US2892134A - Operating mechanism - Google Patents
Operating mechanism Download PDFInfo
- Publication number
- US2892134A US2892134A US321694A US32169452A US2892134A US 2892134 A US2892134 A US 2892134A US 321694 A US321694 A US 321694A US 32169452 A US32169452 A US 32169452A US 2892134 A US2892134 A US 2892134A
- Authority
- US
- United States
- Prior art keywords
- bars
- bar
- yoke
- select
- movable core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/16—Magnetic circuit arrangements
- H01H50/18—Movable parts of magnetic circuits, e.g. armature
- H01H50/20—Movable parts of magnetic circuits, e.g. armature movable inside coil and substantially lengthwise with respect to axis thereof; movable coaxially with respect to coil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H67/00—Electrically-operated selector switches
- H01H67/22—Switches without multi-position wipers
- H01H67/26—Co-ordinate-type selector switches not having relays at cross-points but involving mechanical movement, e.g. cross-bar switch, code-bar switch
Definitions
- the invention relates to an operating mechanism which can be used in telephone switches, and more particularly in those of the crossbar type.
- Such switches are sometimes arranged as multi-switches so that they can provide for the connection between any inlet out of a plurality, and anyoutlet out of a plurality.
- a multi-switch of this type is, for example, disclosed in be displaced and these two operations in succession will cause the operation of a contact mechanism which will establish a connection between the corresponding inlet and outlet conductors.
- the bars of both types can be operated by individual electro-magnets.
- Such code bar mechanisms although they will appreciably reduce the number of electro-magnets which becomes equal to the number of code bars, instead of equal to the larger number of select bars, have nevertheless the disadvantage that a common operating mechanism controlled by a servo-magnet, is nearly always required, the operation of a particular combination of code bars merely indicating which select bar is to be displaced. Further, the code bar mechanism itself and its association with the common operating mechanism, leads to a rather intricate arrangement and this might well offset the advantage obtained in reducing the number of electromagnets.
- An object of the invention is to provide operating mechanisms individual to a bar of a multi-switch which are economical, occupy a very small space, are rugged and in general, entirely reliable.
- T ice 2 of the type disclosed in our said co pen'ding application as the contact fingers which are used to effect the connections between inlet and outlet conductors in response to the operation of a select and an operating and hold bar, are very closely spaced thus providing a multi-switch of compact size.
- the select bars being aligned on the contact fingers, it is necessary that the operating mechanism for these bars should not take more space than that between two adjacent contact fingers, or two adjacent select bars, as otherwise one could no longer obtain a multi-switch of compact size or somewhat complicated coupling mechanisms would be necessary between the operating means for the select bars and the bars themselves.
- these solenoids occupy a very restricted space and more particularly, their smallest dimension is made as small as possible to be compatible with the small distance between two bars of the same type.
- a movable core used as a plunger is placed in the field of the solenoid so as to be made displaceable under the action of the latter, and is made integral with the corresponding bar.
- Fig. 1 an elevation view of a solenoid controlling a select bar, part of which is shown;
- the yoke 1 shaped in the form of a U is closed by an auxiliary portion 2 which can be fixed on the said yoke bymeans of thescrews 3 and 3.
- the portion 2 is used to support a fixed core 4 having the shape shown in dotted outline in Fig. 1 and avery narrow c'r'oss section.
- Fig. 2 which shows that the overall width ofthe arrangement is substantially smaller than its other two dimensions.
- a sheath 5 of non-magnetic material can be inserted in the central part of the yoke 1 and can be made to project slightly beyond the central branch of the U formed by the yoke which is apertured at for that purpose.
- This sheath 5 will be supported at its lower end by the portion 2 after the latter has been placed into position, and inner perimeter of the sheath will exactly fit around the fixed core 4.
- Small shoulders can be punched out of the surface of the sheath 5 in particular at the level of the mid-portion of the U, so that this will abut against this part of the yoke 1 whereby the sheath 5 will be in an adequately fixed position.
- These shoulders can also be used to fix the position of the cheeks 6 and 6' of the coil 7 when the latter is inserted between both legs of the yoke 1 and around the sheath 5.
