US2866754A - Well treatment composition - Google Patents
Well treatment composition Download PDFInfo
- Publication number
- US2866754A US2866754A US647965A US64796557A US2866754A US 2866754 A US2866754 A US 2866754A US 647965 A US647965 A US 647965A US 64796557 A US64796557 A US 64796557A US 2866754 A US2866754 A US 2866754A
- Authority
- US
- United States
- Prior art keywords
- thickening
- petroleum fraction
- tca
- viscosity
- acetic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 46
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 58
- 239000003208 petroleum Substances 0.000 claims description 33
- 230000008719 thickening Effects 0.000 claims description 30
- 239000012530 fluid Substances 0.000 claims description 22
- PTCGDEVVHUXTMP-UHFFFAOYSA-N flutolanil Chemical compound CC(C)OC1=CC=CC(NC(=O)C=2C(=CC=CC=2)C(F)(F)F)=C1 PTCGDEVVHUXTMP-UHFFFAOYSA-N 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 21
- 239000003795 chemical substances by application Substances 0.000 claims description 17
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 claims description 6
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 claims description 6
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 claims description 4
- JKTAIYGNOFSMCE-UHFFFAOYSA-N 2,3-di(nonyl)phenol Chemical compound CCCCCCCCCC1=CC=CC(O)=C1CCCCCCCCC JKTAIYGNOFSMCE-UHFFFAOYSA-N 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 150000002989 phenols Chemical class 0.000 claims description 3
- 239000002562 thickening agent Substances 0.000 claims description 3
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 claims description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 claims description 2
- 229940100630 metacresol Drugs 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 description 23
- 238000005755 formation reaction Methods 0.000 description 23
- 229960000583 acetic acid Drugs 0.000 description 18
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 12
- 239000003350 kerosene Substances 0.000 description 11
- 238000010494 dissociation reaction Methods 0.000 description 9
- 230000005593 dissociations Effects 0.000 description 9
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 8
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 8
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 8
- 239000005642 Oleic acid Substances 0.000 description 8
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 8
- 239000010779 crude oil Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000005553 drilling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 125000005474 octanoate group Chemical group 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000012267 brine Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methyl-N-phenylamine Natural products CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 1
- 229930186949 TCA Natural products 0.000 description 1
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 1
- 241000364021 Tulsa Species 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- -1 amine acetate Chemical class 0.000 description 1
- 229940088990 ammonium stearate Drugs 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical compound [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- ISNBJLXHBBZKSL-UHFFFAOYSA-N ethyl n-[2-(1,3-benzothiazole-2-carbonylamino)thiophene-3-carbonyl]carbamate Chemical compound C1=CSC(NC(=O)C=2SC3=CC=CC=C3N=2)=C1C(=O)NC(=O)OCC ISNBJLXHBBZKSL-UHFFFAOYSA-N 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- MAQCMFOLVVSLLK-UHFFFAOYSA-N methyl 4-(bromomethyl)pyridine-2-carboxylate Chemical compound COC(=O)C1=CC(CBr)=CC=N1 MAQCMFOLVVSLLK-UHFFFAOYSA-N 0.000 description 1
- UPHWVVKYDQHTCF-UHFFFAOYSA-N octadecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCCCCCCCN UPHWVVKYDQHTCF-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229940096992 potassium oleate Drugs 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L7/00—Fuels produced by solidifying fluid fuels
- C10L7/02—Fuels produced by solidifying fluid fuels liquid fuels
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C53/00—Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
- C07C53/126—Acids containing more than four carbon atoms
- C07C53/128—Acids containing more than four carbon atoms the carboxylic group being bound to a carbon atom bound to at least two other carbon atoms, e.g. neo-acids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/64—Oil-based compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/921—Specified breaker component for emulsion or gel
Definitions
- the invention relates to oil-base fluid compositions having a temporary high viscosity making them especially useful in various methods of treatment of deep wells, such as those drilled for oil and gas.
- One of the methods of treatment of a deep well in which the composition of the invention find an application involves the so-called fracturing of an earth formation penetrated by a well so as to increase its capacity for fluid flow into or out of the well and thereby increase the output of the well if a producer or increase its receptivity for fluid if the well is for fluid disposal.
- Such fracturing is usually accomplished by injecting into the well a more or less viscous liquid at a sufficient rate to create in the well hole against the formation to be fractured a pressure exceeding that which the formation can withstand without fracture or rupture.
- Still another difiiculty is that fluids, which may be thick enough to penetrate the earth only under high pressures, do not return readily to the well hole when the injection pressure is released. In such circumstances, the fluid permeability of the earth formation may be adversely affected instead of being benefited from a fracturing operation.
