconds,thereby'causing saidfbinderlto.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mold Materials And Core Materials (AREA)
Description
Nov. 14, 1961 H- O- BLAIES, JR
3,008,205 SHELL TYPE MOLDS AND CORES Filed Sept. 19, 1958 /73 if 77,1 V y l IN V EN TOR.
United States Patent O 3,008,205 SHELL TYPE MLDS AND CORES Herbert O. Blaies, Jr., Royal Oak, Mich., assigner to General Motors Corporation, Detroit, Mich., a corporation of Delaware Filed Sept. 19, 1958, Ser. No. 762,120 4 Claims. (Cl. 22-193) This invention relates to thin-walled foundry molds and cores for metal casting operations and particularly to molds and cores of this type which may be formed without the application of external heat.
This application is a continuation-in-part of my copending application S.N. 637,802, filed February l, 1957, now abandoned, and assigned to the assignee of the present application.
During the past few years the shell molding7 process has come into rather extensive use in the United States and in various other countries. This process involves the formation and use of thin-walled dispensable molds and cores composed of sand and resinous binders. Although the shell molding process can be successfully employed to produce precision castings in a wide variety of metals, it is necessary to use heated metal patterns. A thermosetting resin must be used as the binder since it is essential that the heat from the pattern melt and set the binder. Thereafter additional heat normally must be applied to the mold in order to cure the binder and make the mold usable for metal casting operations.
Shell molding patterns are relatively expensive since they must be formed of steel or other heat-resistant metal to satisfactorily withstand elevated temperatures. Pattern temperatures between 250 F. and 550 F. are typical, but temperatures as high as 700 F. or even higher may be employed under particular conditions. Ovens which are usually used to subsequently cure the molds are heated to temperatures between 300 F. and l50G F. In some instances the sand-resin mixture may be cured by applying heat to the mold by means of heating coils Within the pattern.V In any event, the patterns are subjected to high temperatures, whether internally or eX- ternally heated, and hence are exposed to the possibility of thermal distortion or warping. Of course, it is also relatively costly to provide the required apparatus for initially heating the metal the molds on the pattern.
It is also obvious that the necessity for melting the binder and subsequently baking the mold to set the binder involves a rather extended period of time. In order to reduce the length of the mold-forming cycle, it is desirable to devise a process for forming thin-walled dispensable molds in which the pattern dwell time and subsequent curing time are substantially reduced.
Accordingly, a principal object of the present invention is to provide a thin-walled dispensable mold which may be formed without the application of external heat. A further object of the invention is to provide an inexpensive and rapid method of forming smooth-surfaced, thin-walled foundry molds and cores in which it is unnecessary to employ aI heated metal pattern and which eliminates subsequent baking of the mold to cure the binder.
These and other objects are attained in accordance with my invention by a process in which a layer of sandbinder molding mix is ltreated with an acid gas which converts the binder into a hard, strong compound which securely bonds the sand grains together. The acid gas functions as a catalyst, causing the binder to polymeri'ze and harden into an infusible and insoluble condition. This binder thus bonds the sand grains together into a relatively strong, rigid, shell-like layer which has a smooth surface satisfactory for use in precision casting operapatterns and thereafter curing ICC Y to melt the binder or to subsequently bake the mold in order to cure it. Consequently, there is no need to use an expensive pattern of heat-resistant metal. In addition, the process described herein is an eflicient and lowcost method of producing precision molds and cores since the manipulative steps can be easily performed by unskilled labor with the facilities commonly available in the average foundry. Thus it will be seen that the cost of producing these thin-walled, dispensable molds is substantially less than the cost of forming conventional shell molds, while the advantages of the shell molding process are retained.
Other objects and advantages of this invention will more fully appear from the following detailed description of preferred embodiments thereof, reference being made to the accompanying drawing showing a somewhat schematic, vertical sectional view of a mold half produced'by the present process and an apparatus for forming this mold half. l
The binder for the mold may be any organic material which can be mixed with sand to provide it with the necessary green strength and which will cure under acid conditions or any reactive organic material which, when added to sand in the presence of a green strength addi-- tive, will cure under acid conditions. In order for the binder to be properly catalyzed by the acid gas, it should be in liquid condition. Satisfactory results can be ob`- tained in some instances with normally solid binder constituents if they are made liquid or partially liquid by addition of a liquidizer. Binder constituents which may be mixed with sand and subsequently caused to polymerize by the gaseous `acid include furfuryl alcohol, furfuryl alcohol resin 4and other furfurylated materials which will set in the presence of the acid gas. Various other resins 4and resinous materials, such as novolak, resole, urea formaldehyde, melamine formaldehyde and phenol formaldehyde resins, as well as other organic"l materials which will polymerize or set under acid conditions, also may be employed. y
The gaseous catalyst which is used to treat the molding mixture must be acidic or capable of forming an acid in the chemical environment of the molding mixture. An example of suitable acid compounds which are `normally gaseous or which may be made gaseous to practice the present invention include hydrogen chloride',i
boron trifluoride, aluminum chloride, aluminum bromide, chlorine, hydrogen bromide,\ammonium chloride, hydrogen iodide and sulfur dioxide, hydrogen chloride and chlorine gas being preferred because of their general applicability. It will be noted that such terms as acid gas and gaseous acidic catalyst are used herein to include the Lewis type acid gases which in a broad sense are rnaterials capable of accepting a pair of electrons and in a more restricted sense' include materials which are proton donors, As is well known, Lewis type acidsinclude proton donors and it is believed that the protons are responsible for the catalytic action of the above gases.
