US2984354A - Hydroxynitriles as flotation modifiers - Google Patents
Hydroxynitriles as flotation modifiers Download PDFInfo
- Publication number
- US2984354A US2984354A US635135A US63513557A US2984354A US 2984354 A US2984354 A US 2984354A US 635135 A US635135 A US 635135A US 63513557 A US63513557 A US 63513557A US 2984354 A US2984354 A US 2984354A
- Authority
- US
- United States
- Prior art keywords
- ton
- flotation
- lactonitrile
- zinc
- sodium cyanide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005188 flotation Methods 0.000 title description 25
- 239000003607 modifier Substances 0.000 title description 2
- 239000011701 zinc Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 19
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 16
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 9
- 239000011707 mineral Substances 0.000 claims description 9
- 229910001656 zinc mineral Inorganic materials 0.000 claims description 4
- 238000009291 froth flotation Methods 0.000 claims description 3
- 229910001608 iron mineral Inorganic materials 0.000 claims description 3
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical group N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 24
- WOFDVDFSGLBFAC-UHFFFAOYSA-N lactonitrile Chemical compound CC(O)C#N WOFDVDFSGLBFAC-UHFFFAOYSA-N 0.000 description 24
- 239000012141 concentrate Substances 0.000 description 21
- 229910052725 zinc Inorganic materials 0.000 description 16
- 230000000994 depressogenic effect Effects 0.000 description 14
- 150000002825 nitriles Chemical class 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 238000011084 recovery Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 235000010755 mineral Nutrition 0.000 description 8
- 230000001143 conditioned effect Effects 0.000 description 7
- 229910052683 pyrite Inorganic materials 0.000 description 7
- 239000011028 pyrite Substances 0.000 description 7
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 7
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 6
- 235000011941 Tilia x europaea Nutrition 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000004571 lime Substances 0.000 description 6
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- JQJCSZOEVBFDKO-UHFFFAOYSA-N lead zinc Chemical compound [Zn].[Pb] JQJCSZOEVBFDKO-UHFFFAOYSA-N 0.000 description 5
- 239000010665 pine oil Substances 0.000 description 5
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- MWFMGBPGAXYFAR-UHFFFAOYSA-N 2-hydroxy-2-methylpropanenitrile Chemical compound CC(C)(O)C#N MWFMGBPGAXYFAR-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000000881 depressing effect Effects 0.000 description 3
- RZFBEFUNINJXRQ-UHFFFAOYSA-M sodium ethyl xanthate Chemical compound [Na+].CCOC([S-])=S RZFBEFUNINJXRQ-UHFFFAOYSA-M 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 mercaptobenzothiazole-dithiophosphate Chemical compound 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- VLDHWMAJBNWALQ-UHFFFAOYSA-M sodium;1,3-benzothiazol-3-ide-2-thione Chemical compound [Na+].C1=CC=C2SC([S-])=NC2=C1 VLDHWMAJBNWALQ-UHFFFAOYSA-M 0.000 description 2
- PHLSTZGDRQZNJF-UHFFFAOYSA-M sodium;butan-2-yloxy-butan-2-ylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [Na+].CCC(C)OP([O-])(=S)SC(C)CC PHLSTZGDRQZNJF-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- PENRVBJTRIYHOA-UHFFFAOYSA-L zinc dithionite Chemical compound [Zn+2].[O-]S(=O)S([O-])=O PENRVBJTRIYHOA-UHFFFAOYSA-L 0.000 description 2
- WSGYTJNNHPZFKR-UHFFFAOYSA-N 3-hydroxypropanenitrile Chemical compound OCCC#N WSGYTJNNHPZFKR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FCSHMCFRCYZTRQ-UHFFFAOYSA-N N,N'-diphenylthiourea Chemical compound C=1C=CC=CC=1NC(=S)NC1=CC=CC=C1 FCSHMCFRCYZTRQ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- FRJPMACLLPQSPI-UHFFFAOYSA-N azanium;(4-methylphenoxy)-(4-methylphenyl)sulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [NH4+].C1=CC(C)=CC=C1OP([O-])(=S)SC1=CC=C(C)C=C1 FRJPMACLLPQSPI-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- MJEMIOXXNCZZFK-UHFFFAOYSA-N ethylone Chemical compound CCNC(C)C(=O)C1=CC=C2OCOC2=C1 MJEMIOXXNCZZFK-UHFFFAOYSA-N 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical class N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- ZKDDJTYSFCWVGS-UHFFFAOYSA-M sodium;diethoxy-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Na+].CCOP([S-])(=S)OCC ZKDDJTYSFCWVGS-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/01—Organic compounds containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/06—Depressants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S209/00—Classifying, separating, and assorting solids
- Y10S209/901—Froth flotation; copper
Definitions
- This invention relates to improved flotation processes for mixed ores which contain several metallic values and require selective separations of their mineral components.