- a thick oil-base fluid such as a gelled gasoline
- injections cannot be-depended upon always to reach and mingle with the thickened .fluid because of the limited space available in the interstices of the earth for mingling to occur. Similar difliculties arise on attempting to use thick liquids for conveying a particulated solid material into the fractures -or-cracks in the earth formation of the well.
- composition contemplated by the invention and attaining the foregoing and related objects comprises a petroleum fraction which is liquid at ordinary temperatures, such as kerosene, diesel fuel, and distillate.
- a thickening agent consisting of the aluminum salt of Z-ethyl hexoic acid having the formula:
- This salt may be referred to herein by the short term aluminum octoate for convenience.
- the aluminum octoate brings about a more or less partial gelling of the petroleum fraction upon the addition of a suitable catalytic agent referred to as a thickening controlling agent as later explained.
- the amount of the aluminum octoate to use may be determined by trial in accordance with the amount of thickening to be produced as hereinafter explained. In general the amount of the aluminum octoate may range from about 10 to pounds per gallons of the petroleum fraction.
- the aluminum octoate is dispersed in the petroleum fraction in any suitable manner as for example by means of a motor driven agitator operating in a tank in which the petroleum fraction and aluminum octoate are placed for mixing.
- an agent herein referred to as a thickening controlling agent and designated TCA for short there is dispersed, as by a similar mixing operation, an agent herein referred to as a thickening controlling agent and designated TCA for short.
- the TCA used in one having the property of causing the aluminum octoate to thicken the liquid petroleum fraction at ordinary temperature and subsequently to bring about at least partial thinning of the so-thickened or more or less gelled petroleum fraction.
- the TCA accelerates both thickening and thinning of the liquid petroleum fraction to an extent which permits it to become thickened and to remain in a thickened condition for a predeterminable time depending upon the amount and kind ofTCA used.
- TCA there may be used various petroleum oilsoluble organic chemical compounds or mixtures of them having a generally low dissociation constant, as for example, organic acids and bases and their petroleum oilsoluble salts having dissociation constants of about 1 X 10 to 1 X l0 or preferably between 10- and 10- It is advantageous to usetogether at least two such agents having different dissociation constants as this results in obtaining a better thinning effect than is obtainable usually .with but one such agent without adversely affecting thickening of the liquid petroleum fraction.
- TCAs examples include: oleic acid, linoleic acid, p-toluidine, ammonium stearate, dinonyl phenol, di-Z-ethyl hexyl' amine acetate, and nonyl phenol.
- the thickening controlling agent may be used in an amount between 0.15 to'9.4 percent of the weight of the petroleum fraction depending upon the rate and I extent of thickening desired.- In general from about 0.2
- Viscosities up to 100,000 cps. may be measured by means of the Brookfield synchro-electric viscosimeter. Viscosities beyond 100,000 cps. may be measured by determining the rate of flow of the thickened petroleum fraction through a straight tube 2 inches long having a cylindrical bore of A inch in diameter.
- the rate at which thickening occurs varies with the kind of TCA used and roughly is more rapid the higher This is illustrated by the data of Table I.
- the data of Table I are derived from tests in which 3 grams of aluminum octoate were dispersed in each of 7 batches of 100 ml. of kerosene at 80 F. The time required for the resulting mixtures to thicken to 10,000 cps. was observed after dispersing in the mixtures various phenolic thickening controlling agents (TCA) as noted in the table.
- TCA phenolic thickening controlling agents
- Thinning after thickening is also accelerated by the use of a more highly dissociated TCA along with a TCA which is less dissociated.
- acetic acid with a dissociation constant of 1.75 10 at 25 C. shows a marked tendency to bring about thinning after thickening has occurred.
- Similar effects are observed with butyric acid, potassium oleate, butyl amine, and octadecyl amine acetate, for example.
- This thinning effect is illustrated in the data tabulated in Table III for three batches each of 100 ml. of kerosene thickened with 2 grams of aluminum octoate and containing 1 ml. of oleic acid. To one of the batches 0.04 ml. of acetic acid was added, to a second batch 0.08 ml. was added and to a third batch 0.12 ml. of acetic acid added.
- Viscosities below 100,000 are in cps., higher viscosities are in .TVUs.
- the operation of the introduction of the mixture into the well, and into the earth formation, it desired, is completed before the mixture becomes too thick to pump, as when the viscosity reaches about 25,000 cps.
- the time interval before the mixture becomes too thick to pump can be made as long as needed to'make the in jection into the well and also into the adjacent earth, if desired.
- the temperature is taken into account as the rate of thickening increases with increase of temperature.
