US2958995A - Thread tensioning devices for multiple twisters - Google Patents
Thread tensioning devices for multiple twisters Download PDFInfo
- Publication number
- US2958995A US2958995A US545082A US54508255A US2958995A US 2958995 A US2958995 A US 2958995A US 545082 A US545082 A US 545082A US 54508255 A US54508255 A US 54508255A US 2958995 A US2958995 A US 2958995A
- Authority
- US
- United States
- Prior art keywords
- thread
- cap
- elements
- disc
- calotte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 241001589086 Bellapiscis medius Species 0.000 title 1
- 230000001419 dependent effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H7/00—Spinning or twisting arrangements
- D01H7/02—Spinning or twisting arrangements for imparting permanent twist
- D01H7/86—Multiple-twist arrangements, e.g. two-for-one twisting devices ; Threading of yarn; Devices in hollow spindles for imparting false twist
- D01H7/868—Yarn guiding means, e.g. guiding tubes
Definitions
- This invention relates to spinning machinery, and more nited States Pilttiilt particularly to thread storing devices for double twist spindles, and the like.
- These storage devices which usually are provided in the form of discs, serve the purpose of braking and tensioning the thread, prior to its passage onto the balloon, by friction of varying degrees arising between the thread and the disc.
- Dependent on its tension the thread winds itself on the storage disc at larger or smaller looping angles, and the storage disc, true to its purpose of tension regulation, stores or yields thread correspondingly.
- the invention contemplates providing a storage disc comprising the usual cylindrical, ring shaped disc member the periphery of which is provided with two rows, arranged in staggered relation to one another, of hemispherical cap or calotte elements between which the thread is passed and stored along an undulated path.
- the cylindrical, ring-shaped disc members provided with hemispherical cap elements do not include regular grooves wherein to guide the thread, and because of the oblique withdrawal of the thread on its way to the balloon, the rotary portion of the bell-shaped thread guide must extend downwardly to about half the thickness of the cylindrical thread storage disc to insure a truly tangential withdrawal of the thread in the immediate proximity of the disc.
- the hemispherical cap or calotte'elements instead of being provided on the cylindrical, ring-shaped disc member, may be arranged on the. circumference of the support member which in the embodiment discussedso far, mounts the ring-shaped disc member.
- the hemispherical cap or calotte elements may be replaced by ellipsoidal, para boloidal, pyramidical or conical shapes.
- staggered rows of cap or calotte elements while in close proximity to one another, nevertheless must leave suincient room for permitting the thread to pass therebetween without getting caught.
- the increase in sliding friction per 'looping angle between thread and ring-shaped disc member is determined by the dispositoin of the cap or calotte elements relative to one another, and the "con-i sequent free, unhampered contact of the thread with every cap or calotte element, at a more or less inclined tangent.
- the thread can slide across the same, choos-- ing a path which dependent on the strength of the thread and the friction encountered, passes a more or less extended portion of the surface of every cap or calotte element.
- Figs. 6-10 show details of alternative forms of the cap 7 or calotte elements.
- 1 is the revolving spindle
- 2 is the thread outlet
- 3 the center of the spindle.
- the spindle mounts the supporting portion 4 of the storage disc, which in turn supports the cylindrical ring 5, and the lower, revolving part 6 of the cap or bell 7 which is stationary.
- the numerals 8 and 9 are the rows of cap or calotte elements arranged in staggered relationship on the ring 5 which guide the thread along an undulated path from which it is transferred to the flange 10 of the revolving cap 6 which extends downwardly to about the middle plane of the ring 5.
- caps or calotte elements are not squeezed together so tight as to meet in wedge-like fashion but are aanaae sufiiciently spaced from one another as to present to the thread an adequate basis 11 whereby the thread or the capillary filaments thereof are prevented from getting caught.
- ellipsoidal Figs. 6 and 7
- pyramidical Fig. 9
- conical cap elements Fig. 10'
- the thread to be twisted follows the following path: it passes from the delivery bobbin (not shown) through its hollow shaft to the spindle center 3 and, after deflection, through the outlet 2, through a slit 12 in the disc support portion 4 and the radial opening 13 (Fig. 2) in the ring to the two rows 8 and 9 of cap or calotte elements mounted on the ring 5, which guide it along an undulated path at looping angles varying with the degree of tension on the thread. It then passes tangentially, but still in a plane normal to the spindle axis, onto the flange on the revolving part 6 of the cap 7.