Hydrogen chloride gas and chlorine gas, for example,V
are proton donors in the presence of moisture or certain -liquid binder constituents such as furfuryl alcohol. Since hydrogen chloride isl a catalyst which causes monomeric furfuryl alcohol to polymerize, it is Ialso possible to use partially polymerized furfuryl alcohol and to further polymerize it with the acid gas. As a result there is obtained a high molecular weight polymer which is infusible and insoluble. f
in the'aforementioned Lewis acids contributes to the polymerization. or settingV process. However, the aboveusted. haloseaated compounds are readily available commercially and are easy to gasify. Apart from the aforementioned LeWis-type acids, phthalic anhydride, phthalic acid, -maleic acid andrnaleic anhydride also maybe consid'- ered to be Lewis -acidsandcan be employed as satisfactoryY catalysts. Of course, the selection yof the particular acid gas to be used in` polymerizingfor partially polymerizing the liquid hinder-'component in the molding lmixture is determined primarily by the nature of the binder.` For example, hydrogen chloride gas' andV chlorine-'gas have been found to,y be` excellent.polymerization Aagents for f urfuryl alcohoLySincc the particular chemicalV mechanism causing the acidv gases to catalyze the organic binders involved in the present invention is not well understood; the above theoretical explanation is not-intended as limita- 'tion of ,the process involved in the invention.v
At thetpresentV time I prefer to employ a mixture of silica sandrsyuch as iuniata Sandor lake sand, andfurfuryl alcohol as the molding material. Other suitable comminuted refractory substances can be employed, of course,-and silica hour-orsimilar iine facing materials. likewise may be included in the molding. mix:V toprovide the molds with exceptionally smooth working surfaces. The use of a mixcontaining a tine refractory powder is especially desirable n1 .castingsteel or-other high-melting metals.
Furfurylxy alcohol is -a `preferred binder becauseitis inexpensive andproduces excellent results.` As is well known, the relatively high costof'the organicbinder is.
onel of the majorY reasons l whyl the shell .moldingv process. is not usedmore extensively.V Inasmuchias shellmolding mixes normally contain up t about k10%,.byweightofv phenolic binder, the costvofthe. binderisa substanf Gnly. avery small tialiitemrof expense in .that process. amount of binder, depending on the` iineness: andgpurity of the sand, is normallyl required in the molding-mixes used `inpracticin-g the present invention, f Hence, a mix containingsapproximately l17% to 5%vv by weight offfur-f furylalcohol has proved-to be highly. satisfactory/although-a 2% to 4%zfurfurylg alcohol content appears to provide optirnum.results. Analogous. quantities 'of' other bindereconstituents may. be used since in no instance.A is .it-v necessary to employ. large quantities of tl'iebinder.
Of the. various, acid gases .listed above, hydrogen `chloride and chlorineprovdeexcellentresults v when furfnr-yl al cohol is used. Y
. Referr-ing'rnore particularlyito the; drawing,-the `sand and polymerizableI liquid b'inderjare first mailedtogetht-ir inV order to thoroughly 1 distribute the. binde;` throughout thel sand particles. 'Ihisngenerally'uniform-mmm. is
then iappliedrtora contouredpattern .10 preferably/:madeof an epoxy-resin tlledaluminumpowder or lother'. suitable; material-.to forma thin layer l12pt,predetermined.- thickness which covers the. moldaforrning surfaceof thev` Pattern Thismay @accomplished-by blow-instale ture Onthepattern er by a dumpiilsframmnaorspnkling. procedure orl the like.
of the. sand and binder4 mixture is positioned-under-a gassing head ormanifoldY 14, and theacid gas Vis.introduced through an inlet opening 1 6 in the-gassing'head. i The/gaskv Al :blowing operationis normally preferred because the=shell layer 1,2,.,may be.
may be distributed by suitable ducts 18; or the. manifold may be in the form of a simple,v container which envelope the upperz surfaces of the: mold layer 12;
As shown inthe drawing, a plurality' of vents 2G are provided in the pattern and extend from thel lower surface of the. shell layer 12 through thepattem. In this manner excess acid gas and displaced air are conveyed through the mold to the atmosphere;A Althoughlfthe gassing head can be designed so that the venting ducts are located within the head,. t he above-described. arrangement isgen-- erally preferable since maximum penetration of the gas throughout the sand-resin layer results when the gas passes through the layer to the greatest possible extent. Of course, in some instances it may be disadvantageous to locate the vents in certain areas of the pattern becauseV these vents may prevent the formation of a satisfactory smooth surface at that particular location. SuitableVV seals 22 are shown as locatedbetweenthepattern and the gassing head to preventloss, of the .acid` gas during the curing operation.
Of course, it is also possible to introduce the gas from the pattern side of the mold or through both thergassing head andA pattern. Since the molds normally have very thin walls, however, it is generally unnecessary to employ-y such anv arrangement.
Due to the porosity of the molding mixture, the gas readily permeates the layer 12 and catalyzes the liquid binder constituent in the mix. The polymerized binder therefore sets and bonds the individual sand particles into an integral shell of desired thickness and rigidity.
