US2969382A - Process for the manufacture of cyclopentadienyl group iii-a metal compounds - Google Patents
Process for the manufacture of cyclopentadienyl group iii-a metal compounds Download PDFInfo
- Publication number
- US2969382A US2969382A US730769A US73076958A US2969382A US 2969382 A US2969382 A US 2969382A US 730769 A US730769 A US 730769A US 73076958 A US73076958 A US 73076958A US 2969382 A US2969382 A US 2969382A
- Authority
- US
- United States
- Prior art keywords
- cyclopentadienyl
- metal
- tris
- aluminum
- group iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 title description 25
- 150000002736 metal compounds Chemical class 0.000 title description 23
- 229910052751 metal Inorganic materials 0.000 claims description 48
- 239000002184 metal Substances 0.000 claims description 48
- 239000007983 Tris buffer Substances 0.000 claims description 20
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 14
- -1 CYCLO- PENTADIENYL GROUP Chemical group 0.000 description 32
- 238000006243 chemical reaction Methods 0.000 description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 14
- 239000002904 solvent Substances 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 7
- FAEJSHJCQPJDPX-UHFFFAOYSA-N tri(cyclopenta-2,4-dien-1-yl)alumane Chemical class C1(C=CC=C1)[Al](C1C=CC=C1)C1C=CC=C1 FAEJSHJCQPJDPX-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- RLSXPBZFNWIZQR-UHFFFAOYSA-N di(cyclopenta-2,4-dien-1-yl)mercury Chemical compound C1=CC=CC1[Hg]C1C=CC=C1 RLSXPBZFNWIZQR-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910052716 thallium Inorganic materials 0.000 description 6
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 6
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 4
- DEIHRWXJCZMTHF-UHFFFAOYSA-N [Mn].[CH]1C=CC=C1 Chemical compound [Mn].[CH]1C=CC=C1 DEIHRWXJCZMTHF-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- JGLVQJXCFCINBL-UHFFFAOYSA-N 1-octylcyclopenta-1,3-diene Chemical compound CCCCCCCCC1=CC=CC1 JGLVQJXCFCINBL-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- QRXXNIBARLQXQT-UHFFFAOYSA-N tris(1h-inden-1-yl)alumane Chemical compound C1=CC2=CC=CC=C2C1[Al](C1C2=CC=CC=C2C=C1)C1C2=CC=CC=C2C=C1 QRXXNIBARLQXQT-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- JUHCSCYKRLIRST-UHFFFAOYSA-N C1=CC2=CC=CC=C2C1[Zn]C1C2=CC=CC=C2C=C1 Chemical compound C1=CC2=CC=CC=C2C1[Zn]C1C2=CC=CC=C2C=C1 JUHCSCYKRLIRST-UHFFFAOYSA-N 0.000 description 2
- HPYIUKIBUJFXII-UHFFFAOYSA-N Cyclopentadienyl radical Chemical compound [CH]1C=CC=C1 HPYIUKIBUJFXII-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- QROCSKKOEBOLQO-UHFFFAOYSA-N [Mn](C1C=CC=C1)C1C=CC=C1 Chemical class [Mn](C1C=CC=C1)C1C=CC=C1 QROCSKKOEBOLQO-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- CZOJZQFOOZUMDU-UHFFFAOYSA-N bis(1-methylcyclopenta-2,4-dien-1-yl)mercury Chemical compound CC1(C=CC=C1)[Hg]C1(C=CC=C1)C CZOJZQFOOZUMDU-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 235000002867 manganese chloride Nutrition 0.000 description 2
- 239000011565 manganese chloride Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- GBDZXPJXOMHESU-UHFFFAOYSA-N 1,2,3,4-tetrachlorobenzene Chemical class ClC1=CC=C(Cl)C(Cl)=C1Cl GBDZXPJXOMHESU-UHFFFAOYSA-N 0.000 description 1
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical class ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- CNJRPYFBORAQAU-UHFFFAOYSA-N 1-ethoxy-2-(2-methoxyethoxy)ethane Chemical compound CCOCCOCCOC CNJRPYFBORAQAU-UHFFFAOYSA-N 0.000 description 1
- CAQYAZNFWDDMIT-UHFFFAOYSA-N 1-ethoxy-2-methoxyethane Chemical compound CCOCCOC CAQYAZNFWDDMIT-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000005810 carbonylation reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- IMSPRWXXRYFLEJ-UHFFFAOYSA-N cyclopenta-1,3-diene;manganese(2+) Chemical compound [Mn+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 IMSPRWXXRYFLEJ-UHFFFAOYSA-N 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- 229960002523 mercuric chloride Drugs 0.000 description 1
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 1
