US2993814A - Heating conductor and method of making the same - Google Patents
Heating conductor and method of making the same Download PDFInfo
- Publication number
- US2993814A US2993814A US814299A US81429959A US2993814A US 2993814 A US2993814 A US 2993814A US 814299 A US814299 A US 814299A US 81429959 A US81429959 A US 81429959A US 2993814 A US2993814 A US 2993814A
- Authority
- US
- United States
- Prior art keywords
- coating
- heating
- silicon carbide
- bars
- making
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 title claims description 35
- 239000004020 conductor Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 23
- 239000011248 coating agent Substances 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 22
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 claims description 21
- 229910021344 molybdenum silicide Inorganic materials 0.000 claims description 21
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 21
- 230000001590 oxidative effect Effects 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 15
- 239000011253 protective coating Substances 0.000 description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002635 electroconvulsive therapy Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49099—Coating resistive material on a base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
- Y10T428/2958—Metal or metal compound in coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
- Y10T428/296—Rubber, cellulosic or silicic material in coating
Definitions
- Silicon carbide and carbon incandescent bars are known. Further, heating conductors are already known that consist of a carbonaceous core with a coating containing molybdenum and resistant to oxidizing. Finally, also metallic molybdenum heating conductors are known, which have a coating containing molybdenum silicide and resistant to oxidizing.
- the invention consists principally in the utilizaton of the coating known per se, containing molybdenum and resistant to oxidizing, on silicon carbide bars that are also known. Silicon carbide bars provided with the mentioned oxidizing-resistant coating have essentially the following advantages over the carbon incandescent bars prw vided with a corresponding coating.
- the silicon carbide bar with coating-containing molybdenum has a lower electric conductivity than the conventional carbon bars with corresponding coating. This means, that when the known carbon heating bars are used as incandescent bodies, much higher strengths of current are needed than for the bar according to the invention; that accordingly the conventional coated carbon incandescent bars require much larger transformers, that the current leads are more expensive, etc. Because of the aforementioned reasons, the bars according to the invention are particularly suitable exactly for industrial furnaces. In addition, many existing furnaces are ar ranged to take silicon carbide bars, so that the bars according to the invention, which correspond electrically to the pure silicon carbide bars, can be built-in directly into existing furnaces, whereas the coated carbon bars necessitate modifications in the construction of the furnaces.
- the thermal conductivity of the bar according to the present invention is more favorable than in the case of the conventional incandescent carbon bars, since it is lower.
- no cooled bar holders will be needed, as are required for the incandescent carbon bars.
- the bar according to the invention has the advantage that the heating bars are protected against oxidation, so that at high temperatures they are many times superior to the unprotected heating conductors as regards service life.
- the whole protective coating consists of brittle, hard molybdenum silicon double carbide. If this protective coating is only very slightly damaged when being built into a furnace or when in service, the whole carbon body may when in service in the oxidizing furnace atmospherebe very quickly burned through at the slightly damaged place.
- the bar according to the present invention has a protective coating consisting internally of still free molybdenum silicide, and externally of a molybdenum compound that is ductile at servicetemperatures. If the protective coating is slightly damaged, there exist three advantages in the subsequent service as compared with the conventional bar:
- the protective coating in; the vicinity of the damage is viscous like glass and capable: of assisting the self-healing action of the fresh protective material mentioned above in (b).
- the. bar according to the invention remains thoroughly serviceable, even if the protective: coating has become damaged as may happen in every service, whereas the conventional coated carbon bar will very quickly become useless it slightly damaged.
- the method of making the heating conductor consists principallyin that the powdered molybdenum silicide is brought onto the silicon carbide by dusting or by spraying.
- the powder may also be applied by painting-on pastes to which adhesive means may be added or not.
- the oxidation-resisting coating will be finished by sintering and oxidizing the molybdenum silicide onto the silicon carbide bar.
- this coating is fused onto a core including carbon. This type of application is not possible in the case of the method according to the invention. Should it be desired to fuse molybdenum silicide onto a silicon carbide core, reactions would occur between the molybdenum silicide coating and the silicon carbide core which would render it impossible for the coating layer to combine with or to adhere to the core.
- the manner of applying the coating according to the invention is also much simpler and more economical than the fusing of the coating layer onto carbon bars according to the conventional methods.