The above-described gassing or curing operation, which transforms the mold layer into a fairly rigid, relatively hard shell, is accomplished in only a few seconds. When furfurylalcohol, for example, is used as the mold binder and .in most other instances, a gassing period of only-5 to l0 seconds'is sufficient. Howeverpdepending on the size and lshape of the mold to be formed, the molding mix may be exposed to the acid gas for as short a time as two or three seconds and as longas l5 or 20 seconds. Longer gassing periods are premissible, of course, but appear to provide no additional advantages. Thus it will be seen that only a very small amount of the gaseous acidV catalyst is required.
It does not appear that the pressure of the gas has an appreciable effect either on the hardness of the mold' produced or on the processing time involved. Accordingly,
in order to preclude any possibility of disturbing the mold,
a relatively low pressure is preferred.V Thus the gas may bie-introduced into the mold at a pressure only slightly above-atmospheric, pressures of approximately 10 to 20 pounds 'per squareinch being satisfactory.
In some instances where a relatively dense, thin-Walled mold shell of high strength is desired', it may be advantageous to apply pressure to the mold before aud/or dur..- ing the-gassing operation. This can be accomplished by means of a contoured press headwhich may also function Upon completion of the gassing or curing step, .the.
formed shell is at a temperature somewhat above room temperature, indicating that the reaction involved is exothermic in nature. The exact reaction lis not thorough- 1y understood, and it is unnecessary to specifically identify this reaction in order to practice this invention. As explained above, however, it is believed that the acid gas at least partially polymerizes the liquid binder constituent,
such ,as furfuryl alcohol, and causes it, to become a :hard
resinous v material. In instances where furfuryl alcohol resins. or s1m1lar resins are initially employed,l itis .be-
lieved the acid gas further polymerizes these resius'and.-
c ausesthem to become substantially cured. Hence partially polymerized f-urfuryl alcohols, which are composed principally of dimers,itrimers and tetramers,.may bek satisfactorily employed.
Upon completion of the gassing or curing step, the acidic material remaining in the cured shell or core is neutralized by subjecting it to a neutralizing gas such as ammonia. This may be accomplished by forcing the ammonia gas under pressure through the inlet opening 16 of the gassing head in a manner similar to the application of the acidic material. To more etciently neutralize the acidic material the ammonia introduction step may be preceded by introducing a blast of air through the inlet 16 whereby a substantial portion of the acidic material is blown out through the vents 20. In most instances the acidic material may be neutralized by subjecting the gassed mold or core to an ammonia blast of a period of only l to 2 seconds.
It has been found that the step of neutralizing the acidic material is extremely beneficial to the process regardless of the type of binder or curing gas used. In some instances the neutralization step is essential to provide a mold or core of adequate strength.
The beneficial etfects of the neutralization step are illustrated by the following examples:
A shell mix was prepared of 100 parts of lake sand and 3 parts of furfuryl alcohol monomer. A core forming box basically similar to the apparatus shown in the drawing was used to prepare a number of test samples. The samples were gassed with hydrogen chloride for a period of 4 seconds.
A rst group of samples were stripped from the core box and merely permitted to stand in a normal foundry environment for three days. A second group was stripped from the core box and heated to about 180 F. for about minutes and then permitted to stand in a normal foundry environment for a period of three days. A third group was neutralized with ammonia gas immediately after the gassing step in the manner above described, stripped from the core box and then permitted to stand in a normal foundry environment for three days. A fourth group was gassed, neutralized, heated to about 180 F. for about 10 minutes and then stripped from the pattern and permitted to stand in a normal foundry environment for three days. It was found that the first group gradually lost tensile strength on standing. 'I'he second group showed a marked improvement in the tensile strength after the heating step, and this improved tensile strength Was maintained on standing. The third group showed a gradual increase of tensile strength markedly above the tensile strength of the second group on standing, and the fourth group showed a rapid increase in tensile strength to a point substantially equal to the third group which did not diminish on standing. It is apparent from these tests that it is essential to neutralize a core or shell mold using a furfuryl alcohol binder unless the cores are suitably heated after the gassing step. This series of tests was repeated with chlorine as the catalyzing gas with substantially the same results.
A shell mold mix was prepared using a binder consisting of 70 parts of a mixture including substantially 60% formaldehyde, urea, 15% water, 0.3% methanol and no free formic acid; 30 parts of urea powder; and 20 parts of furfuryl alcohol monomer. A sand-resin mix consisting of 100 parts of lake sand and 3 parts of the above binder was mixed and a number of test samples were prepared as in the case of the first example. A rst group of samples were stripped from the core box after gassing and merely allowed to stand in a normal foundry environment for thre days. A second group was stripped from the core box and thereafter heated to about 180 F. for about 10 minutes and then allowed to stand in a normal foundry environment for three days. A third group was neutralized with ammonia gas as above described and then permitted to rest in a normal foundry environment for three days. A fourth group was gassed, neutralized and -inally heated to about 180 F. for about 10 minutes. It was found that on standing the first group gradually lost tensile strength. The second group lost in tensile strength very rapidly as a consequence of the heating step.V The third group showed a marked improvement in tensile strength over a three day period. The fourth group showed a rapid increase in tensile strength after the heating step to a point substantially equal to the third group which did not diminish on standing over a three day period. It is apparent from these tests that unless the shells or cores are subjected to a neutralization step, satisfactory cores may not be made utilizing the above binder. This series of tests was repeated with chlorine as the Ycatalyzing gas with substantially the same results. v
After curing and neutralization of the mold layer the pattern and adhering mold are separated from the gassing head. This may be accomplished, of course, by either lowering the pattern or by raising the gassing head. The cured mold is then stripped from the patternand is ready for use. Mold sections or cores thus formed can be assembled in association with other mold parts in conventional fashion to receive molten casting metal. These thin-walled molds have suiicient strength and stiffness to make them suitable for many cast-ing operations.