- BQPIGGFYSBELGY-UHFFFAOYSA-N mercury(2+) Chemical compound [Hg+2] BQPIGGFYSBELGY-UHFFFAOYSA-N 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- OHUVHDUNQKJDKW-UHFFFAOYSA-N sodium;cyclopenta-1,3-diene Chemical compound [Na+].C=1C=C[CH-]C=1 OHUVHDUNQKJDKW-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- YGLIFDACLKVYLS-UHFFFAOYSA-N tri(cyclopenta-2,4-dien-1-yl)indigane Chemical compound C1(C=CC=C1)[In](C1C=CC=C1)C1C=CC=C1 YGLIFDACLKVYLS-UHFFFAOYSA-N 0.000 description 1
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- BXQOQJDFBIZSOA-UHFFFAOYSA-N tris(1-methylcyclopenta-2,4-dien-1-yl)alumane Chemical compound C1=CC=CC1(C)[Al](C1(C)C=CC=C1)C1(C)C=CC=C1 BXQOQJDFBIZSOA-UHFFFAOYSA-N 0.000 description 1
- QGJCKEYSGMMWIQ-UHFFFAOYSA-N tris(1-methylcyclopenta-2,4-dien-1-yl)indigane Chemical compound C1=CC=CC1(C)[In](C1(C)C=CC=C1)C1(C)C=CC=C1 QGJCKEYSGMMWIQ-UHFFFAOYSA-N 0.000 description 1
- PIPBFQMRVPDOHR-UHFFFAOYSA-N tris(1H-inden-1-yl)borane Chemical compound C1(C=CC2=CC=CC=C12)B(C1C=CC2=CC=CC=C12)C1C=CC2=CC=CC=C12 PIPBFQMRVPDOHR-UHFFFAOYSA-N 0.000 description 1
- RCEKDAQRKRRWMS-UHFFFAOYSA-N tris(9H-fluoren-1-yl)alumane Chemical compound C1(=CC=CC=2C3=CC=CC=C3CC12)[Al](C1=CC=CC=2C3=CC=CC=C3CC12)C1=CC=CC=2C3=CC=CC=C3CC12 RCEKDAQRKRRWMS-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
Definitions
- This invention relates to the manufacture of organo compounds of group III-A metals and more particularly to a process for the manufacture of cyclopentadienyl compounds of these metals.
- Cyclopentadienyl group III-A metal compounds are useful in the manufacture of cyclopentadienyl compounds of other metals, particularly the transition metals such as manganese cyclopentadienyl compounds. Particularly important of these are cyclopentadienyl manganese tricarbonyl compounds which are extremely effective antiknocks for gasoline used in internal combustion engines.
- the cyclopentadienyl manganese tricarbonyl compounds are normally manufactured by reacting bis- (cyclopentadienyl) manganese compounds with carbon monoxide.
- the bis(cyclopentadienyl)manganese compounds can effectively be manufactured by reacting tris- (cyclopentadienyl)aluminum compounds and other group III-A metals, made in accordance with this invention, with manganous compounds, particularly manganous salts, such as the halides, e.g. manganous chloride.
- an object of this invention to provide an improved process for the manufacture of tris- (cyclopentadienyl) group III-A metal compounds. More particularly, it is an object of this invention to provide an economical process of the above type which provides high conversions to the desired tris(cyclopentadienyl) group III-A metal compounds.
- a more specific object is to provide a process whereby the tris(cyclopentadienyl) group IIIA metal compounds can be produced directly from the corresponding group III-A metal and particularly a process which does not require elevated pressure and which can be carried out at moderate temperatures.
- the process of this invention comprises reacting a cyclopentadienyl group II-B metal compound with from 1 to about 10 mole equivalents of the group III-A metal. Normally, a more preferred concentration range in from 1 to 6 mole equivalents. An even greater excess of the group III-A metal can be employed and is frequently desired if the excess metal is used for subsequent reactions, as directed below. In actual operation, it is usually convenient to first dissolve the group II-B metal compound in a solvent system and thereafter mix or disperse the subdivided metal in this solution. Alternatively, the metal can be first dispersed in the solvent and the group II-B metal compound added to this dispersion or suspension.
- the cyclopentadienyl radical for example, can be any cyclomatic radical having the .S-mernber ring found in cyclopentadiene itself. That is, the cyclopentadienyl group can be the cyclopentadienyl radical itself or alkyl or aryl substituted cyclopentadienyl radicals. Furthermore, condensed ring cyclopentadienyl radicals, such as the indenyl and fluorenyl radicals can be employed.
- the cyclopentadienyl radicals which are most suitable for use in the manufacture of manganese compounds are those containing a total of 5 up to 15 carbon atoms.