- the application need not be effected in vacuum or under a protective gas, as in the conventional methods.
- the bars according to the invention may be finished at an appreciably lower temperature, and even in the air or without using any inert atmosphere; they may therefore be formed in large quantities together in a furnace at a temperature of about 1450" C., whereas the conventional bars must be made singly and with heating up to about 2300" C.
- FIG. 1 shows the improved heating body in side elevation
- FIG. 2 is a transverse section on line 2-2 of FIG. 1.
- the invention it has been found that it is possible to have silicon carbide heating bodies coated with a thin layer of molybdenum silicide, and then to convert this wholly or partly into the glass-like sintered layer in oxidizing atmosphere.
- This thin, gastight coating is capable of protecting the silicon carbide against oxidation, so that silicon carbide heating conductors treated in this way may be used at higher temperatures and during longer service periods than unprotected heating conductors.
- the heating conductor according to the invention thus consists for the most part of almost pure silicon carbide with its economically favorable heatconducting properties and of a thin protective coating, made of molybdenum silicide and being especially highly resistant to oxidation.
- the essence of the invention is based on the novel combination of the good heating conductor qualities of silicon carbide with the high resistance to scaling of the molybdenum silicide and/or of its oxidation-product.
- more or less pure, powdered molybdenum silicide can be brought onto the silicon carbide heating bodies in any desired way, say, by dusting, spraying, painting in the form of a paste in pure water or in water with adhesive additives, for example, tragacanth or methyl cellulose, dipping in aqueous pastes with or without the said type of adhesive additives.
- the heated bodies treated in this way i.e. provided with a coating, are at first dried and then rendered incandescent for sometime in air or an oxidizing atmosphere at a high temperature between 1300 and 1500" C.
- this incandescence be effected from the outside, i.e. in a furnace, whereas in other cases a heating by passing a current through, or both methods, may be adopted.
- some white fumes of molybdenum trioxide may be given olf at the start; the main portion of the molybdenum silicide, however, passes into the glass-like protective layer which includes molybdenum, silicon, oxygen and partly also carbon, and covers the heating chamber tight, the protective layer being firmly sintered on.
- the heating bodies may be used at all temperatures up to over 1500" C. without any more molybdenum trioxide being given olf in fumes.
- Heating conductor composed of a conductor consisting essentially of silicon carbide with a coating of mo lybdenum silicide sintered on the conductor and resistant to oxidizing.
- the method of making a heating conductor which comprises the steps of applying pulverulent molybdenum silicide in the form of a coating to the surface of a body consisting essentially of silicon carbide, and then sintering said coating on said body by heating to incandescence at a temperature of between 1300" C. and 1500 C.
Landscapes
- Ceramic Products (AREA)
- Resistance Heating (AREA)
Description
July 1951 w. EPPRECHT ET AL 2,993,814
HEATING CONDUCTOR AND METHOD OF MAKING THE SAME Filed May 19, 1959 W/[frifli Epprechf Frivfz Held INVENTORS BY v 40 l United States Patent 2,993,814 HEATING CONDUCTOR AND METHOD OF MAKING THE SAME Wilfried Epprecht, Zurich, and Fritz Held, Forch, Zurich, Switzerland, assiguors to Gesellschaft zur Fiirderung der Forschung an der Eidg. Techn. Hochschule, Zurich, Switzerland Filed May 19, 1959, Ser. No. 814,299 Claims priority, application Switzerland May 24, 1958 4 Claims. (Cl. 117-201) This invention relates to a heating conductor and a method of making the same.
Silicon carbide and carbon incandescent bars are known. Further, heating conductors are already known that consist of a carbonaceous core with a coating containing molybdenum and resistant to oxidizing. Finally, also metallic molybdenum heating conductors are known, which have a coating containing molybdenum silicide and resistant to oxidizing. The invention consists principally in the utilizaton of the coating known per se, containing molybdenum and resistant to oxidizing, on silicon carbide bars that are also known. Silicon carbide bars provided with the mentioned oxidizing-resistant coating have essentially the following advantages over the carbon incandescent bars prw vided with a corresponding coating.