- certain organic nitriles namely alpha-hydroxynitriles
- alpha-hydroxynitriles have been found to give results as depressants which are as good as sodium cyanide; in many cases better; and which, in the depression of certain minerals, such as iron minerals, can be used in smaller quantities than is practical with sodium cyanide.
- lactonitrile and particularly crude lactonitrile, is extremely effective. The latter, which is obtainable as a brownish black liquid by-product in the manufacture of acrylonitrile, can be obtained at a very low price.
- the alpha-hydroxynitriles are organic liquids and thus can be fed readily either directly or in water solutions to conditioning or flotation operations. With the solid depressants formerly used, solution is an unavoidable 2,984,354- Patented May 16, 1961 The exact mechanism of the depressing action of the alpha-hydroxynitriles is not fully known. It is not merely a question of the presence of a CN group because prerequisite for uniformity of feeding. This added flexibility is an advantage of the present invention.
- flotation conditions will vary, of course, from ore to ore, each ore having optimum requirements for the type and amount of flotation promoter used, frother, flotation time, pH, etc., and in the following illustrative examples in each case the flotation conditions will be used which have been found to be optimum for the operation when sodium cyanide is used. All examples are carried out in laboratory-type Fagergren flotation machine using 600 g. charges at standard flotation pulp density of about 25% solids. The standard laboratory procedure. used in the examples is highly reliable and is applicable to plant practice.
- Example 1 The tests in this example were carried out with pyrite only to show relative depressing powers with different amounts of reagent.
- a 90-10 silica-pyrite mixture was ground to 65 mesh with l lb./ton of lime and successive portions after dilution to flotation pulp density were floated in a Fagergren flotation machine at a pH of 9 with 0.1 lb./ton sodium ethyl xanthate as the promoter and 0.03 lb./ton polypropylene glycol as the frother.
- the flotation was effected for five minutes and the percentage of pyrite depressed determined. Varying amounts of sodium cyanide and lactonitrile were used in the different tests and one was run as a blank with the addition of no depressant. The results appear in the following table.
- NaCN Lactonitrile is a very much more active depressant for pyrite than is sodium cyanide. At 0.01 lb./ton NaCN equivalent there was no depression with sodium cyanide and quite substantial depression with lactonitrile which reached at an amount (0.015 lbL/ton) in which the NaCN gave no significantly useful results. More than twice as much NaCN had to be added before comparable depressions were obtained.
- Example 3 This example used a test ore which is the same as in Example 1, the flotation being eifected at 22% solids. On successive portions diiferent nitriles were used and the results appear in the following table.
- Example 4 A Missouri lead-zinc ore containing a small amount of pyrite and carbonate gangue minerals was ground to 65 mesh, diluted to about solids, conditioned for two minutes with 0.12 lb./ton sodium silicate and for three minutes longer with 0.09 lb./ton of sodium cyanide, followed by another two minutes with 0.03 lb./ton sodium ethyl xanthate and for one minute longer with a 0.12 lb./ton pine oil. The mixture was then floated for four minutes to obtain a lead concentrate.
- the resulting tailing was conditioned for two minutes with 0.43 lb./ton soda ash and for a further four minutes with 1.0 lb./ton copper sulfate pentahydrate, followed by two minutes longer with 0.2 lb./ton technical sodium diethyldithiophosphate and for one minute longer with 0.07 lb./ton pine oil.
- the flotation was then carried on 'for four minutes to produce a zinc concentrate.