- cyclopentadienyl group III-A metal compounds which can be made in accordance with this invention are tris(cyclopentadienyDboron, tris (methylcyclopentadienyl) boron, tris(ethylcyclopentadienyl) boron, tris(hexylcyclopentadienyl) boron, tris(octylcyclopentadienyl) boron, bis(cyclopentadienyl)methylcyclopentadienyl boron, tris(phenylcyclopentadienyl)boron, tris- (cyclopentadienyl) aluminum, tris(methylcyclopentadienyl) a.uminum, bis (cyclopentadienyl) methylcyclopentadienyl aluminum, cyclopentadienyl bis(methylcyclopentadienyl)aluminum, tris(1,2 dimethyl
- the cyclopentadienyl group 11-13 metal compounds which can be employed in the process of the present in vention correspond to the cyclopentadienyl groups of the above compounds.
- aluminum metal is reacted with bis(cyclopentadienyl)mercury or other corresponding group II-B metal compound.
- bis(indenyl)zinc or other group II-B metal compound is reacted with boron metal.
- a mixed cyclopentadienyl group II- B metal compound can be employed, such as cyclopentadienyl methylcyclopentadienyl mercury or alternatively, bis(cyclopentadienyl) group II-B metal compound, and bis(methylcyclopentadienyl) group II-B metal compound can be reacted simultaneously with a group III-A metal.
- the solid group III-A metal is preferably used in a state of subdivision ranging from a powder to metallic chips.
- the more subdivided the metal is the more rapid and more complete the reaction.
- best results are obtained when the solid metal has a particle size ranging from about 1 micron to about 2 millimeters.
- a particularly suitable method of preparing solid metals for reaction involves forming chips of the metal by passing a massive form of metal into a cutting blade or tool, preferably under the surface of an inert liquid to prevent contamination or oxidation of the metal surface with the air.
- the metal may be masses subdivided by atomization, grinding, spraying the molten metal, and the like.
- a very reactive form of metal can be prepared by alloying the group III-A metal with other metals and particularly useful are amalgams, alloys with copper, and the like.
- the metal surfaces can be activated by a variety of procedures.
- a particularly suitable method is to treat the metal in subdivided form with an organic solvent solution of a hydrogen halide, particularly an ethereal solution of hydrogen chloride or hydrogen bromide.
- Any ether solution is suitable for this purpose, including aliphatic, aromatic and cyclic ethers. Also suitable are poly ethers of the ethylene glycol type.
- group III-A metal treatment is with an organo metallic compound, particularly alkyl metal compounds of groups I-A, ILA and III-A, e.g. lithium aluminum tetraethyl, triethyl aluminum, triisopropyl aluminum, tributyl aluminum, trietlhyl boron, tris(cyclopentadienyl) aluminum, and the A highly reactive form of group III-A metal can be obtained by employing the metal in excess and thereafter reusing the unreacted metal contained in the reaction product residue in a subsequent reaction with the group lL-B metal cyclopentadienyl compound.
- groups I-A, ILA and III-A e.g. lithium aluminum tetraethyl, triethyl aluminum, triisopropyl aluminum, tributyl aluminum, trietlhyl boron, tris(cyclopentadienyl) aluminum
- liquid media or solvents suitable for use in the present invention are hydrocarbons, chlorohydrocarbons, amines, ethers, and other liquid media which are inert to the reactants or products.
- the preferred solvents for the process of this invention are aromatic hydrocarbons and ethers.
- Suitable solvents are hexane, heptane, octane, decane and higher aliphatic hydrocarbons up to about 18 carbon atoms, benzenes, toluene, xylene, mesitylene, ethyl benzene, diphenyl, naphthalene, alkyl naphthalenes, dichlorobenzene, trichlorobenzenes, tetrachlorobenzenes, dimethyl ether, diethyl ether, methyl ethyl ether, dibutyl.
- ether tetrahydrofuran, dioxane
- ethylene glycol dimethyl ether ethylene glycol diethyl ether
- ethylene glycol methyl ethyl ether diethylene glycol methyl ether
- diethylene glycol methyl ethyl ether diethylene glycol dibutyl ether
- triethylene glycol dimethyl ether tetraethylene glycol dimethyl ether and other ethylene glycol dialkyl ethers in which the alkyl groups have from 1 to 10 carbon atoms.
- suitable solvents for this invention are trimethylamine, triethylamine, tributylamine, diethyl aniline, dicyclohexylamine, and the like.
- reaction mixture In conducting the process of the present invention, it is normally desired to agitate the reaction mixture throughout the reaction so as to obtain a rapid reaction rate and to aid in heat distribution and removal from the reaction system. Normally, this can be accomplished by an internal agitator or by bubbling an inert gas through the liquid system. However, if desired, the reactor can be agitated to obtain the desired mixing of the reaction media.
- reaction mixture was then centrifuged to remove suspended aluminum. Solvent was removed by evaporation at room temperature.