It is frequently -advantageous to treat the molding sur face of the pattern with a mold release agent or lubricant before applying the molding mix to it. In order for such a lubricant to effectively aid in releasing the cured mold from the cold pattern, it must possess saisfactory lubricating properties at room temperature and should not depend on being heated. Accordingly, oleic acid, parailin oil, dibutyl phthalate, lard oil, stearates, and waxes may be employed. Epolene N, a polyethylene Wax manufactured by Eastman Chemical Products, Inc., is an example of a synthetic wax which has satisfactory lubricating properties in the unheated state.
Under some circumstances it also may be desirable to incorporate an internal lubricant in the molding mix to aid in releasing the cured mold from the pattern. The internal lubricant may be either liquid or solid. However, it likewise must have inherent lubricating properties which are independent of the application of heat. The aforementioned external mold release agents also are examples of materials which can be satisfactorily employed asinternal lubricants. The amount of mold release agent to be used will vary with the type of pattern, of course, as well as with the type of sand employed and quantity of binder in the molding mixture. 'Normally an internal lubricant content of approximately 0.05% to 1% by weight -is appropriate since it tends to reduce the strength of the resultant mold if it is present in an excessive amount.
Since a liquid binder is employed, the molding mix has satisfactory green strength for almost all applications. Generally this mix packs properly in the blowhead and can be blown without diiculty. Hence it is normally unnecessary to use any special green strength additive. In the event it is found desirable to employ such an additive for blowing a particular type of shell, however, dibutyl phthalate can be used satisfactorily. Usable green strength additives also include other dialkyl phthalates having one to five carbon atoms in each alkyl group, such as dimethyl phthalate, diethyl phthalate and diamyl phthalate, linseed oil, and a mixture of linseed oil fraction and non-curing phenolic resin. These materials likewise aid in mixing the binder with the refractory constituent or constituents in the molding mix. Ordinarily about 0.5% to 2% by weight of dibutyl phthalate or similar green strength Iadditive is appropriate.
Upon pouring molten metal into a thin-walled mold which is formed in the above-described manner, the hot metal, on coming into contact with the mold, burns the resinous binder to essentially carbon. The gases which are generated readily escape through the highly permeablesand-resin shell. As a. result of the binder. break-v down, the Yshake-out.v is! easily accomplished.
I The above-described'fastvsetting;shell-type molding mix Permits a Substantial .increasein'the' number of molds producedper unittime.A ,These molds, ywhichishow no. evidence of segregation even ,on high rises, faithfully reproduce pattern details, Ymaintain good dimensional tolerance, and possess excellent surface qualities. As a result Vof this' superior vdefinition of the shells, there is little burn-in 'on thevertical surfaces of the, castings pro-v duced, The suriacesof the-castings are. also substantially free of gas folds. Hence these castings are afl-very high quality and the' scrap rate maybe maintained at a low level, Y
The term moldf as used herein, is applied inV its. generic sense, to mean a casting. form which vincludes both molds and cores, .this invention not being limited to. the
former, Similarly, theword-Ypattern is used herein asv including both mold patterns and core hores,
While l have disclosed certain, preferred procedures and specific compositions whichl may he used totcarry out the method .of the present invention,..it will ybe, understood thatsnch procedures may he varied. Aand that. func? tionally equivalent"materialsrnayhe used, as willbe apparent to those skilled in this particular art, without defparting from the spirit of the inuentionand thescopeof. the following claims.v
I claim 1. A method of forminga foundry mold for metal casting operations, said ,method comprising applying.Y to a pattern of moldingj mixcoxnprising a major proportion ofcornminuted refractory material and a minor proportion of an organic hinder which ishardenablein `the presence, of an acidic catalyst, exposing said molding mix while on.
said pattern to a gaseousacidic catalyst to harden said organic binder, thereafter exposing v saidhardened organic binder to ammonia. gas to neutralize the. residual acidic catalyst and finally removing the rnold thus formed from said pattern.Y y Y 2. A rapid and inexpensive method of producing a sand-resin*foundryl mold ,for metal casting operations which comprises forming a molding mixture consisting essentiallyjofa smallgamount ofV an acid catalyzed poly? merizableorganic hinder-and the balance substantially all sand, applying saidi mixture to a pattern td forni a laYQr -45 thereon,n thereafter positioning a manifold; over said layer and said pattern, forcing an vacid gas intot said. manifold and causing said gas to penetrate said layer fora period of twoo, twenty `seconds,thereby'causing saidfbinderlto.
hardennand bond said .sand into a solid unitary'I nass,v
forcing. ammonia gas into. said layer for at least one. second, to neutralize residual acid-gas withinv saidY layer and finally stripping the shell so formedfrom the pattern.
3.,A rapidand inexpensive .method of `,producing a sandfresin mold which comprises kforming a mold mix,-V ture consisting .essentially of about 1% to; 5%;by Weight of a liquidkacid-.catalyzed polymerizable organic, binder and thebalance substantially all sand, placing. .said :mix
ture into. contact. with an. unheated pattern to form a layer ofsaid'. mixture thereon, forcing. a gaseous acidic catalyst into said layer for a period of timeY suliicient to cause said lbinder to polymerize and harden, thereafter forcing ammonia gas into said layer for a period of time sui'licient to neutralize the residual acidic catalyst therein and finally striping saidlayerv from the pattern.