- Example 5 A pyrite-bearing lead-zinc ore from northern New York analyzing 0.35% Pb, 9.1% Zn and 9.3% Fe was ground to mesh at 65% solids, diluted to about 22% solids, conditioned with 0.06 lb./ton sodium cyanide for three minutes and for two minutes longer with 0.06 lb./ton technical dicresyldithiophosphoric acid containing about 6% diphenyl thiourea. The pulp was then floated for four minutes to produce a lead concentrate, the pH being 7.4.
- tailings were then conditioned for two minutes with 4.0 lb./ ton of lime to produce a pH of 10.9, then for three minutes longer with 1.3 lb./ton copper sulfate pentahydrate, followed by two minutes with 0.13 lb./ton sodium ethyl xanthate and one minute with 0.16 lb./ton pine oil as a frother. Flotation as in the preceding examples was for four minutes to produce a zinc concentrate.
- the tailings from the lead rougher flotation operation were conditioned for five minutes with 2.0 lb./ton lime, 1.5 lb./ton copper sulfate penthahydrate and 0.1 lb./ton of a 1:1 mixture of sodium mercaptobenzothiazole and sodium di(secondary butyl)dithiophosphate. Thereupon the mixture was floated to remove a zinc concentrate which was cleaned by refioating with 0.5 lb./ ton lime and 0.05 lb./ton of the mercaptobenzothiazole-dithiophosphate mixture together with 0.04 lb./ton of pine oil as a frother.
- Example 7 An iron-bearing copper ore from Utah containing 0.9% Cu and 2.3% iron was ground to 60% solids 65 mesh with 2.6 lb./ton lime and 0.3 lb./ton sodium cyanide. The mixture was then diluted to 22% solids, conditioned for a minute with 0.03 1b./ton technical dicresyldithiophosphoric acid as promoter and then for one minute with 0.2 lb./ton of a 1:1 cresylic acid-fuel oil mixture as a frothing agent. Flotation was for five minutes to remove a copper concentrate.
- a method of selective froth flotation of ores containing depressable minerals selected from the group of zinc and iron minerals which comprises efiecting flotation in the presence of an effective amount of an alpha-hydroxynitrile selected from the group consisting of acetone,
- cyanohydrin and those represented by the formula wherein R is selected from the group consisting of hydrogen, methyl and phenyl to produce a concentrate of the lead or copper relatively poor in zinc minerals, subjecting the tailings of the flotation operation to activation of the zinc minerals, refloating to produce a zinc concentrate relatively high in zinc and relatively low in lead or copper.
- Migrdichian The Chemistry of Organic Cyanogen Compounds," ACS Monograph 105, Reinhold, New York, 1947, pages 173-176.
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
rpm-ma United States Patent HYDROXYNITRILES AS FLOTATION MODIFIERS Erwin L. Carpenter and Robert B. Booth, Stamford, Conn., assignors to American Cyanamid Company, New York, N.Y., a corporation of Maine No Drawing. Filed Jan. 22, 1957, Ser. No. 635,135
Claims. (Cl. 209-167) This invention relates to improved flotation processes for mixed ores which contain several metallic values and require selective separations of their mineral components.
Mixed ores, such as lead-zinc ores, iron-bearing leadzinc ores, copper-zinc ores, copper-iron ores, complex copper-lea'd-zinc ores and the like, present problems of selective separations. Differential flotation processes have been developed in which one or more of the minerals, usually zinc and/ or iron, are depressed so that a concentrate of the remaining metal or metals can be obtained, whereupon the zinc can be reactivated with reagents such as copper sulfate and the like and then floated as a concentrate. The standard depressant is sodium cyanide, and with many ores excellent results can be obtained, provided a sulficient and controlled amount of sodium cyanide is used.
Commercially useful as the selective flotation processes using sodium or other soluble cyanides have proven to be, they are by no means perfect. For one thing the cost of cyanide adds to the processing cost and further, with some ores, the completeness of the selective depression is not as perfect as could be desired. This latter factor is of considerable importance especially when the mineral to be depressed is present in fairly large concentration or at least in concentration comparable to that of the desired mineral. Also in the latter case with lean ores, it is difficult to obtain high-grade concentrates. Contamination of each concentrate with other minerals is, therefore, still a problem which varies in seriousness from ore to ore.