The silicon carbide bar with coating-containing molybdenum has a lower electric conductivity than the conventional carbon bars with corresponding coating. This means, that when the known carbon heating bars are used as incandescent bodies, much higher strengths of current are needed than for the bar according to the invention; that accordingly the conventional coated carbon incandescent bars require much larger transformers, that the current leads are more expensive, etc. Because of the aforementioned reasons, the bars according to the invention are particularly suitable exactly for industrial furnaces. In addition, many existing furnaces are ar ranged to take silicon carbide bars, so that the bars according to the invention, which correspond electrically to the pure silicon carbide bars, can be built-in directly into existing furnaces, whereas the coated carbon bars necessitate modifications in the construction of the furnaces.
Also the thermal conductivity of the bar according to the present invention is more favorable than in the case of the conventional incandescent carbon bars, since it is lower. In addition, no cooled bar holders will be needed, as are required for the incandescent carbon bars.
Moreover, in comparison with the usual silicon car- 'bide bars, the bar according to the invention has the advantage that the heating bars are protected against oxidation, so that at high temperatures they are many times superior to the unprotected heating conductors as regards service life. Finally, there is still another important advantage:
In the case of the conventional coated carbon bar, the whole protective coating consists of brittle, hard molybdenum silicon double carbide. If this protective coating is only very slightly damaged when being built into a furnace or when in service, the whole carbon body may when in service in the oxidizing furnace atmospherebe very quickly burned through at the slightly damaged place. On the other hand, the bar according to the present invention has a protective coating consisting internally of still free molybdenum silicide, and externally of a molybdenum compound that is ductile at servicetemperatures. If the protective coating is slightly damaged, there exist three advantages in the subsequent service as compared with the conventional bar:
(a) The exposed silicon carbide does not oxidize like ice carbon with the formation of volatile CO or C0,, until the whole bar has burnt, but solid Si0 will be formed, which also locally produces a certain protection against oxidation.
(b) The still existing free molybdenum silicide of the neighboring protective coating reacts with the oxygen of the furnace atmosphere and forms fresh protectivecoating material which can close the gap caused by damage.
(0) At service temperatures the protective coating in; the vicinity of the damage is viscous like glass and capable: of assisting the self-healing action of the fresh protective material mentioned above in (b).
For these reasons, the. bar according to the invention: remains thoroughly serviceable, even if the protective: coating has become damaged as may happen in every service, whereas the conventional coated carbon bar will very quickly become useless it slightly damaged.
The method of making the heating conductor consists principallyin that the powdered molybdenum silicide is brought onto the silicon carbide by dusting or by spraying. The powder may also be applied by painting-on pastes to which adhesive means may be added or not. Finally, it is also possible to have the powder applied by dipping the core into pastes containing adhesive means or not. Thereupon the oxidation-resisting coating will be finished by sintering and oxidizing the molybdenum silicide onto the silicon carbide bar.
In the conventional method of applying a coating containing molybdenum, this coating is fused onto a core including carbon. This type of application is not possible in the case of the method according to the invention. Should it be desired to fuse molybdenum silicide onto a silicon carbide core, reactions would occur between the molybdenum silicide coating and the silicon carbide core which would render it impossible for the coating layer to combine with or to adhere to the core.
The manner of applying the coating according to the invention is also much simpler and more economical than the fusing of the coating layer onto carbon bars according to the conventional methods. The application need not be effected in vacuum or under a protective gas, as in the conventional methods. The bars according to the invention may be finished at an appreciably lower temperature, and even in the air or without using any inert atmosphere; they may therefore be formed in large quantities together in a furnace at a temperature of about 1450" C., whereas the conventional bars must be made singly and with heating up to about 2300" C.
Further features of the invention will appear from the following description and claims, and one embodiment of the invention is illustrated in the accompanying drawings wherein FIG. 1 shows the improved heating body in side elevation, and FIG. 2 is a transverse section on line 2-2 of FIG. 1.
According to the invention it has been found that it is possible to have silicon carbide heating bodies coated with a thin layer of molybdenum silicide, and then to convert this wholly or partly into the glass-like sintered layer in oxidizing atmosphere. This thin, gastight coating is capable of protecting the silicon carbide against oxidation, so that silicon carbide heating conductors treated in this way may be used at higher temperatures and during longer service periods than unprotected heating conductors. The heating conductor according to the invention thus consists for the most part of almost pure silicon carbide with its economically favorable heatconducting properties and of a thin protective coating, made of molybdenum silicide and being especially highly resistant to oxidation.