4. A process,` .for rapidly producing. an inexpensive mold for usein metal. casting operations, said process comprising forming a uniform mixture consisting essen.`
tally of about 2%y to 4% by weight of furfurylalcohol and thel balance substantially all sand, applying the'mold-v ing mixture thus formed ontoV the molding surface of an unheated pattern to form a layer. thereon, .subsequently forcing hydrogen chloride gasinto said. layer for two to twenty seconds to cause said furfurylalcohol to poly.- merize and bond the particles of said said together into a relatively .hard integr-,alY mass, forcing ammonia gas into said layer for at least one second-to neutralize residual acid Within said layer, and thereafter removing said shell from said pattern.
References Cited in the iile of thisfpatent UNITED STA'iES PATENTS UNITED STATES PATENT OFFICE CERTIFICATION OF CORRECTION Patent No. 3,008,205 November lL, 1961 Herbert 0. Blaieslq Jr.
It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 8, line 28, for "said", second occurrenceY read n sand -Y.
Signed and sealed this 24th day of April 1962 (SEAL) Attest:
ESTON G JOHNSON DAVID Lo LDD Attesting Officer Commissioner of Patents
Claims (1)
1. A METHOD OF FORMING A FOUNDRY MOLD FOR METAL CASTING OPERATIONS, SAID METHOD COMPRISING APPLYING TO A PATTERN OF MOLDING MIX COMPRISING A MAJOR PROPORTION OF COMMINUTED REFRACTORY MATERIAL AND A MINOR PROPORTION OF AN ORGANIC BINDER WHICH IS HARDENABLE IN THE PRESENCE OF AN ACIDIC CATALYST, EXPOSING SAID MOLDING MIX WHILE ON SAID PATTERN TO A GASEOUS ACIDIC CATALYST TO HARDEN SAID ORGANIC BINDER, THEREAFTER EXPOSING SAID HARDENED ORGANIC
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US762120A US3008205A (en) | 1958-09-19 | 1958-09-19 | Shell type molds and cores |
DE19591408382 DE1408382A1 (en) | 1958-09-19 | 1959-09-18 | Process for the production of shell molds for metal casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US762120A US3008205A (en) | 1958-09-19 | 1958-09-19 | Shell type molds and cores |
Publications (1)
Publication Number | Publication Date |
---|---|
US3008205A true US3008205A (en) | 1961-11-14 |
Family
ID=25064195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US762120A Expired - Lifetime US3008205A (en) | 1958-09-19 | 1958-09-19 | Shell type molds and cores |
Country Status (2)
Country | Link |
---|---|
US (1) | US3008205A (en) |
DE (1) | DE1408382A1 (en) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3059294A (en) * | 1959-05-04 | 1962-10-23 | Gen Motors Corp | Apparatus for making foundry cores and molds |
US3098268A (en) * | 1959-02-06 | 1963-07-23 | Lothar R Zifferer | Apparatus for vacuum gassing sand forms |
US3107403A (en) * | 1959-12-21 | 1963-10-22 | Dow Chemical Co | Rapid curing resin-filler systems |
US3108340A (en) * | 1958-03-10 | 1963-10-29 | Dow Chemical Co | Preparation of foundry cores |
US3121268A (en) * | 1959-12-21 | 1964-02-18 | Dow Chemical Co | Core compositions and core |
US3138836A (en) * | 1960-12-27 | 1964-06-30 | Gen Motors Corp | Foundry molds and cores and process for making same |
US3139657A (en) * | 1960-01-11 | 1964-07-07 | Union Oil Co | Curing epoxide resin compositions |
US3145438A (en) * | 1958-09-18 | 1964-08-25 | Archer Daniels Midland Co | Gas cure of organic bonds for sand and abrasive granules |
US3168489A (en) * | 1960-07-11 | 1965-02-02 | Quaker Oats Co | Process of producing a foundry core composition |
US3205191A (en) * | 1960-09-27 | 1965-09-07 | Quaker Oats Co | Cold-setting foundry sand composition |
US3209420A (en) * | 1963-07-05 | 1965-10-05 | Archer Daniels Midland Co | Mold and core binder for foundry use |
US3216075A (en) * | 1963-02-05 | 1965-11-09 | Quaker Oats Co | Method for manufacturing foundry cores and molds |
US3220071A (en) * | 1963-01-07 | 1965-11-30 | G E Smith Inc | Combination ingot molds and cores and methods of making ingot molds and cores |
US3222315A (en) * | 1960-06-13 | 1965-12-07 | Sidney L Singer | Process for making sand cores |
US3247556A (en) * | 1960-03-28 | 1966-04-26 | Int Minerals & Chem Corp | Sand mold process using resinous binder from alkaline condensation of urea, formaldehyde, and furfuryl alcohol |
US3268466A (en) * | 1962-03-30 | 1966-08-23 | Sulzer Ag | Cold-hardening foundry mixture comprising an epoxy resin and furfuryl alcohol as a catalyst |
US3320192A (en) * | 1962-08-01 | 1967-05-16 | Ostrowicz Joel | Aminoplast molding compounds containing zinc sulfite |
US3393739A (en) * | 1965-07-09 | 1968-07-23 | Gulf Research Development Co | Method of permeably consolidating loose sands |
US3458613A (en) * | 1964-10-05 | 1969-07-29 | Amsted Ind Inc | Method of curing of resin-bonded cores |