According to the present invention, certain organic nitriles, namely alpha-hydroxynitriles, have been found to give results as depressants which are as good as sodium cyanide; in many cases better; and which, in the depression of certain minerals, such as iron minerals, can be used in smaller quantities than is practical with sodium cyanide. While the invention is not limited to any particular alpha-hydroxynitrile, we have found that lactonitrile, and particularly crude lactonitrile, is extremely effective. The latter, which is obtainable as a brownish black liquid by-product in the manufacture of acrylonitrile, can be obtained at a very low price. It is an advantage of the present invention that there is no significant difference between a pure alpha-hydroxynitrile and crude material such as the very dirty, crude lactonitrile referred to above. Why the extensive impurities, amounting to and more in the case of the crude lactonitrile, do not interfere with its depressant action is not known, but the possibility of using very crude and dirty material is a distinct advantage of the present invention and such crude by-product material constitutes the preferred reagents to be used.
The alpha-hydroxynitriles are organic liquids and thus can be fed readily either directly or in water solutions to conditioning or flotation operations. With the solid depressants formerly used, solution is an unavoidable 2,984,354- Patented May 16, 1961 The exact mechanism of the depressing action of the alpha-hydroxynitriles is not fully known. It is not merely a question of the presence of a CN group because prerequisite for uniformity of feeding. This added flexibility is an advantage of the present invention.
other nitriles, even other hydroxynitriles, either have no depressing action whatever or depress so slightly as to be of no commercial significance. We are therefore not dealing purely with a question of using any compound which has a CN group.
In the well-known selective flotation processes using various soluble cyanides of inorganic nature, it is customary to rate consumption on the basis of sodium cyanide equivalent; that is, the weight of a particular cyanide used which has the same weight of cyanide as a given standard weight ofsodium cyanide. Through; out the present specification this conventional nomenclature will be used. It is an advantage of the present invention that the froth flotation processes are in no way changed by using the alpha-hydroxynitriles of the present invention. The same techniques can be employed as have been used in the past with sodium cyanide as a depressant. It is therefore unnecessary for the practical operating man to learn any new techniques. These flotation conditions will vary, of course, from ore to ore, each ore having optimum requirements for the type and amount of flotation promoter used, frother, flotation time, pH, etc., and in the following illustrative examples in each case the flotation conditions will be used which have been found to be optimum for the operation when sodium cyanide is used. All examples are carried out in laboratory-type Fagergren flotation machine using 600 g. charges at standard flotation pulp density of about 25% solids. The standard laboratory procedure. used in the examples is highly reliable and is applicable to plant practice.
Example 1 The tests in this example were carried out with pyrite only to show relative depressing powers with different amounts of reagent.
A 90-10 silica-pyrite mixture was ground to 65 mesh with l lb./ton of lime and successive portions after dilution to flotation pulp density were floated in a Fagergren flotation machine at a pH of 9 with 0.1 lb./ton sodium ethyl xanthate as the promoter and 0.03 lb./ton polypropylene glycol as the frother. The flotation was effected for five minutes and the percentage of pyrite depressed determined. Varying amounts of sodium cyanide and lactonitrile were used in the different tests and one was run as a blank with the addition of no depressant. The results appear in the following table.
NaCN Lactonitrile It will be noted that the lactonitrile is a very much more active depressant for pyrite than is sodium cyanide. At 0.01 lb./ton NaCN equivalent there was no depression with sodium cyanide and quite substantial depression with lactonitrile which reached at an amount (0.015 lbL/ton) in which the NaCN gave no significantly useful results. More than twice as much NaCN had to be added before comparable depressions were obtained.
3 Example 2 Percent yrrhotite de ressed LbJton N aCN equiv. p p
NaCN Lactonitrile It will be noticed that lactonitrile showed very substantial depression in concentrations where sodium cyanide had no effectiveness at all and even at fairly high concentrations, the results were significantly better with the crude lactonitrile.
Example 3 This example used a test ore which is the same as in Example 1, the flotation being eifected at 22% solids. On successive portions diiferent nitriles were used and the results appear in the following table.
Compound tested as depressant:
Percentage of pyrite depressed It 'will be noted that most nitriles showed either no depression at all or a negligible amount, whereas the a'lpha-hydroxynitriles gave excellent depression. A particularly significant comparison is between ethylene cyanohydrin and lactonitrile, the latter being almost sixteen times as effective.