- the tris(cyclopentadienyl)aluminum (1 mole) prepared above is reacted with stoichiometric quantities of anhydrous manganous chloride at C. in diethylene glycol dimethyl ether (1 mole).
- the reaction mixture is stirred throughout the reaction.
- the bis(cyclopentadienyl)manganese so formed is thereafter reacted with carbon monoxide (500 p.s.i.g.) at C. to produce cyclopentadienyl manganese tricarbonyl.
- This product after purification by distillation, is then blended in gasoline (0.2 gram manganese metal/ gal. of gasoline) to raise the octane number of the gasoline 2 octane numbers.
- Tris(cycl0pentadienyl) boron Tris(methylcyclopentadienyl) boron Bis(methylcyclopentadienyl)mercury is reacted with metallic boron activated by treating the boron granules with hydrogen bromide dissolved in diethylene glycol dimethyl ether. The reaction is carried out in a triethylamine solvent at a temperature of 50 C. A good yield of the product is obtained.
- EXAMPLE IX Tris(n-octylcyclopentadienyl) indium Indium metal (11.5 parts) is added to 200 parts of n-octylcyclopentadiene. The indium metal is pretreated with aluminum triethyl to activate the metal. The acti- 35 vation is conducted at 70 C. and the indium metal is separated from the excess aluminum triethyl and transferred to the reaction vessel containing the n-octylcyclopentadiene under an inert atmosphere. This reaction mixture is then heated to a temperature of 125 C. for five hours and the tris (n-octylcyclopentadienyl)indium is thereafter recovered in excellent yield by distilling 011 the excess n-octylcyclopentadiene at 1 mm. Hg. pressure.
- Tris(cyclopentadienyl) thallium Bis(cyclopentadienyl)mercury is dissolved in toluene, reacted with metallic thallium (2 mole equivalents) at reflux temperature.
- the thallium is activated by preferably treating the granular thallium with tris(cyclopenta- 10 dienyl)aluminum.
- the tris(cyclopentadienyDthallium is obtained in excellent yield.
- a process for the manufacture of a tris(cyclopentadienyl hydrocarbon) group III-A metal which comprises reacting a group III-A elemental metal with a bis(cyclopentadienyl hydrocarbon) group II-B metal at a temperature of between about to 150 C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
2, ,32 Patented Jan. 2 2 1361 PROCESS FOR THE MANUFACTURE OF CYCLO- PENTADIENYL GROUP III-A METAL COM- POUNDS Jesse R. Maugham, Baton Rouge, La., assignor to Ethyl Corporation, New York, N.Y., a corporation of Dela= ware No Drawing. Filed Apr. 25, 1958, Ser. No. 730,769
5 Claims. (Cl. 260-448) This invention relates to the manufacture of organo compounds of group III-A metals and more particularly to a process for the manufacture of cyclopentadienyl compounds of these metals.
Cyclopentadienyl group III-A metal compounds are useful in the manufacture of cyclopentadienyl compounds of other metals, particularly the transition metals such as manganese cyclopentadienyl compounds. Particularly important of these are cyclopentadienyl manganese tricarbonyl compounds which are extremely effective antiknocks for gasoline used in internal combustion engines. The cyclopentadienyl manganese tricarbonyl compounds are normally manufactured by reacting bis- (cyclopentadienyl) manganese compounds with carbon monoxide. The bis(cyclopentadienyl)manganese compounds can effectively be manufactured by reacting tris- (cyclopentadienyl)aluminum compounds and other group III-A metals, made in accordance with this invention, with manganous compounds, particularly manganous salts, such as the halides, e.g. manganous chloride.
It is, accordingly, an object of this invention to provide an improved process for the manufacture of tris- (cyclopentadienyl) group III-A metal compounds. More particularly, it is an object of this invention to provide an economical process of the above type which provides high conversions to the desired tris(cyclopentadienyl) group III-A metal compounds. A more specific object is to provide a process whereby the tris(cyclopentadienyl) group IIIA metal compounds can be produced directly from the corresponding group III-A metal and particularly a process which does not require elevated pressure and which can be carried out at moderate temperatures. Other objects and advantages of the present invention will become more apparent from the following description and appended claims.
These and other objects of the invention can be accomplished by reacting directly the group III-A metal with a bis(cyclopentadienyl) compound of a group 11-13 metal, i.e. zinc, cadmium and mercury. This process is carried out at a temperature of from about 20 to 150 C., preferably 0 to 100 C. The process is preferably conducted in a liquid media which is a solvent for the bis(cyclopentadienyl) group II-B metal compounds. In the case of the group III-A metals which are solids under reaction conditions, best results are obtained when the metal is subdivided prior to reaction and when the metal is activated either prior to or during reaction.