The metallic molybdenum heating conductors already formerly proposed, with coating of oxidation-resisting molybdenum silicide, behave so very differently mechanically with respect to the metal when heated up and cooled down, that no protective layer is obtained of a lasting nature and free fromcracks. Besides that, such protective coatings on metal are very liable to get damaged, and the exposed metal portions quickly oxidize at a high temperature so as to destroy the heating conductor. In contrast thereto, through the present invention, on the non-metallic silicon carbide heating conductor a very good adhesive. and gasti-ght protective coating of molybdenum silicide and/or its oxidation-product will be obtained, which is not extremely sensitive to damage and capable of withstanding severe thermal-shock treatment. The essence of the invention is based on the novel combination of the good heating conductor qualities of silicon carbide with the high resistance to scaling of the molybdenum silicide and/or of its oxidation-product.
For making the heating conductor according to the in vention, more or less pure, powdered molybdenum silicide can be brought onto the silicon carbide heating bodies in any desired way, say, by dusting, spraying, painting in the form of a paste in pure water or in water with adhesive additives, for example, tragacanth or methyl cellulose, dipping in aqueous pastes with or without the said type of adhesive additives. The heated bodies treated in this way, i.e. provided with a coating, are at first dried and then rendered incandescent for sometime in air or an oxidizing atmosphere at a high temperature between 1300 and 1500" C. It has then been foundsuitable for certain shapes of heating conductors that this incandescence be effected from the outside, i.e. in a furnace, whereas in other cases a heating by passing a current through, or both methods, may be adopted. In the case of this incandescence some white fumes of molybdenum trioxide may be given olf at the start; the main portion of the molybdenum silicide, however, passes into the glass-like protective layer which includes molybdenum, silicon, oxygen and partly also carbon, and covers the heating chamber tight, the protective layer being firmly sintered on. When the molybdenum silicide has 4 once been oxidized, the heating bodies may be used at all temperatures up to over 1500" C. without any more molybdenum trioxide being given olf in fumes.
Through the invention it is possible to make silicon carbide heating conductors which at high temperatures are by far superior to the unprotected heating conductors as regards service life, and also possible to carry out the method favorably as regards economy.
What we claim is:
1. Heating conductor composed of a conductor consisting essentially of silicon carbide with a coating of mo lybdenum silicide sintered on the conductor and resistant to oxidizing.
2. The method of making a heating conductor which comprises the steps of applying pulverulent molybdenum silicide in the form of a coating to the surface of a body consisting essentially of silicon carbide, and then sintering said coating on said body by heating to incandescence at a temperature of between 1300" C. and 1500 C.
3. The method of making a heating conductor as defined in claim 2 wherein in said sintering step the body carrying said coating of pulveru-lent molybdenum silicide is heated to incandesecence in an oxidizing gas by passing electri'current through the body of silicon carbide thereby to sinter the molybdenum silicide onto said body and to form an oxidation-resistant protective layer over the latter.
4. The method of making a heating conducting as defined in claim 2 wherein in said sintering step the body carrying said coating of pulverulent molybdenum silicide is heated to incandescence in a furnace in an oxidizing atmosphere thereby to sinter the molybdenum silicide onto said body and to form an oxidation-resistant protective layer over the latter.
References Cited in the file of this patent UNITED STATES PATENTS 1,814,583 Benner et al. July 14, 1931 1,948,382 Johnson Feb. 20, 1934 2,745,932 Glaser May 15, 1956 Notice of Adverse Decision in Interference In Interference No. 92,360
involving Patent N 0. 2,993,814, TV. Epprecht and F. Held, Heatlng conductor and method of making the same, final judgment adverse to the patentees Was rendered Feb. 13, 1964 as to claims 1 and 2. [Ofiicz'al Gazette August 25, 1.964.]
Notice of Adverse Decision in Interference In Interference N 0. 92,360 involving Patent N 0. 2,993,814, V. Epprecht and F. Held, Heating conductor and method of making the same, final judgment adverse to the patentees was rendered Feb 13, 1964, as to claims 1 and 2. [Ofiicz'al Gazette August 25, 1964.]