Example 4 A Missouri lead-zinc ore containing a small amount of pyrite and carbonate gangue minerals was ground to 65 mesh, diluted to about solids, conditioned for two minutes with 0.12 lb./ton sodium silicate and for three minutes longer with 0.09 lb./ton of sodium cyanide, followed by another two minutes with 0.03 lb./ton sodium ethyl xanthate and for one minute longer with a 0.12 lb./ton pine oil. The mixture was then floated for four minutes to obtain a lead concentrate.
The resulting tailing was conditioned for two minutes with 0.43 lb./ton soda ash and for a further four minutes with 1.0 lb./ton copper sulfate pentahydrate, followed by two minutes longer with 0.2 lb./ton technical sodium diethyldithiophosphate and for one minute longer with 0.07 lb./ton pine oil. The flotation was then carried on 'for four minutes to produce a zinc concentrate.
The procedure above was repeated, replacing the sodium cyanide with an equivalent amount of lactonitrile, and a third test was run again under the same conditions but with no depressant at all. The metallurgical results appear in the following table.
Depressant used NaCN Lacto- None nitrile Lead concentrate:
Assay, percent Pb 50. 8 57. 3 44. 4 Assay, percent ZN 3. 2 2. 2 3.8 Recovery, percent P 88. 0 88. 2 89. 5 1. 0 0.6 1. 3
Zinc concentrate:
Assay, percent Zn 53. 3 55.1 53.1 Assay, percent Pb.. 0.2 0.3 0. 2 Recovery, percent Z 97. 3 98. 1 95. 2 Recovery, percent Pb. 3. 5 1. 8 1.1
It will be apparent that while substantial depression was effected with sodium cyanide, the results with lactonitrile were definitely better; and in the lead concentrate, the lead was recovered with only 0.6 as much overall zinc contaminant. Similarly, the lactonitrile permitted a slightly better recovery of zinc in the zinc concentrate with only about half as much lead.
Example 5 A pyrite-bearing lead-zinc ore from northern New York analyzing 0.35% Pb, 9.1% Zn and 9.3% Fe was ground to mesh at 65% solids, diluted to about 22% solids, conditioned with 0.06 lb./ton sodium cyanide for three minutes and for two minutes longer with 0.06 lb./ton technical dicresyldithiophosphoric acid containing about 6% diphenyl thiourea. The pulp was then floated for four minutes to produce a lead concentrate, the pH being 7.4.
The tailings were then conditioned for two minutes with 4.0 lb./ ton of lime to produce a pH of 10.9, then for three minutes longer with 1.3 lb./ton copper sulfate pentahydrate, followed by two minutes with 0.13 lb./ton sodium ethyl xanthate and one minute with 0.16 lb./ton pine oil as a frother. Flotation as in the preceding examples was for four minutes to produce a zinc concentrate.
The procedure was repeated twice with equivalent amounts of lactonitrile and of acetone cyanohydrin in place of the sodium cyanide. The lactonitrile was a byproduct from the manufacture of acrylonitrile and contained about 85% of lactonitrile, the product being dirty and brownish black in color. Finally a control float was made under the same conditions with no depressant. The results of the tests appear in the following table.
It will be noted that a substantially better grade lead concentrate was obtained with the nitriles than with sodium cyanide and it was contaminated with less zinc. Recoveries were also somewhat better. In the case of the zinc concentrate again the grade was a little better 0 for the nitriles and the contamination with iron somewhat less.
Example 6' mesh with 1.0 lb./ton of sodium cyanide, 1.0 lb./ton zinc hydrosulfite, 1.0 lb./ton lime and 0.04 lb./ton of a 1:1 mixture of sodium mercaptobenzothiazole and sodium di(secondary butyl)dithiophosphate. After conditioning, the mixture was diluted to 20% solids and conditioned with 0.02 lb./ton of ammonium dicresyldithiophosphate and 0.02 lb./ton pine oil. Flotation was for three minutes to remove a lead concentrate which was cleaned by refloating with a 0.25 lb./ton zinc hydrosulfite and 0.25 lb./ton sodium cyanide.