- the latter may be provided with a feeding slot 14 extending from the bottom edge of ring 5 to the opening 13.
- the opening 13 as well as the mouth of the spindle center 3, preferably are lined with thread guide rings (not shown) of wear resisting material.
- the thread in being guided by the storage disc, lies freely on the hemispherical cap elements.
- the increase in sliding friction is obtained by means of the freely adjustable, sloping path of the thread on the surfaces of the cap or calotte elements. If, for example, the thread 15 (Fig. 3) passes over the surface of a cap element in a steep tangent, the sliding friction will be materially greater than if it is guided only at a flat tangent 16 (Fig. 4).
- This variation in the position of a thread of a certain denier number is brought about by a corresponding variation of the relative position of the two rows of cap elements. For example, if the cap elements 8 extend deeply into the interstices between the cap elements 9, the thread will be guided only in the flat tangent 16.
- therad follows a steeper tangential path. If the cap elements 8 enter these interstices less deeply, the therad follows a steeper tangential path. If the cap elements have ellipsoidal or paraboloidal shapes, the same rules apply. With conical or pyramidical cap elements the tangential paths of the thread are predetermined.
- the relative disposition of the cap elements determines the characteristics of every storage disc. By placing one storage disc by another with different characteristics the sliding-friction effect can be varied according to requirements.
- the thread is always withdrawn from the storage disc tangentially and in a plane normal to the spindle axis, whereby any non-uniform tensioning of the thread is efiectively avoided.
- a double twist spindle comprising in combination, a bell-shaped thread guide member including an upper, stationary portion and a lower, rotary portion, a thread storage and tension control disc-shaped member arranged below said thread guide member, and adjacent rows of cap elements disposed in staggered relation to one another, arranged to radially project from said disc-shaped member, said lower, rotary portion of the bell-shaped thread guide member including an annular flange portion extending downwardly to substantially half the thickness of said disc-shaped member whereby the thread is guided at increased sliding friction along said cap elements to be transferred tangentially and in the plane of the disc, to said thread guide member.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Storage Of Web-Like Or Filamentary Materials (AREA)
- Spinning Or Twisting Of Yarns (AREA)
Description
Nov. 8, 1960 w. GOLLOS ETAL THREAD TENSIONING DEVICES FOR MULTIPLE TWISTERS 2 Sheets-Sheet 1 Filed NOV. 4, 1955 INVENTORS zl/alf'yany 602206 Nov. 8, 1960 w. GOLLOS ETAL ,9 5
THREAD TEINSIONING DEVICES FOR MULTIPLE TWISTERS Filed Nov. 4, 1955 v 2 Sheets-Sheet 2 INVENTORS ilif' an 602206 Marker Zander BY kinda-K Q :L'o
ATTORNEY THREAD TENSIONING DEVICES FOR. MULTIPLE TWISTERS Wolfgang Gollos, Kelsterbach, and Werner Zander, Wnppertal-Elberfeld, Germany, assignors to Vereinigte Glanzstotf-Fabriken A.G., Wnppertal-Elberfeld, Ger many Filed Nov. 4, 1955, Ser. No. 545,082
Claims priority, application Germany Nov. 8, 1954 8 Claims. (Cl. 57-5834) This invention relates to spinning machinery, and more nited States Pilttiilt particularly to thread storing devices for double twist spindles, and the like.
These storage devices which usually are provided in the form of discs, serve the purpose of braking and tensioning the thread, prior to its passage onto the balloon, by friction of varying degrees arising between the thread and the disc. Dependent on its tension, the thread winds itself on the storage disc at larger or smaller looping angles, and the storage disc, true to its purpose of tension regulation, stores or yields thread correspondingly.
that in order to arrive at the required degree of tension in the balloon, the thread frequently assumes on the storage disc an excessive looping angle exceeding a single winding, and the tension-increasing effect of the storage disc, per degree of this looping angle, is insufficient.