FR2039319A1 (en) * | 1969-04-21 | 1971-01-15 | Hooker Chemical Corp | |
US3755229A (en) * | 1971-07-20 | 1973-08-28 | Cpc International Inc | Foundry core compositions |
US3874887A (en) * | 1970-11-13 | 1975-04-01 | Vsevolod Yakolevich Dalmatov | Acid-resisting material |
US3879339A (en) * | 1971-08-16 | 1975-04-22 | Applic Prod Ind | Manufacture of solid or hollow bodies from a composition containing a granular filler |
US3888293A (en) * | 1973-04-20 | 1975-06-10 | American Motors Corp | Method of making a foundry core |
US3938578A (en) * | 1973-02-20 | 1976-02-17 | The White Sea & Baltic Company Limited | Method for making foundry moulds and cores utilizing a gas catalyst |
US4027845A (en) * | 1975-04-28 | 1977-06-07 | Precision Flexmold, Inc. | Flexible mold including rigid encapsulated mandrel |
US4033925A (en) * | 1976-07-12 | 1977-07-05 | The Quaker Oats Company | Monomeric furfuryl alcohol-resorcinol foundry binders |
US4068701A (en) * | 1976-01-30 | 1978-01-17 | Harold Garton Emblem | Refractory materials |
US4076685A (en) * | 1972-01-25 | 1978-02-28 | Ashland Oil, Inc. | Cyanoacrylate foundry binders and process |
US4089363A (en) * | 1976-12-27 | 1978-05-16 | The Quaker Oats Company | Method of manufacturing shell cores and molds |
US4108826A (en) * | 1977-06-20 | 1978-08-22 | The Quaker Oats Company | Furfuryl alcohol-hexaalkoxymethylmelamine foundry binders |
US4176114A (en) * | 1978-01-24 | 1979-11-27 | C L Industries, Inc. | Process for manufacturing sand cores or molds |
US4215012A (en) * | 1978-03-28 | 1980-07-29 | C L Industries, Inc. | Catalyst for increasing the tensile strength and core hardness of a sand mold or core |
US4220578A (en) * | 1978-03-27 | 1980-09-02 | Cl Industries Inc. | Method, resin and catalyst for increasing the tensile strength and core hardness of a sand mold or core |
US4255102A (en) * | 1978-07-07 | 1981-03-10 | Ry Aktiebolag | Machine for treatment of lignocellulose containing board materials with gaseous agents |
US4311627A (en) * | 1980-10-29 | 1982-01-19 | Consolidated Foundries And Mfg. Corp. | Process for curing foundry cores and molds |
US4396526A (en) * | 1980-11-05 | 1983-08-02 | Cl Industries, Inc. | Organic hydroperoxide catalyst system |
US4448234A (en) * | 1982-08-05 | 1984-05-15 | Cl Industries, Inc. | Method for forming sand cores and molds |
US4516996A (en) * | 1983-04-07 | 1985-05-14 | Owens-Corning Fiberglas Corporation | Formation of molded glass fiber parts from glass fiber blankets and product |
US4526219A (en) * | 1980-01-07 | 1985-07-02 | Ashland Oil, Inc. | Process of forming foundry cores and molds utilizing binder curable by free radical polymerization |
US4623499A (en) * | 1983-02-28 | 1986-11-18 | Nihon Sekiso Kogyo Co., Ltd. | Method for manufacture of shaped article of organic substance |
US4678686A (en) * | 1986-04-15 | 1987-07-07 | Park David W | Treatment of formaldehyde-containing wood panel products |
USRE32720E (en) * | 1982-11-09 | 1988-07-26 | Borden (Uk) Limited | Foundry moulds and cores |
US4791022A (en) * | 1983-11-07 | 1988-12-13 | Owens-Corning Fiberglas Corporation | Decorative panels |
US5135043A (en) * | 1990-06-25 | 1992-08-04 | Omco Usa, Inc. | Apparatus and method for gas curing foundry cores and molds |
US5190993A (en) * | 1988-04-08 | 1993-03-02 | Borden, Inc. | Process to enhance the tensile strength of reclaimed sand bonded with ester cured alkaline phenolic resin using an aminosilane solution |
US5238976A (en) * | 1990-06-15 | 1993-08-24 | Borden, Inc. | Process to enhance the tensile strength of reclaimed sand bonded with ester cured alkaline phenolic resin |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3818258A1 (en) * | 1988-05-28 | 1989-12-07 | Badische Maschf Gmbh | Apparatus for the production of foundry moulds |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2401760A (en) * | 1943-01-12 | 1946-06-11 | Carborundum Co | Method of making molds |
US2423139A (en) * | 1944-08-31 | 1947-07-01 | E F Lougee | Chlorinated furane resin |
US2433168A (en) * | 1942-01-29 | 1947-12-23 | Swiss Soc Ges Zur Forderung De | Binder for mold compositions |
US2471600A (en) * | 1944-11-29 | 1949-05-31 | Haveg Corp | Method of making furfuryl alcohol resinous products and the product |
US2521839A (en) * | 1949-08-11 | 1950-09-12 | Austenal Lab Inc | Refractory casting mold and method of making same |
GB654817A (en) * | 1947-12-12 | 1951-06-27 | Vitkovice Zelezarny | Methods of making moulding shapes from sand and other powdered, granular, pasty, or fluent material |
CA531968A (en) * | 1956-10-16 | Augstein John | Production of moulds, cores and the like | |
US2874428A (en) * | 1956-03-01 | 1959-02-24 | Bonney Floyd Co | Method of hardening of sand cores and the like |