The tailings from the lead rougher flotation operation were conditioned for five minutes with 2.0 lb./ton lime, 1.5 lb./ton copper sulfate penthahydrate and 0.1 lb./ton of a 1:1 mixture of sodium mercaptobenzothiazole and sodium di(secondary butyl)dithiophosphate. Thereupon the mixture was floated to remove a zinc concentrate which was cleaned by refioating with 0.5 lb./ ton lime and 0.05 lb./ton of the mercaptobenzothiazole-dithiophosphate mixture together with 0.04 lb./ton of pine oil as a frother.
A second test was run substituting an equivalent amount of crude lactonitrile for the sodium cyanide. The results appear in the following table.
Depressant used NaCN Lactonitrile Lead concentrate:
Assay, Percent Pb Assay, Percent Zn. Assay, Percent Fe Recovery, Percent Pb..-" Recovery, Percent Zn Zinc concentrate:
Assay, Percent Zn Assay, Percent Pb Assay, Percent Fe Recovery, Percent Zn.-. Recovery, Percent Pb (D O s s r ss (D OI mews:-
Example 7 An iron-bearing copper ore from Utah containing 0.9% Cu and 2.3% iron was ground to 60% solids 65 mesh with 2.6 lb./ton lime and 0.3 lb./ton sodium cyanide. The mixture was then diluted to 22% solids, conditioned for a minute with 0.03 1b./ton technical dicresyldithiophosphoric acid as promoter and then for one minute with 0.2 lb./ton of a 1:1 cresylic acid-fuel oil mixture as a frothing agent. Flotation was for five minutes to remove a copper concentrate.
The test was repeated, substituting by-product lactonitrile in equivalent amount for the sodium cyanide. The results of the tests appear in the following table.
It will be noted that the lactonitrile. gave slightly higher assay of copper with a somewhat increased recovery. This test illustrates that the nitriles are fully as good depressants as sodium cyanide, even on an ore which is specially suited for sodium cyanide repressant. As has been pointedout above, the improvements: obtained with the nitriles will vary from ore to ore.
We claim:
1. A method of selective froth flotation of ores containing depressable minerals selected from the group of zinc and iron minerals which comprises efiecting flotation in the presence of an effective amount of an alpha-hydroxynitrile selected from the group consisting of acetone,
cyanohydrin and those represented by the formula wherein R is selected from the group consisting of hydrogen, methyl and phenyl to produce a concentrate of the lead or copper relatively poor in zinc minerals, subjecting the tailings of the flotation operation to activation of the zinc minerals, refloating to produce a zinc concentrate relatively high in zinc and relatively low in lead or copper.
4. A flotation process according to claim 3 in which the ore is a lead-zinc ore.
5. A process according to claim 4 in which the alphahydroxynitrile is lactonitrile.
6. A process according to claim 3 in which the alphahydroxynitrile is lactonitrile.
7. A process according to claim 3 in which the ore is a copper-iron ore.
8. A process according to claim 7 in which the alphahydroxynitrile is lactonitrile.
9. A process according to claim 4 in which the nitrile is acetone cyanohydrin.
10. A process according to claim I in which the nitrile is acetone cyanohydrin.
References Cited in the file of this patent UNITED STATES PATENTS 1,552,936 McArthur Sept. 8, 1925 FOREIGN PATENTS 362,961 Great Britain Dec. 3, 1931 OTHER REFERENCES Taggart: Elements of Ore Dressing, John Wiley and Sons, Incorporated, 1951, pages 271-276.
Migrdichian: The Chemistry of Organic Cyanogen Compounds," ACS Monograph 105, Reinhold, New York, 1947, pages 173-176.