In order to reduce this looping angle it has been pro posed to make the active surface of the storage disc of some material making for increased friction. It was discovered, however, that the quality of the thread suffered in consequence of this modification, particularly because of the thread being roughened. A subsequent attempt at solving the problem involved the proposal to provide the thread storing groove in the form of a grooved wedge to obtain an increase friction effect. This method, however, was found to result in new drawbacks inasmuch as the thread, and particularly its finest capillary filaments, had the tendency of becoming caught in the grooved wedge, to be torn in consequence and apart from a reduced strength, to display a roughened, unsightly appearance,
Other storage discs have been proposed which include a grooved wedge arranged between staggered'knob-like deflecting members which are provided on separate discs, the thread being clamped between the deflecting members. Though resulting in improved frictional characteristics and reduced looping angles, this arrangement has not proved satisfactory as any clamping or catching of the threadeven if it occurs between adjacent deflecting members-is bound to impair the thread and particularly, the finest capillary filaments thereof-whereby the thread is reduced beyond control.
It is an object of the present invention to eliminate the various drawbacks encountered in the prior art, and to provide a thread storage and tension control device for double twist spindles which is highly effective yet avoids all damage to the thread.
Other objects, and the manner in which the same are attained, will become apparent as this specification proceeds.
The invention contemplates providing a storage disc comprising the usual cylindrical, ring shaped disc member the periphery of which is provided with two rows, arranged in staggered relation to one another, of hemispherical cap or calotte elements between which the thread is passed and stored along an undulated path.
ice
. 2 The space intermediate any adjacent cap or calotte ele-' ments affords an adequate, continuous basic support for the thread whereby the thread as well as its fine capillary filaments are prevented from getting caught. This arrangement according to the invention results in obtaining on thedisc a high degree of frictional resistance without encountering any of the disturbances and damaging fiuences on the thread which were observed in the prior art.
Inasmuch as the cylindrical, ring-shaped disc members provided with hemispherical cap elements, according to the invention, do not include regular grooves wherein to guide the thread, and because of the oblique withdrawal of the thread on its way to the balloon, the rotary portion of the bell-shaped thread guide must extend downwardly to about half the thickness of the cylindrical thread storage disc to insure a truly tangential withdrawal of the thread in the immediate proximity of the disc. If deshed, the hemispherical cap or calotte'elements, instead of being provided on the cylindrical, ring-shaped disc member, may be arranged on the. circumference of the support member which in the embodiment discussedso far, mounts the ring-shaped disc member. Dependent on the degree of friction required, the hemispherical cap or calotte elements may be replaced by ellipsoidal, para boloidal, pyramidical or conical shapes, The mutually Experience with certain categories of thread has taught staggered rows of cap or calotte elements, while in close proximity to one another, nevertheless must leave suincient room for permitting the thread to pass therebetween without getting caught. The increase in sliding friction per 'looping angle between thread and ring-shaped disc member, is determined by the dispositoin of the cap or calotte elements relative to one another, and the "con-i sequent free, unhampered contact of the thread with every cap or calotte element, at a more or less inclined tangent.
Inasmuch as the cap or calotte elements are arched continuously, the thread can slide across the same, choos-- ing a path which dependent on the strength of the thread and the friction encountered, passes a more or less extended portion of the surface of every cap or calotte element. This mutual adaptation between thread and the circumference of the storing member results in materially extneding the life of the latter. v
In the drawing affixed to this specification and forming part thereof, an embodiment of this invention is illus-' I her, being a detail of Fig. 1;
Figs. 6-10 show details of alternative forms of the cap 7 or calotte elements.
Referring to the drawing, 1 is the revolving spindle, 2 is the thread outlet, 3 the center of the spindle. The spindle mounts the supporting portion 4 of the storage disc, which in turn supports the cylindrical ring 5, and the lower, revolving part 6 of the cap or bell 7 which is stationary. The numerals 8 and 9 are the rows of cap or calotte elements arranged in staggered relationship on the ring 5 which guide the thread along an undulated path from which it is transferred to the flange 10 of the revolving cap 6 which extends downwardly to about the middle plane of the ring 5.