The effectiveness of the above process in producing tris(cyclopentadienyl) group III-A metal compounds is surprising since the reaction is found to be relatively rapid at very moderate temperatures, that is, Well below the decomposition temperature of the relatively unstable bis(cyclopentadienyl) group II-B metal compounds. Under the conditions of the reaction exceptionally good yields are obtained of the desired group IIIA metal compounds without any appreciable decomposition of either the reactants or the product.
More particularly, the process of this invention comprises reacting a cyclopentadienyl group II-B metal compound with from 1 to about 10 mole equivalents of the group III-A metal. Normally, a more preferred concentration range in from 1 to 6 mole equivalents. An even greater excess of the group III-A metal can be employed and is frequently desired if the excess metal is used for subsequent reactions, as directed below. In actual operation, it is usually convenient to first dissolve the group II-B metal compound in a solvent system and thereafter mix or disperse the subdivided metal in this solution. Alternatively, the metal can be first dispersed in the solvent and the group II-B metal compound added to this dispersion or suspension.
Any of a wide variety of tris(cyclopentadienyl) group III-A metal compounds can be made in accordance with this invention. The cyclopentadienyl radical, for example, can be any cyclomatic radical having the .S-mernber ring found in cyclopentadiene itself. That is, the cyclopentadienyl group can be the cyclopentadienyl radical itself or alkyl or aryl substituted cyclopentadienyl radicals. Furthermore, condensed ring cyclopentadienyl radicals, such as the indenyl and fluorenyl radicals can be employed. The cyclopentadienyl radicals which are most suitable for use in the manufacture of manganese compounds are those containing a total of 5 up to 15 carbon atoms.
Typical examples of cyclopentadienyl group III-A metal compounds which can be made in accordance with this invention are tris(cyclopentadienyDboron, tris (methylcyclopentadienyl) boron, tris(ethylcyclopentadienyl) boron, tris(hexylcyclopentadienyl) boron, tris(octylcyclopentadienyl) boron, bis(cyclopentadienyl)methylcyclopentadienyl boron, tris(phenylcyclopentadienyl)boron, tris- (cyclopentadienyl) aluminum, tris(methylcyclopentadienyl) a.uminum, bis (cyclopentadienyl) methylcyclopentadienyl aluminum, cyclopentadienyl bis(methylcyclopentadienyl)aluminum, tris(1,2 dimethylcyclopentadienyl) aluminum, tris( l,3-methylphenylcyclopentadienyl) aluminum, tris (indenyl) aluminum, tris (fluorenyl) aluminum, tris(cyclopentadienyl)gallium, tris(indenyl)gallium, tris- (cyclopentadienyl) indium, tris (methylcyclopentadienyl) indium, tris(cyclopentadienyl)thallium and tris(fluoroenyl) thallium.
The cyclopentadienyl group 11-13 metal compounds which can be employed in the process of the present in vention correspond to the cyclopentadienyl groups of the above compounds. Thus, in the manufacture of tris- (cyclopentadienyl)aluminum, aluminum metal is reacted with bis(cyclopentadienyl)mercury or other corresponding group II-B metal compound. Similarly, in the manufacture of tris(indenyl)boron, bis(indenyl)zinc or other group II-B metal compound is reacted with boron metal. In the preparation of mixed cyclopentadienyl group III- A metal compounds, a mixed cyclopentadienyl group II- B metal compound can be employed, such as cyclopentadienyl methylcyclopentadienyl mercury or alternatively, bis(cyclopentadienyl) group II-B metal compound, and bis(methylcyclopentadienyl) group II-B metal compound can be reacted simultaneously with a group III-A metal.
The solid group III-A metal is preferably used in a state of subdivision ranging from a powder to metallic chips. In general, the more subdivided the metal is, the more rapid and more complete the reaction. In general, best results are obtained when the solid metal has a particle size ranging from about 1 micron to about 2 millimeters. A particularly suitable method of preparing solid metals for reaction involves forming chips of the metal by passing a massive form of metal into a cutting blade or tool, preferably under the surface of an inert liquid to prevent contamination or oxidation of the metal surface with the air. Contrariwise, the metal may be masses subdivided by atomization, grinding, spraying the molten metal, and the like. A very reactive form of metal can be prepared by alloying the group III-A metal with other metals and particularly useful are amalgams, alloys with copper, and the like.
The metal surfaces can be activated by a variety of procedures. A particularly suitable method is to treat the metal in subdivided form with an organic solvent solution of a hydrogen halide, particularly an ethereal solution of hydrogen chloride or hydrogen bromide. Any ether solution is suitable for this purpose, including aliphatic, aromatic and cyclic ethers. Also suitable are poly ethers of the ethylene glycol type.