Claims (1)
1. HEATING CONDUCTOR COMPOSED OF A CONDUCTOR CONSISTING ESSENTIALLY OF SILICON CARBIDE WITH A COATING OF MOLYBDENUM SILICIDE SINTERED ON THE CONDUCTOR AND RESISTANT TO OXIDIZING.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2993814X | 1958-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2993814A true US2993814A (en) | 1961-07-25 |
Family
ID=4573265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US814299A Expired - Lifetime US2993814A (en) | 1958-05-24 | 1959-05-19 | Heating conductor and method of making the same |
Country Status (1)
Country | Link |
---|---|
US (1) | US2993814A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3171871A (en) * | 1960-07-19 | 1965-03-02 | Norton Co | Method of making electrical heater bars |
US3390013A (en) * | 1964-03-06 | 1968-06-25 | Siemens Planiawerke Ag | High-temperature resistant structural body |
US3397448A (en) * | 1965-03-26 | 1968-08-20 | Dow Corning | Semiconductor integrated circuits and method of making same |
US3501356A (en) * | 1966-05-12 | 1970-03-17 | Westinghouse Electric Corp | Process for the epitaxial growth of silicon carbide |
US4187344A (en) * | 1978-09-27 | 1980-02-05 | Norton Company | Protective silicon nitride or silicon oxynitride coating for porous refractories |
US4614689A (en) * | 1983-04-28 | 1986-09-30 | Kabushiki Kaisha Toshiba | Non-oxide-series-sintered ceramic body and method for forming conducting film on the surface of non-oxide-series-sintered ceramic body |
DE4331307A1 (en) * | 1993-09-15 | 1995-03-16 | Abb Patent Gmbh | Manufacture of a composite reinforced with carbon fibers |
DE19614676A1 (en) * | 1996-04-13 | 1997-10-16 | Choe Kum Chol | Process for refining SiC heating elements |
US20030183621A1 (en) * | 2002-03-20 | 2003-10-02 | Jainagesh Sekhar | Treatment for improving the stability of silicon carbide heating elements |
US20040207029A1 (en) * | 2002-07-16 | 2004-10-21 | Braddock Walter David | Junction field effect metal oxide compound semiconductor integrated transistor devices |
US20040206979A1 (en) * | 2002-06-06 | 2004-10-21 | Braddock Walter David | Metal oxide compound semiconductor integrated transistor devices |
WO2005061756A1 (en) * | 2003-12-09 | 2005-07-07 | Osemi, Inc. | High temperature vacuum evaporation apparatus |
US20060076630A1 (en) * | 2000-05-04 | 2006-04-13 | Braddock Walter D Iv | Integrated Transistor devices |
US20070138506A1 (en) * | 2003-11-17 | 2007-06-21 | Braddock Walter D | Nitride metal oxide semiconductor integrated transistor devices |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1814583A (en) * | 1927-04-05 | 1931-07-14 | Carborundum Co | Method of making electrical resistances |
US1948382A (en) * | 1931-09-02 | 1934-02-20 | Nat Carbon Co Inc | Oxidation resisting carbon article |
US2745932A (en) * | 1953-06-03 | 1956-05-15 | American Electro Metal Corp | Electric resistor |
-
1959
- 1959-05-19 US US814299A patent/US2993814A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1814583A (en) * | 1927-04-05 | 1931-07-14 | Carborundum Co | Method of making electrical resistances |
US1948382A (en) * | 1931-09-02 | 1934-02-20 | Nat Carbon Co Inc | Oxidation resisting carbon article |
US2745932A (en) * | 1953-06-03 | 1956-05-15 | American Electro Metal Corp | Electric resistor |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3171871A (en) * | 1960-07-19 | 1965-03-02 | Norton Co | Method of making electrical heater bars |
US3390013A (en) * | 1964-03-06 | 1968-06-25 | Siemens Planiawerke Ag | High-temperature resistant structural body |
US3397448A (en) * | 1965-03-26 | 1968-08-20 | Dow Corning | Semiconductor integrated circuits and method of making same |
US3501356A (en) * | 1966-05-12 | 1970-03-17 | Westinghouse Electric Corp | Process for the epitaxial growth of silicon carbide |
US4187344A (en) * | 1978-09-27 | 1980-02-05 | Norton Company | Protective silicon nitride or silicon oxynitride coating for porous refractories |