US2876512A (en) * | 1953-11-16 | 1959-03-10 | Ford Motor Co | Shell molding |
-
1958
- 1958-09-19 US US762120A patent/US3008205A/en not_active Expired - Lifetime
-
1959
- 1959-09-18 DE DE19591408382 patent/DE1408382A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA531968A (en) * | 1956-10-16 | Augstein John | Production of moulds, cores and the like | |
US2433168A (en) * | 1942-01-29 | 1947-12-23 | Swiss Soc Ges Zur Forderung De | Binder for mold compositions |
US2401760A (en) * | 1943-01-12 | 1946-06-11 | Carborundum Co | Method of making molds |
US2423139A (en) * | 1944-08-31 | 1947-07-01 | E F Lougee | Chlorinated furane resin |
US2471600A (en) * | 1944-11-29 | 1949-05-31 | Haveg Corp | Method of making furfuryl alcohol resinous products and the product |
GB654817A (en) * | 1947-12-12 | 1951-06-27 | Vitkovice Zelezarny | Methods of making moulding shapes from sand and other powdered, granular, pasty, or fluent material |
US2521839A (en) * | 1949-08-11 | 1950-09-12 | Austenal Lab Inc | Refractory casting mold and method of making same |
US2876512A (en) * | 1953-11-16 | 1959-03-10 | Ford Motor Co | Shell molding |
US2874428A (en) * | 1956-03-01 | 1959-02-24 | Bonney Floyd Co | Method of hardening of sand cores and the like |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3108340A (en) * | 1958-03-10 | 1963-10-29 | Dow Chemical Co | Preparation of foundry cores |
US3145438A (en) * | 1958-09-18 | 1964-08-25 | Archer Daniels Midland Co | Gas cure of organic bonds for sand and abrasive granules |
US3098268A (en) * | 1959-02-06 | 1963-07-23 | Lothar R Zifferer | Apparatus for vacuum gassing sand forms |
US3059294A (en) * | 1959-05-04 | 1962-10-23 | Gen Motors Corp | Apparatus for making foundry cores and molds |
US3107403A (en) * | 1959-12-21 | 1963-10-22 | Dow Chemical Co | Rapid curing resin-filler systems |
US3121268A (en) * | 1959-12-21 | 1964-02-18 | Dow Chemical Co | Core compositions and core |
US3139657A (en) * | 1960-01-11 | 1964-07-07 | Union Oil Co | Curing epoxide resin compositions |
US3247556A (en) * | 1960-03-28 | 1966-04-26 | Int Minerals & Chem Corp | Sand mold process using resinous binder from alkaline condensation of urea, formaldehyde, and furfuryl alcohol |
US3222315A (en) * | 1960-06-13 | 1965-12-07 | Sidney L Singer | Process for making sand cores |
US3168489A (en) * | 1960-07-11 | 1965-02-02 | Quaker Oats Co | Process of producing a foundry core composition |
US3205191A (en) * | 1960-09-27 | 1965-09-07 | Quaker Oats Co | Cold-setting foundry sand composition |
US3138836A (en) * | 1960-12-27 | 1964-06-30 | Gen Motors Corp | Foundry molds and cores and process for making same |
US3268466A (en) * | 1962-03-30 | 1966-08-23 | Sulzer Ag | Cold-hardening foundry mixture comprising an epoxy resin and furfuryl alcohol as a catalyst |
US3320192A (en) * | 1962-08-01 | 1967-05-16 | Ostrowicz Joel | Aminoplast molding compounds containing zinc sulfite |
US3220071A (en) * | 1963-01-07 | 1965-11-30 | G E Smith Inc | Combination ingot molds and cores and methods of making ingot molds and cores |
US3216075A (en) * | 1963-02-05 | 1965-11-09 | Quaker Oats Co | Method for manufacturing foundry cores and molds |
US3209420A (en) * | 1963-07-05 | 1965-10-05 | Archer Daniels Midland Co | Mold and core binder for foundry use |
US3458613A (en) * | 1964-10-05 | 1969-07-29 | Amsted Ind Inc | Method of curing of resin-bonded cores |
US3393739A (en) * | 1965-07-09 | 1968-07-23 | Gulf Research Development Co | Method of permeably consolidating loose sands |
FR2039319A1 (en) * | 1969-04-21 | 1971-01-15 | Hooker Chemical Corp | |
US3874887A (en) * | 1970-11-13 | 1975-04-01 | Vsevolod Yakolevich Dalmatov | Acid-resisting material |
US3755229A (en) * | 1971-07-20 | 1973-08-28 | Cpc International Inc | Foundry core compositions |
US3879339A (en) * | 1971-08-16 | 1975-04-22 | Applic Prod Ind | Manufacture of solid or hollow bodies from a composition containing a granular filler |
US4076685A (en) * | 1972-01-25 | 1978-02-28 | Ashland Oil, Inc. | Cyanoacrylate foundry binders and process |
US3938578A (en) * | 1973-02-20 | 1976-02-17 | The White Sea & Baltic Company Limited | Method for making foundry moulds and cores utilizing a gas catalyst |
US3888293A (en) * | 1973-04-20 | 1975-06-10 | American Motors Corp | Method of making a foundry core |
US4027845A (en) * | 1975-04-28 | 1977-06-07 | Precision Flexmold, Inc. | Flexible mold including rigid encapsulated mandrel |
US4068701A (en) * | 1976-01-30 | 1978-01-17 | Harold Garton Emblem | Refractory materials |
US4033925A (en) * | 1976-07-12 | 1977-07-05 | The Quaker Oats Company | Monomeric furfuryl alcohol-resorcinol foundry binders |