Another method of suitably activating group III-A metal treatment is with an organo metallic compound, particularly alkyl metal compounds of groups I-A, ILA and III-A, e.g. lithium aluminum tetraethyl, triethyl aluminum, triisopropyl aluminum, tributyl aluminum, trietlhyl boron, tris(cyclopentadienyl) aluminum, and the A highly reactive form of group III-A metal can be obtained by employing the metal in excess and thereafter reusing the unreacted metal contained in the reaction product residue in a subsequent reaction with the group lL-B metal cyclopentadienyl compound.
The liquid media or solvents suitable for use in the present invention are hydrocarbons, chlorohydrocarbons, amines, ethers, and other liquid media which are inert to the reactants or products. The preferred solvents for the process of this invention are aromatic hydrocarbons and ethers. Typical examples of suitable solvents are hexane, heptane, octane, decane and higher aliphatic hydrocarbons up to about 18 carbon atoms, benzenes, toluene, xylene, mesitylene, ethyl benzene, diphenyl, naphthalene, alkyl naphthalenes, dichlorobenzene, trichlorobenzenes, tetrachlorobenzenes, dimethyl ether, diethyl ether, methyl ethyl ether, dibutyl. ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol methyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and other ethylene glycol dialkyl ethers in which the alkyl groups have from 1 to 10 carbon atoms. Other suitable solvents for this invention are trimethylamine, triethylamine, tributylamine, diethyl aniline, dicyclohexylamine, and the like.
In carrying out the process of this invention, many of the compounds used as reactants and, to some degree, the compounds produced by this invention are reactive to oxygen and/or moisture. For this reason it is preferred to conduct the reaction in the presence of an inert atmosphere, such as dry nitrogen, argon, helium or other non-reactive gases. In some cases, it may be desirable to carry out simultaneously or step-Wise the reaction to form the tris(cyclopentadienyl) group III-A metal compound and convert this compound to the corresponding cyclopentadienyl manganese tricarbonyl compound. Under these conditions it is frequently desirable to use the carbon monoxide employed in the carbonylation reaction as the inert atmosphere.
In conducting the process of the present invention, it is normally desired to agitate the reaction mixture throughout the reaction so as to obtain a rapid reaction rate and to aid in heat distribution and removal from the reaction system. Normally, this can be accomplished by an internal agitator or by bubbling an inert gas through the liquid system. However, if desired, the reactor can be agitated to obtain the desired mixing of the reaction media.
The following examples wherein all parts are parts by weight illustrate the process of this invention:
EXAMPLE I Tris(cyclpentadienyl)aluminum To a reaction vessel equipped with a stirrer and a thermometer, and previously purged. with dry nitrogen was added 8.1 parts (0.302 mole) of finely ground aluminum metal. The aluminum was treated With a diethyl ether solution of anhydrous hydrogen chloride for the purpose of cleaning and activating the surface of the aluminum. The reaction was allowed to continue until all of the metal became dispersed in the foamy mixture. The ether was then removed by three washings with toluene and finally parts of toluene was added as a solvent for the reaction.
With stirring, 25 parts (0.0755 mole) of bis(cyclopentadienyl)mercury Was then added which had been previously prepared according to the method of Wilkinson and Piper, J. Inorg. Nucl. Chem. 2, 32 (1956), from cyclopentadienyl sodium and mercuric chloride. After a 30-minute addition period during which the temperature rose to 45 C., the reaction mixture was stirred for an additional hour at room temperature. A test for mercuric ion in solution was negative.
The reaction mixture was then centrifuged to remove suspended aluminum. Solvent was removed by evaporation at room temperature.
There was obtained 10.7 parts (95.6% yield) of the grey solid tris(cyclopentadienyl)aluminum which melted at 50 to 60 C. It was soluble in benzene and toluene, A portion, on exposure to air, did not spontaneously inflame. Instead, it gradually whitened, indicating formation of aluminum oxide and hydroxide due to attack of atmospheric oxygen and moisture. Upon treatment with Water, white aluminum hydroxide was formed. This was soluble in dilute acid. The pro-duct on aging, stored under nitrogen, showed no tendency to discolor or change in character. The analysis of the product showed 12.1 percent aluminum, the theoretical being 12.24 percent.
The tris(cyclopentadienyl)aluminum (1 mole) prepared above is reacted with stoichiometric quantities of anhydrous manganous chloride at C. in diethylene glycol dimethyl ether (1 mole). The reaction mixture is stirred throughout the reaction. The bis(cyclopentadienyl)manganese so formed is thereafter reacted with carbon monoxide (500 p.s.i.g.) at C. to produce cyclopentadienyl manganese tricarbonyl. This product, after purification by distillation, is then blended in gasoline (0.2 gram manganese metal/ gal. of gasoline) to raise the octane number of the gasoline 2 octane numbers.
EXAMPLE II T ris(methylcyclopentadienyl )aluminum Example I is repeated except that bis(methylcyclopentadienyl)mercury is employed instead of bis(cyclopentadienyl)mercury. Similar results are obtained.