The rows of caps or calotte elements are not squeezed together so tight as to meet in wedge-like fashion but are aanaae sufiiciently spaced from one another as to present to the thread an adequate basis 11 whereby the thread or the capillary filaments thereof are prevented from getting caught. The same disposition is observed in connection with ellipsoidal (Figs. 6 and 7), paraboloidal .(Eig. 8), pyramidical (Fig. 9) or conical cap elements (Fig. 10') which as noted above, may be substituted for the spherical calotte elements shown in Figs. 1-5.
The thread to be twisted, follows the following path: it passes from the delivery bobbin (not shown) through its hollow shaft to the spindle center 3 and, after deflection, through the outlet 2, through a slit 12 in the disc support portion 4 and the radial opening 13 (Fig. 2) in the ring to the two rows 8 and 9 of cap or calotte elements mounted on the ring 5, which guide it along an undulated path at looping angles varying with the degree of tension on the thread. It then passes tangentially, but still in a plane normal to the spindle axis, onto the flange on the revolving part 6 of the cap 7. In
order to facilitate the placement of the thread on the ring .5 the latter may be provided with a feeding slot 14 extending from the bottom edge of ring 5 to the opening 13. The opening 13 as well as the mouth of the spindle center 3, preferably are lined with thread guide rings (not shown) of wear resisting material.
The thread, in being guided by the storage disc, lies freely on the hemispherical cap elements. The increase in sliding friction is obtained by means of the freely adjustable, sloping path of the thread on the surfaces of the cap or calotte elements. If, for example, the thread 15 (Fig. 3) passes over the surface of a cap element in a steep tangent, the sliding friction will be materially greater than if it is guided only at a flat tangent 16 (Fig. 4). This variation in the position of a thread of a certain denier number, is brought about by a corresponding variation of the relative position of the two rows of cap elements. For example, if the cap elements 8 extend deeply into the interstices between the cap elements 9, the thread will be guided only in the flat tangent 16. If the cap elements 8 enter these interstices less deeply, the therad follows a steeper tangential path. If the cap elements have ellipsoidal or paraboloidal shapes, the same rules apply. With conical or pyramidical cap elements the tangential paths of the thread are predetermined.
The relative disposition of the cap elements determines the characteristics of every storage disc. By placing one storage disc by another with different characteristics the sliding-friction effect can be varied according to requirements.
Owing to the action of the revolving flange portion 10, the thread is always withdrawn from the storage disc tangentially and in a plane normal to the spindle axis, whereby any non-uniform tensioning of the thread is efiectively avoided.
We wish it to be understood that we do not desire to be limited to the details of construction explained in the foregoing description and shown in the drawing, for obvious modifications within the scope of the appended claims are likely to occur to a person skilled in the art.
We claim:
1. A double twist spindle comprising in combination, a bell-shaped thread guide member including an upper, stationary portion and a lower, rotary portion, a thread storage and tension control disc-shaped member arranged below said thread guide member, and adjacent rows of cap elements disposed in staggered relation to one another, arranged to radially project from said disc-shaped member, said lower, rotary portion of the bell-shaped thread guide member including an annular flange portion extending downwardly to substantially half the thickness of said disc-shaped member whereby the thread is guided at increased sliding friction along said cap elements to be transferred tangentially and in the plane of the disc, to said thread guide member.
2. The double twist spindle according to claim 1, wherein the thread storage and tension control discshaped member includes a central supporting portion and a circumferential mantle portion, and the cap elements are provided on said circumferential mantle portion.
3. The double twist spindle according to claim I, wherein the thread storage and tension control discshaped member includes a central supporting portion, and the cap elements are arranged on the periphery of said supporting portion.
.4. The double twist spindle according to claim 1, wherein the cap elements have a substantially hemispherical shape.