US4089363A (en) * | 1976-12-27 | 1978-05-16 | The Quaker Oats Company | Method of manufacturing shell cores and molds |
US4108826A (en) * | 1977-06-20 | 1978-08-22 | The Quaker Oats Company | Furfuryl alcohol-hexaalkoxymethylmelamine foundry binders |
US4176114A (en) * | 1978-01-24 | 1979-11-27 | C L Industries, Inc. | Process for manufacturing sand cores or molds |
US4220578A (en) * | 1978-03-27 | 1980-09-02 | Cl Industries Inc. | Method, resin and catalyst for increasing the tensile strength and core hardness of a sand mold or core |
US4215012A (en) * | 1978-03-28 | 1980-07-29 | C L Industries, Inc. | Catalyst for increasing the tensile strength and core hardness of a sand mold or core |
US4255102A (en) * | 1978-07-07 | 1981-03-10 | Ry Aktiebolag | Machine for treatment of lignocellulose containing board materials with gaseous agents |
US4526219A (en) * | 1980-01-07 | 1985-07-02 | Ashland Oil, Inc. | Process of forming foundry cores and molds utilizing binder curable by free radical polymerization |
WO1982001556A1 (en) * | 1980-10-29 | 1982-05-13 | Cons Foundries & Mfg | Process for curing foundry cores and molds |
US4311627A (en) * | 1980-10-29 | 1982-01-19 | Consolidated Foundries And Mfg. Corp. | Process for curing foundry cores and molds |
US4396526A (en) * | 1980-11-05 | 1983-08-02 | Cl Industries, Inc. | Organic hydroperoxide catalyst system |
US4448234A (en) * | 1982-08-05 | 1984-05-15 | Cl Industries, Inc. | Method for forming sand cores and molds |
USRE32720E (en) * | 1982-11-09 | 1988-07-26 | Borden (Uk) Limited | Foundry moulds and cores |
US4623499A (en) * | 1983-02-28 | 1986-11-18 | Nihon Sekiso Kogyo Co., Ltd. | Method for manufacture of shaped article of organic substance |
US4516996A (en) * | 1983-04-07 | 1985-05-14 | Owens-Corning Fiberglas Corporation | Formation of molded glass fiber parts from glass fiber blankets and product |
US4791022A (en) * | 1983-11-07 | 1988-12-13 | Owens-Corning Fiberglas Corporation | Decorative panels |
US4678686A (en) * | 1986-04-15 | 1987-07-07 | Park David W | Treatment of formaldehyde-containing wood panel products |
US5190993A (en) * | 1988-04-08 | 1993-03-02 | Borden, Inc. | Process to enhance the tensile strength of reclaimed sand bonded with ester cured alkaline phenolic resin using an aminosilane solution |
US5238976A (en) * | 1990-06-15 | 1993-08-24 | Borden, Inc. | Process to enhance the tensile strength of reclaimed sand bonded with ester cured alkaline phenolic resin |
US5135043A (en) * | 1990-06-25 | 1992-08-04 | Omco Usa, Inc. | Apparatus and method for gas curing foundry cores and molds |
Also Published As
Publication number | Publication date |
---|---|
DE1408382A1 (en) | 1968-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3008205A (en) | Shell type molds and cores | |
US3726867A (en) | Foundry process and articles produced thereby | |
US3428110A (en) | Process for the production of foundry cores and molds | |
US3632785A (en) | Method of forming shell molds | |
US6037389A (en) | Amine cured foundry binder systems and their uses | |
US3145438A (en) | Gas cure of organic bonds for sand and abrasive granules | |
US3184814A (en) | Process of forming a foundry mold with an acid curable binder | |
CA1123529A (en) | Acid-curable fluoride-containing resin molding composition | |
US3645491A (en) | Soluble metal casting cores comprising a water-soluble salt and a synthetic resin | |
CN102076440A (en) | Catalysts comprising methane sulfonic acid for the acid hardening method | |
JPH03174428A (en) | Phenol resin compound | |
US3549584A (en) | No-bake resin binders | |
JPH02500753A (en) | Modifier for aqueous base solution of phenolic resol resin | |
US3024215A (en) | Foundry composition containing furfuryl alcohol polymer, foundry structure thereof, and method of making same | |
EP1474467B1 (en) | Free radically cured cold-box binders containing an alkyl silicate | |
US4089837A (en) | Shell molding process and composition | |
US3404198A (en) | Phenol-formaldehyde-urea resin and method of preparation | |
US3247556A (en) | Sand mold process using resinous binder from alkaline condensation of urea, formaldehyde, and furfuryl alcohol | |
US3059297A (en) | Foundry molds and cores and process for making same | |
US3216075A (en) | Method for manufacturing foundry cores and molds | |
US3806491A (en) | Foundry binder composition comprising a ketone-aldehyde product | |
US3057026A (en) | Foundry process and molding mixture | |
US3525379A (en) | Foundry compositions,cores and method of making same | |
US2772458A (en) | Method of making smooth-surfaced sand-resin molds | |
US3723368A (en) | Fast baking core composition and process for preparation thereof |