Claims (1)
1. A METHOD OF SELECTIVE FROTH FLOTATION OF ORES CONTAINING DEPRESSABLE MINERALS SELECTED FROM THE GROUP OF ZINC AND IRON MINERALS WHICH COMPRISES EFFECTING FLOATING IN THE PRESENCE OF AN EFFECTIVE AMOUNT OF AN ALPHA-HYDROXYNITRILE SELECTED FROM THE GROUP CONSISTING OF OCETONE CYANOHYDRIN AND THOSE REPRESENTED BY THE FORMULA
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US635135A US2984354A (en) | 1957-01-22 | 1957-01-22 | Hydroxynitriles as flotation modifiers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US635135A US2984354A (en) | 1957-01-22 | 1957-01-22 | Hydroxynitriles as flotation modifiers |
Publications (1)
Publication Number | Publication Date |
---|---|
US2984354A true US2984354A (en) | 1961-05-16 |
Family
ID=24546586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US635135A Expired - Lifetime US2984354A (en) | 1957-01-22 | 1957-01-22 | Hydroxynitriles as flotation modifiers |
Country Status (1)
Country | Link |
---|---|
US (1) | US2984354A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3386572A (en) * | 1965-03-08 | 1968-06-04 | American Cyanamid Co | Upgrading of copper concentrates from flotation |
US4394257A (en) * | 1979-11-19 | 1983-07-19 | American Cyanamid Company | Froth flotation process |
US4504385A (en) * | 1982-12-30 | 1985-03-12 | Sherex Chemical Company, Inc. | Ester-alcohol frothers for froth flotation of coal |
US4589980A (en) * | 1982-10-14 | 1986-05-20 | Sherex Chemical Company, Inc. | Promoters for froth flotation of coal |
US5544760A (en) * | 1994-10-20 | 1996-08-13 | Benn; Freddy W. | Flotation of lead sulfides using rapeseed oil |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1552936A (en) * | 1924-05-06 | 1925-09-08 | Jr Charles Kenneth Mcarthur | Concentration of ores |
GB362961A (en) * | 1930-09-03 | 1931-12-03 | Reginald John Lemmon | Improvements in or relating to the recovery of minerals or metal values by froth flotation |
-
1957
- 1957-01-22 US US635135A patent/US2984354A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1552936A (en) * | 1924-05-06 | 1925-09-08 | Jr Charles Kenneth Mcarthur | Concentration of ores |
GB362961A (en) * | 1930-09-03 | 1931-12-03 | Reginald John Lemmon | Improvements in or relating to the recovery of minerals or metal values by froth flotation |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3386572A (en) * | 1965-03-08 | 1968-06-04 | American Cyanamid Co | Upgrading of copper concentrates from flotation |
US4394257A (en) * | 1979-11-19 | 1983-07-19 | American Cyanamid Company | Froth flotation process |
US4589980A (en) * | 1982-10-14 | 1986-05-20 | Sherex Chemical Company, Inc. | Promoters for froth flotation of coal |
US4504385A (en) * | 1982-12-30 | 1985-03-12 | Sherex Chemical Company, Inc. | Ester-alcohol frothers for froth flotation of coal |
US5544760A (en) * | 1994-10-20 | 1996-08-13 | Benn; Freddy W. | Flotation of lead sulfides using rapeseed oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5411148A (en) | Selective flotation process for separation of sulphide minerals | |
US4387034A (en) | Mixed alkylthionocarbamates flotation collectors and ore dressing methods in which the collectors are employed | |
US2950818A (en) | Flotation process | |
US2302338A (en) | Froth flotation | |
US6149013A (en) | Enhanced flotation reagents for beneficiation of phosphate ores | |
US4256227A (en) | Froth flotation method for recovering metal values from their ores by thiourea or substituted thiourea | |
US4078993A (en) | Processes for flotation of mineral substances | |
US4507198A (en) | Flotation collectors and methods | |
US3590999A (en) | Flotation of sulfide ores | |
US2984354A (en) | Hydroxynitriles as flotation modifiers | |
US3590998A (en) | Flotation of sulfide ores | |
US4220525A (en) | Beneficiation of metallic ores by froth flotation using polyhydroxy amine depressants | |
US2399845A (en) | Treatment of ores containing coralt and nickel | |
US3469692A (en) | Use of organic dithiols as flotation reagents | |
US2298281A (en) | Process of flotation separation of ore | |
US3788467A (en) | Flotation process for recovering molybdenum | |
US4159943A (en) | Froth flotation of ores using hydrocarbyl bicarbonates | |
US3037627A (en) | Method of beneficiating sulfide and oxide ores of copper, manganese, lead and zinc | |
US2285394A (en) | Flotation method | |
US4530758A (en) | Ore flotation method | |
US3309029A (en) | Activation of sulfide ores for froth flotation | |
US2238439A (en) | Froth flotation process | |
US4098686A (en) | Froth flotation method for recovering of minerals | |
US2175093A (en) | Process of concentrating ores by froth flotation | |
US2512669A (en) | Flotation process |