- This property also permits knowing in advance the length of time the petroleum fraction will remain thin before gelling or thickening commences so that the mixture of the petroleum fraction, aluminum octoate, and TCA may be introduced into a well bore and more or less deeply into the adjacent earth before the mixture becomes too thick to be readily pumped. Thickening thereafter may take place in the interstices of the earth formation away from the well hole thereby producing a temporary plugging effect beyond the well hole wall. Subsequently a liquid such as oil, water or brine may be injected under a suitable pressure to produce fractures deeply in the earth since the temporary plugging of the surrounding earth by the more or less gelled petroleum fluid confines the fracturing liquid to the regions in the formation adjacent to the gel.
- a liquid such as oil, water or brine
- the composition may be used for example in connection with perforating well casing in wells in which it is necessary to maintain hydrostatic control as by a column of drilling mud. In such wells, it is desirable to prevent the drilling mud from penetrating and permeating the formation following the r perforation operation.
- the drilling mud By displacing the drilling mud with the composition of the invention from that portion of the casing to be perforated and conducting the perforating operation through the composition after it is allowed to thicken, the drilling mud will be prevented from passing into the formation through the perforations thus made and contaminating the formation.
- the composition thins permitting its removal from the well along with the drilling mud.
- composition may be used advantageously in general in all cases where it is desirable to protect an earth formation from fluid intrusion fromv a wellhole, as for example in acidizing a plurality of formations one at a time from the same well hole.
- mixtures of oleic acid and acetic acid as a thickening controlling agent
- other mixtures of oil-soluble organic compounds may be used similarly having dissociation constants within the aforesaid limits.
- Slower rates of thickening may be achieved by the use of mixtures of nonyl phenol and glacial acetic acid.
- Such mixtures also have the advantage of maintaining the thickened petroleum fraction at a high viscosity for a longer time before a breaking down or thinning of the gelled state occurs.
- a mixture of 92.5 percent of nonyl phenol and 7.5 percent of glacial acetic acid by volume permits viscosities to be attained of up to 1,000,000 JVU. But before these viscosities are attained from 4 to 16 hours may elapse, at temperatures of to 170 F., during which the composition may be pumped or otherwise deposited in the well hole.
- a fluid composition having a temporary high viscosity comprising a base of a liquid petroleum fraction, said base having dispersed therein as a thickening agent aluminum octoate and a thickening controlling agent consisting of a mixture of acetic acid and a phenolic compound selected from the group consisting of chlorophenol, phenol, metacresol, orthocresol, nonyl phenol, dinonyl phenol, the aluminum octoate being present in amount between 10 and pounds per gallons of the liquid petroleum fraction and the thickening controlling agent being present in amount between 0.15 and 9.4 percent of the weight of the petroleum fraction, the amount of the acetic acid being from 0.04 to 0.12 ml. per 100 ml. of the petroleum fraction, said thickening controlling agent causing the composition to thicken and thereafter to thin.
- a thickening agent consisting of a mixture of acetic acid and a phenolic compound selected from the group consisting of chlorophenol, phenol, metacresol, orthocresol, nony
- composition according to claim 1 in which the phenolic compound is nonyl phenol.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Lubricants (AREA)
Description
United States atent flice 2,866,754 Patented Dec. 30, 1958 WELL TREATMENT OMPOSITION Paul H. Cardwell, Midland, Mich., and Louis H. Eilers and Alfred R. Hendrickson, Tulsa, Okla., assignors to The Dow Chemical Company, Midland, Mich., a corporation of Delaware No Drawing. Original application June 2, 1954, Serial No. 434,072, now Patent No. 2,794,779, dated June 4, 1957. Divided and this application March 25, 1957, Serial No. 647,965
. 2 Claims. ((31.252-855) The invention relates to oil-base fluid compositions having a temporary high viscosity making them especially useful in various methods of treatment of deep wells, such as those drilled for oil and gas.
One of the methods of treatment of a deep well in which the composition of the invention find an application involves the so-called fracturing of an earth formation penetrated by a well so as to increase its capacity for fluid flow into or out of the well and thereby increase the output of the well if a producer or increase its receptivity for fluid if the well is for fluid disposal. Such fracturing is usually accomplished by injecting into the well a more or less viscous liquid at a sufficient rate to create in the well hole against the formation to be fractured a pressure exceeding that which the formation can withstand without fracture or rupture. In this way it is believed that cracks and fractures are produced, because, on observing the pressure on the liquid so injected into the well it is found to more or less suddenly decline during the injection after the pressure has reached one which is calculated to be sufficient to overcome the resistance of the earth formation to the rapid inflow of fluid. Following or during such a relatively high pressure injection, a particulated solid material, such a sand, usually also is carried into the earth formation so as to deposit fluid permeable masses of solid particles in the cracks, fractures, or other openings produced by'the injection. For conveying such particulated solid material into the well formations, more or less viscous fluid media are preferably used.