- the auxiliary portion 2 can be fixed to the yoke 1 by means of the screws 3 and 3' and the fixed core 4 can be made integral with the portion 2 with the help of the screws 14 and 14.
- the ends of the winding of the coil 7 can be soldered to the terminals 8 and 8 (Fig. 2) attached to the outer portion of one of the legs of the yoke 1 by means of the screws 9 and 9'.
- the select bar 10 is of the type disclosed in our said copending application and resilient coupling elements such as the blade 11, are mounted on it to communicate the movement of the latter to clutch mechanisms (not shown) co-operating with the actuating and hold bars (not shown), and permitting the final displacement of the contact operating mechanism (not shown).
- the extension 12 is used to drive directly a special contact finger (not '3 shown) which will thus close contacts every time the select bar 10 is displaced.
- the bar 10 is made integral with the movable core 13 having the shape shown in Fig. 1 and acts as a plunger.
- the select bar 10 which is in the upright position, is normally maintained in the position shown by a spring return mechanism (not shown), which is located at the top end of the bar and can, for example, be as disclosed in our said co-pending application.
- a spring return mechanism (not shown) which is located at the top end of the bar and can, for example, be as disclosed in our said co-pending application.
- a shoulder piece 15 is provided on top of the movable core 13 and a shock-absorber 16 made of resilient material, and having an aperture is mounted on top of the central branch of the U-shaped yoke 1 and is disposed between the yoke and the shoulder piece 15.
- the movable core 13 movably projects through the apertures.
- the whole assembly can be mounted on a suitable bracket by means of the screws 17 and 17'.
- the select bar 10 will be lowered and the parts such as 11 and 12 will accomplish the functions referred to above. Energy will be stored in the spring return device (not shown) so that, when the coil 7 is de-energized, the select bar will return to its original position as shown, withdrawing the movable core 13 back to its original position.
- the particular shapes of the two opposite ends of the cores 4 and 13 permit a most efiicient use of the electric energy delivered to the coil 7 and in particular permit a centering of the field lines along the axis of both the cores, so as to diminish the friction of the movable core 13 against the inside surface of the sheath 5.
- the opposite ends of the cores 4 and 13 are profiled so as to be complementary to each other. Sloping flanks 18, 19 and 18, 19, have been provided as complementary portions of cores 13 and 4, respectively. This profiling has been found to have a beneficial effect on the rapid diminution of the reluctance of the air-gap.
- a flat electromagnetic structure comprising a fiat, U-shaped magnetic yoke, an energizing coil located within the arms and boundaries of said yoke and operatively associated therewith, a magnetic bridging member connecting the arms of said yoke, a movable, fiat, bar core, said movable core having a principal portion of its mass within one end of the hollow of said coil and having at one end a truncated wedge-shaped portion with a pair of oppositely disposed base sections extending outwardly from the base of the wedge and normal to the axis of said movable core, a fixed core piece extending within the other end of the hollow of said coil and in flux relation with said yoke and said coil, said fixed core piece attached to said bridging member and having a profile complementary to the truncated portion of said movable core, said truncated portion normally extending partially within the complementary portion of said fixed piece whereby a plurality of differently spaced air gaps are defined be tween the complementary faces
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electromagnets (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL318655X | 1951-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2892134A true US2892134A (en) | 1959-06-23 |
Family