5. The double twist spindle according to claim 1, wherein the cap elements have a substantially ellipsoidal shape.
6. The double twist spindle according to claim 1, wherein the cap elements have a substantially paraboloidal shape.
7. The double twist spindle according to claim 1, wherein the cap elements have a substantially pyramidical shape.
8. The double twist spindle according to claim 1, wherein the cap elements have a substantially conical shape.
References Cited in the file of this patent UNITED STATES PATENTS 2,597,015 May May 20, 1952 2,638,732 Sabaton May 19, 1953 FOREIGN PATENTS 513,086 Belgium Aug. 14, 1952 573,275 Germany Mar. 29, 193.3
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE333454X | 1954-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2958995A true US2958995A (en) | 1960-11-08 |
Family
ID=6209920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US545082A Expired - Lifetime US2958995A (en) | 1954-11-08 | 1955-11-04 | Thread tensioning devices for multiple twisters |
Country Status (4)
Country | Link |
---|---|
US (1) | US2958995A (en) |
BE (1) | BE540371A (en) |
CH (1) | CH333454A (en) |
GB (1) | GB792821A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3445998A (en) * | 1966-09-02 | 1969-05-27 | Murata Machinery Ltd | Tensioning method and device of two-for-one yarn twisters |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE513086A (en) * | 1951-07-28 | |||
DE573275C (en) * | 1933-03-29 | Barmer Maschinenfabrik Akt Ges | Two-for-one twisting spindle | |
US2597015A (en) * | 1950-09-13 | 1952-05-20 | Deering Milliken Res Trust | Spindle |
US2638732A (en) * | 1949-06-09 | 1953-05-19 | Sabaton Louis | Double twist throwing spindle device |
-
0
- BE BE540371D patent/BE540371A/xx unknown
-
1955
- 1955-10-04 CH CH333454D patent/CH333454A/en unknown
- 1955-11-02 GB GB31344/55A patent/GB792821A/en not_active Expired
- 1955-11-04 US US545082A patent/US2958995A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE573275C (en) * | 1933-03-29 | Barmer Maschinenfabrik Akt Ges | Two-for-one twisting spindle | |
US2638732A (en) * | 1949-06-09 | 1953-05-19 | Sabaton Louis | Double twist throwing spindle device |
US2597015A (en) * | 1950-09-13 | 1952-05-20 | Deering Milliken Res Trust | Spindle |
BE513086A (en) * | 1951-07-28 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3445998A (en) * | 1966-09-02 | 1969-05-27 | Murata Machinery Ltd | Tensioning method and device of two-for-one yarn twisters |
Also Published As
Publication number | Publication date |
---|---|
BE540371A (en) | |
CH333454A (en) | 1958-10-31 |
GB792821A (en) | 1958-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2629566A (en) | Spool operating device | |
US3284024A (en) | Means for withdrawing yarn from yarn packages | |
US2718363A (en) | Tension control device | |
US2958995A (en) | Thread tensioning devices for multiple twisters | |
US2534340A (en) | Warp-winding from cakes | |
US2647704A (en) | Free spinning cap assembly | |
US2811013A (en) | Yarn twisting machine | |
US4856268A (en) | Unwinder arm rotating about a pivot suspended above a two-for-one twisting spindle for unwinding superposed bobbins | |
US4434609A (en) | Yarn brake and process for tensioning at least two yarns in a textile yarn processing machine | |
US4391087A (en) | Twisting apparatus | |
US2613886A (en) | Strand tensioning device | |
US2478927A (en) | Thread brake for double twisters | |
US2560848A (en) | Yarn take-up disk for double twist spindles | |
US2827756A (en) | Tension device for multiple twist type of twister | |
US2715811A (en) | Flier for multiple twist twisters | |
US2492581A (en) | Device for tensioning yarn | |
US2965330A (en) | Apparatus for controlling twisted yarn | |
JPS5919740Y2 (en) | Double twisting device for flange bobbin | |
US2565562A (en) | Yarn support | |
US2736511A (en) | Twister tension assembly | |
EP0417850A2 (en) | Improvement in doubling frames with double-hollow-shaft spindle, with mobile shaft coupling | |
US4423590A (en) | Balloon control ring | |
US2932150A (en) | Twister spindle | |
US3461659A (en) | Method and apparatus for twisting yarn | |
US3362151A (en) | Thread storage disc for two-for-one twisting spindles |