EXAMPLE H1 Tris(indenyl) aluminum Example I is repeated except that bis('indenyl)mercury is employed instead of bis(cyclopentadienyl)mercury, and hexane is employed as the solvent. Very satisfactory yield of the tris(indenyl) aluminum are obtained.
EXAMPLE IV Tris(cycl0pentadienyl) boron Tris(methylcyclopentadienyl) boron Bis(methylcyclopentadienyl)mercury is reacted with metallic boron activated by treating the boron granules with hydrogen bromide dissolved in diethylene glycol dimethyl ether. The reaction is carried out in a triethylamine solvent at a temperature of 50 C. A good yield of the product is obtained.
EXAMPLE VI Trz's(decylcyclopentadienyl) boron Example I is repeated except that bis(decylcyclopentadienyl)mercury is reacted with the excess boron recovered from the preceding example and the reaction is conducted in diethyl ether solvent at a temperature of 20 C. The tris(decylcyclopentadienyl)boron is recovered in good yield.
EXAMPLE VII Cyclopenmdienyl bis(methylcyclopentadienyl) boron good yield.
EXAMPLE VIH T ris( indenyl gallium Example I is repeated except that bis(indenyl)zinc is reacted with gallium metal in the absence of any solvent and at a temperature of about 140 C. The tris(indenyl)- gallium is obtained in very good yield.
EXAMPLE IX Tris(n-octylcyclopentadienyl) indium Indium metal (11.5 parts) is added to 200 parts of n-octylcyclopentadiene. The indium metal is pretreated with aluminum triethyl to activate the metal. The acti- 35 vation is conducted at 70 C. and the indium metal is separated from the excess aluminum triethyl and transferred to the reaction vessel containing the n-octylcyclopentadiene under an inert atmosphere. This reaction mixture is then heated to a temperature of 125 C. for five hours and the tris (n-octylcyclopentadienyl)indium is thereafter recovered in excellent yield by distilling 011 the excess n-octylcyclopentadiene at 1 mm. Hg. pressure.
EXAMPLE X 5 Tris(cyclopentadienyl) thallium Bis(cyclopentadienyl)mercury is dissolved in toluene, reacted with metallic thallium (2 mole equivalents) at reflux temperature. The thallium is activated by preferably treating the granular thallium with tris(cyclopenta- 10 dienyl)aluminum. The tris(cyclopentadienyDthallium is obtained in excellent yield.
I claim:
1. A process for the manufacture of a tris(cyclopentadienyl hydrocarbon) group III-A metal which comprises reacting a group III-A elemental metal with a bis(cyclopentadienyl hydrocarbon) group II-B metal at a temperature of between about to 150 C.
2. The process of claim 1 wherein the group III-A metal is aluminum.
20 3. The process of claim 2 wherein the cyclopentadienyl group contains from 5 to 15 carbon atoms.
4. The process for the manufacture of tris(cyclopentadienyl) aluminum comprising reacting aluminum with bis(cyclopentadienyl)mercury at a temperature of from 20 to 150 C.
5. The process for the manufacture of tris(methylcyclopentadienyl) aluminum comprising reacting aluminum with bis(methylcyclopentadienyl)mercury at a temperature between about --20 to 150 C.
References Cited in the file of this patent UNITED STATES PATENTS 2,818,416 Brown et a]. Dec. 31, 1957 2,831,007 Meister Apr. 15, 1958 FOREIGN PATENTS 1,080,357 France May 26, 1954 OTHER REFERENCES 1956, vol. 2, pp. 32-37.