ID=19783899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US321694A Expired - Lifetime US2892134A (en) | 1951-11-27 | 1952-11-20 | Operating mechanism |
Country Status (4)
Country | Link |
---|---|
US (1) | US2892134A (fr) |
BE (1) | BE515788A (fr) |
CH (1) | CH318655A (fr) |
FR (1) | FR1067147A (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070194873A1 (en) * | 2006-02-17 | 2007-08-23 | Sarah Gibson | Actuator |
US11069467B2 (en) * | 2018-06-28 | 2021-07-20 | Nidec Tosok Corporation | Solenoid device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US630905A (en) * | 1898-08-17 | 1899-08-15 | Manhattan General Construction Company | Electric-arc lamp. |
FR581179A (fr) * | 1923-08-08 | 1924-11-24 | Perfectionnements aux électro-aimants | |
US1541193A (en) * | 1922-12-05 | 1925-06-09 | Western Electric Co | Electrical switching apparatus |
US2288938A (en) * | 1940-12-09 | 1942-07-07 | Gen Motors Corp | Solenoid unit for controlling automobile overdrives |
US2415739A (en) * | 1944-09-21 | 1947-02-11 | Bendix Aviat Corp | Solenoid |
US2433703A (en) * | 1943-02-03 | 1947-12-30 | Square D Co | Plunger electromagnet |
US2512261A (en) * | 1943-10-20 | 1950-06-20 | Leich Electric Co | Automatic switch |
US2677029A (en) * | 1952-03-05 | 1954-04-27 | Rhodes Inc M H | Time delay relay |
-
0
- BE BE515788D patent/BE515788A/xx unknown
-
1952
- 1952-11-20 US US321694A patent/US2892134A/en not_active Expired - Lifetime
- 1952-11-26 FR FR1067147D patent/FR1067147A/fr not_active Expired
- 1952-11-26 CH CH318655D patent/CH318655A/fr unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US630905A (en) * | 1898-08-17 | 1899-08-15 | Manhattan General Construction Company | Electric-arc lamp. |
US1541193A (en) * | 1922-12-05 | 1925-06-09 | Western Electric Co | Electrical switching apparatus |
FR581179A (fr) * | 1923-08-08 | 1924-11-24 | Perfectionnements aux électro-aimants | |
US2288938A (en) * | 1940-12-09 | 1942-07-07 | Gen Motors Corp | Solenoid unit for controlling automobile overdrives |
US2433703A (en) * | 1943-02-03 | 1947-12-30 | Square D Co | Plunger electromagnet |
US2512261A (en) * | 1943-10-20 | 1950-06-20 | Leich Electric Co | Automatic switch |
US2415739A (en) * | 1944-09-21 | 1947-02-11 | Bendix Aviat Corp | Solenoid |
US2677029A (en) * | 1952-03-05 | 1954-04-27 | Rhodes Inc M H | Time delay relay |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070194873A1 (en) * | 2006-02-17 | 2007-08-23 | Sarah Gibson | Actuator |
US7876187B2 (en) * | 2006-02-17 | 2011-01-25 | Rolls-Royce Plc | Actuator |
US11069467B2 (en) * | 2018-06-28 | 2021-07-20 | Nidec Tosok Corporation | Solenoid device |
Also Published As
Publication number | Publication date |
---|---|
BE515788A (fr) | |
CH318655A (fr) | 1957-01-15 |
FR1067147A (fr) | 1954-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2556716A (en) | Relay | |
GB2079059A (en) | Circuit breaker | |
GB480026A (en) | Improvements in and relating to electromagnetic devices | |
GB551433A (en) | Improvements in electromagnetic relays | |
US2892134A (en) | Operating mechanism | |
US3005890A (en) | Solenoid operated switches | |
GB1239930A (en) | Electromagnetic relays | |
US3337824A (en) | Circuit breaker having dashpot type electro-magnetic core and simplified actuating linkage | |
US2784327A (en) | Impulse generator | |
US3525060A (en) | Reed contacts operable by magnetic forces | |
US2831939A (en) | Electromechanical relay | |
US2533187A (en) | Double-acting solenoid | |
US2666113A (en) | Electric contact device, preferably for relays | |
US3277409A (en) | Electromagnetic relay assembly having a flat coil and whose armature assembly is formed with a deformable stem | |
US3032628A (en) | Circuit controlling device | |
US1960402A (en) | Switch and circuit breaker | |
US2178289A (en) | Electrical relay | |
US3239727A (en) | Electromagnetic switching device | |
US3053952A (en) | Switching device | |
US2309349A (en) | Three-position relay | |
US2820866A (en) | Relay | |
US2825784A (en) | Electromagnetic relay | |
US2562382A (en) | Electromagnetic switch | |
GB534768A (en) | Improvements in and relating to magnetically operated devices | |
US2967918A (en) | High speed relay |