DE2937997A1 (en) * | 1978-09-27 | 1980-05-08 | Norton Co | POROESE FIREPROOF ITEM WITH PROTECTIVE COVER |
US4614689A (en) * | 1983-04-28 | 1986-09-30 | Kabushiki Kaisha Toshiba | Non-oxide-series-sintered ceramic body and method for forming conducting film on the surface of non-oxide-series-sintered ceramic body |
DE4331307C2 (en) * | 1993-09-15 | 2001-02-15 | Harald Lorson | Manufacture of a carbon fiber reinforced composite and its use |
DE4331307A1 (en) * | 1993-09-15 | 1995-03-16 | Abb Patent Gmbh | Manufacture of a composite reinforced with carbon fibers |
DE19614676C2 (en) * | 1996-04-13 | 1998-09-03 | Choe Kum Chol | Process for refining SiC heating rods |
DE19614676A1 (en) * | 1996-04-13 | 1997-10-16 | Choe Kum Chol | Process for refining SiC heating elements |
US7190037B2 (en) | 2000-05-04 | 2007-03-13 | Osemi, Inc. | Integrated transistor devices |
US20060076630A1 (en) * | 2000-05-04 | 2006-04-13 | Braddock Walter D Iv | Integrated Transistor devices |
US7067775B2 (en) * | 2002-03-20 | 2006-06-27 | Micropyretics Heaters International, Inc. | Treatment for improving the stability of silicon carbide heating elements |
US20030183621A1 (en) * | 2002-03-20 | 2003-10-02 | Jainagesh Sekhar | Treatment for improving the stability of silicon carbide heating elements |
US20040206979A1 (en) * | 2002-06-06 | 2004-10-21 | Braddock Walter David | Metal oxide compound semiconductor integrated transistor devices |
US7187045B2 (en) | 2002-07-16 | 2007-03-06 | Osemi, Inc. | Junction field effect metal oxide compound semiconductor integrated transistor devices |
US20040207029A1 (en) * | 2002-07-16 | 2004-10-21 | Braddock Walter David | Junction field effect metal oxide compound semiconductor integrated transistor devices |
US20070138506A1 (en) * | 2003-11-17 | 2007-06-21 | Braddock Walter D | Nitride metal oxide semiconductor integrated transistor devices |
WO2005061756A1 (en) * | 2003-12-09 | 2005-07-07 | Osemi, Inc. | High temperature vacuum evaporation apparatus |
US20080282983A1 (en) * | 2003-12-09 | 2008-11-20 | Braddock Iv Walter David | High Temperature Vacuum Evaporation Apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2993814A (en) | Heating conductor and method of making the same | |
US2100187A (en) | Entrance insulation for electrical conductors | |
US3420944A (en) | Lead-in conductor for electrical devices | |
US2215587A (en) | Rodlike heating element | |
US3120453A (en) | Porous carbonaceous body with sealed surface for use as arc-furnace electrode or structural component of nuclear reactors | |
KR850000706B1 (en) | Method of providing a metal component with a thermally black surface | |
US2745932A (en) | Electric resistor | |
US3390013A (en) | High-temperature resistant structural body | |
US3166396A (en) | Method of forming sealed article | |
US6626725B1 (en) | Electrode treatment surface process for reduction of a seal cracks in quartz | |
US2105166A (en) | Electrical heating element | |
US3328201A (en) | Heater for electron tubes | |
US3083445A (en) | Method of making an electrical resistance device | |
US2902392A (en) | Work pieces for high temperature operation and method of making them | |
US3445212A (en) | Method of sealing copper in silica body | |
US1742259A (en) | Electrical resistor, conductor, and the like | |
US20050174058A1 (en) | Electric lamp | |
US4126489A (en) | Method of making cathode heaters | |
US1736745A (en) | Electrical heating body and method of manufacturing the same | |
KR890004836B1 (en) | Manufacturing method of dyke heater | |
US1422443A (en) | Leading-in wires for incandescent electric lamps | |
US4113978A (en) | Evaporation source for vacuum deposition | |
US2958936A (en) | Electrical semi-conductors and method of manufacture | |
JPH0317070B2 (en) | ||
US3237043A (en) | Gas-filled electric incandescent lamp |