Claims (1)
1. A PROCESS FOR THE MANUFACTURE OF A TRIS(CYCLOPENTADIENYL HYDROCARBON) GROUP III-A METAL WHICH COMPRISES REACTING A GROUP III-A ELEMENTAL METAL WITH A BIS(CYCLOPENTADIENYL HYDROCARBON) GROUP II-B METAL AT A TEMPERATURE OF BETWEEN ABOUT -20 TO 150*C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US730769A US2969382A (en) | 1958-04-25 | 1958-04-25 | Process for the manufacture of cyclopentadienyl group iii-a metal compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US730769A US2969382A (en) | 1958-04-25 | 1958-04-25 | Process for the manufacture of cyclopentadienyl group iii-a metal compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
US2969382A true US2969382A (en) | 1961-01-24 |
Family
ID=24936744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US730769A Expired - Lifetime US2969382A (en) | 1958-04-25 | 1958-04-25 | Process for the manufacture of cyclopentadienyl group iii-a metal compounds |
Country Status (1)
Country | Link |
---|---|
US (1) | US2969382A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3476788A (en) * | 1966-09-19 | 1969-11-04 | Mobil Oil Corp | Derivatives of the growth reaction of ethylene with trihydrodicyclopentadienyl aluminum |
EP0181706A1 (en) * | 1984-10-25 | 1986-05-21 | Morton Thiokol, Inc. | Hybrid organometallic compounds of In and ba and process for metal organic chemical vapour deposition |
US4699987A (en) * | 1986-06-03 | 1987-10-13 | Regents Of The University Of Minnesota | (Perfluoroalkyl)-cyclopentadienylthallium |
US4992305A (en) * | 1988-06-22 | 1991-02-12 | Georgia Tech Research Corporation | Chemical vapor deposition of transistion metals |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1080357A (en) * | 1952-07-05 | 1954-12-08 | Ethyl Corp | Improvements to anti-detonating fuels |
US2818416A (en) * | 1952-12-10 | 1957-12-31 | Ethyl Corp | Cyclomatic compounds |
US2831007A (en) * | 1954-06-25 | 1958-04-15 | Huels Chemische Werke Ag | Process for the production of cyclopentadiene-thallium |
-
1958
- 1958-04-25 US US730769A patent/US2969382A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1080357A (en) * | 1952-07-05 | 1954-12-08 | Ethyl Corp | Improvements to anti-detonating fuels |
US2818416A (en) * | 1952-12-10 | 1957-12-31 | Ethyl Corp | Cyclomatic compounds |
US2831007A (en) * | 1954-06-25 | 1958-04-15 | Huels Chemische Werke Ag | Process for the production of cyclopentadiene-thallium |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3476788A (en) * | 1966-09-19 | 1969-11-04 | Mobil Oil Corp | Derivatives of the growth reaction of ethylene with trihydrodicyclopentadienyl aluminum |
EP0181706A1 (en) * | 1984-10-25 | 1986-05-21 | Morton Thiokol, Inc. | Hybrid organometallic compounds of In and ba and process for metal organic chemical vapour deposition |
US4720560A (en) * | 1984-10-25 | 1988-01-19 | Morton Thiokol, Inc. | Hybrid organometallic compounds, particularly for metal organic chemical vapor deposition |
US4699987A (en) * | 1986-06-03 | 1987-10-13 | Regents Of The University Of Minnesota | (Perfluoroalkyl)-cyclopentadienylthallium |
WO1987007608A1 (en) * | 1986-06-03 | 1987-12-17 | Regents Of The University Of Minnesota | (perfluoroalkyl)-cyclopentadienyl thallium |
US4992305A (en) * | 1988-06-22 | 1991-02-12 | Georgia Tech Research Corporation | Chemical vapor deposition of transistion metals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0529371B2 (en) | ||
US4222969A (en) | Hydrocarbon soluble magnesium compositions of high magnesium content | |
US2969382A (en) | Process for the manufacture of cyclopentadienyl group iii-a metal compounds | |
US3043857A (en) | Preparation of hydrides of the fourth and fifth group elements | |
EP0015058B1 (en) | Hydrocarbon soluble dialkyl magnesium compositions of high magnesium content, production thereof and hydrocarbon solutions thereof | |
JPH02221110A (en) | Method for reduction of halide of silicon, germanium, and tin | |
US3057897A (en) | Preparation of organolead compounds | |
EP0083374A1 (en) | Novel process for producing silicon hydride | |
EP0217980A1 (en) | Process for producing germanes | |
US3187054A (en) | Production of organic compounds containing boron-carbon bonds | |
US2964548A (en) | Process for the preparation of cyclomatic manganese compounds | |
Wells et al. | Preparation and chemistry of Me3SiCH2AsH2; Preparation of [Me3SiCH2 (H) AsGaPh2] 3, a trimeric mono (arsino) gallane containing a hydrogen bonded to arsenic. Isolation and X-ray crystal structure of (Me3SiCH2As) 5 | |
WO1992009609A1 (en) | High purity alkyllithium compounds and process of preparation | |
US2859231A (en) | Manufacture of alkyllead compounds | |
US3028319A (en) | Manufacture of magnesium organo compounds | |
US3524870A (en) | Preparation of aluminum monohydride diethoxide | |
JPH04273884A (en) | Preparation of trimethylaluminum | |
US3047358A (en) | Preparation of boron-hydrogen compounds | |
US2987528A (en) | Manufacture of cyclopentadienyl manganese compounds | |
US2859225A (en) | Manufacture of organolead compounds | |
US2987534A (en) | Group iii-a element compounds | |
US5171467A (en) | Synthesis of organometallic/organobimetallic compositions | |
US4396554A (en) | Hydrocarbon soluble dialkyl magnesium composition | |
US3188334A (en) | Tetraalkyllead process employing alkyl aluminum-amine catalyst systems | |
JPH04221389A (en) | Production of dialkyl zinc |