Various difliculties arise with the fluids heretofore used in such operations which leave much to be desired. One of the difficulties is that if the liquid or fluid is thin enough to be readily pumped and injected into the well hole, it may drain away or seep into the earth formation without exerting in the well hole as high a pressureas desired. On the other hand if the fluid be made thick enough so that it strongly resists penetration into the earth, and thereby allows high pressure to be exerted in the well hole without excessive seepage, the fluid is diflicult to pump and transmit through the well here to the face of the formation to be treated. Still another difiiculty is that fluids, which may be thick enough to penetrate the earth only under high pressures, do not return readily to the well hole when the injection pressure is released. In such circumstances, the fluid permeability of the earth formation may be adversely affected instead of being benefited from a fracturing operation. Although it has been proposed to inject into the earth formation diluents or gel breakers after an injection of a thick oil-base fluid, such as a gelled gasoline, following a fracturing operation, such injections cannot be-depended upon always to reach and mingle with the thickened .fluid because of the limited space available in the interstices of the earth for mingling to occur. Similar difliculties arise on attempting to use thick liquids for conveying a particulated solid material into the fractures -or-cracks in the earth formation of the well.
Accordingly, it is an object of the invention to provide a fluid composition which is initially easily conveyed through the well tubing or casing, as the case may be, and attains in the well hole after a time a gelled state in which it can be injected into the earth but only by applying high pressure yet, in spite of its low formationpenetrating characteristics, spontaneously thins after a predeterminable time, the thinning being assisted by oil or brine, thereby allowing it to be returned to the well hole from the earth formation by the fluid therefrom produced.
Other objects and advantages will appear as the description of the invention proceeds.
The composition contemplated by the invention and attaining the foregoing and related objects comprises a petroleum fraction which is liquid at ordinary temperatures, such as kerosene, diesel fuel, and distillate. To the petroleum fraction is added a thickening agent, consisting of the aluminum salt of Z-ethyl hexoic acid having the formula:
CHaCH2CH2CHzCHC AlOH C2Ha 0 z This salt may be referred to herein by the short term aluminum octoate for convenience. The aluminum octoate brings about a more or less partial gelling of the petroleum fraction upon the addition of a suitable catalytic agent referred to as a thickening controlling agent as later explained.
The amount of the aluminum octoate to use may be determined by trial in accordance with the amount of thickening to be produced as hereinafter explained. In general the amount of the aluminum octoate may range from about 10 to pounds per gallons of the petroleum fraction.
The aluminum octoate is dispersed in the petroleum fraction in any suitable manner as for example by means of a motor driven agitator operating in a tank in which the petroleum fraction and aluminum octoate are placed for mixing.
Into the dispersion so-obtained, there is dispersed, as by a similar mixing operation, an agent herein referred to as a thickening controlling agent and designated TCA for short. The TCA used in one having the property of causing the aluminum octoate to thicken the liquid petroleum fraction at ordinary temperature and subsequently to bring about at least partial thinning of the so-thickened or more or less gelled petroleum fraction. The TCA accelerates both thickening and thinning of the liquid petroleum fraction to an extent which permits it to become thickened and to remain in a thickened condition for a predeterminable time depending upon the amount and kind ofTCA used.
As a TCA there may be used various petroleum oilsoluble organic chemical compounds or mixtures of them having a generally low dissociation constant, as for example, organic acids and bases and their petroleum oilsoluble salts having dissociation constants of about 1 X 10 to 1 X l0 or preferably between 10- and 10- It is advantageous to usetogether at least two such agents having different dissociation constants as this results in obtaining a better thinning effect than is obtainable usually .with but one such agent without adversely affecting thickening of the liquid petroleum fraction. Examples of suitable TCAs are: oleic acid, linoleic acid, p-toluidine, ammonium stearate, dinonyl phenol, di-Z-ethyl hexyl' amine acetate, and nonyl phenol.
The thickening controlling agent (TCA) may be used in an amount between 0.15 to'9.4 percent of the weight of the petroleum fraction depending upon the rate and I extent of thickening desired.- In general from about 0.2
a the dissociation constant of the agent.
to 4.5 percent by weight of the petroleum fraction suffices for most purposes. 1
As soon as a TCA is dispersed in the liquid petroleum fraction in which the aluminum octoate is dispersed thickening commences and at a rate which depends upon the amount and kind used. The viscosities attained may exceed 100,000 centipoises (cps). Viscosities up to 100,000 cps. may be measured by means of the Brookfield synchro-electric viscosimeter. Viscosities beyond 100,000 cps. may be measured by determining the rate of flow of the thickened petroleum fraction through a straight tube 2 inches long having a cylindrical bore of A inch in diameter. In makinga viscosity measureinent with the tube the material to be measured is forced through the tube under a pressure of 2 pounds per square inch and the time in seconds required for one gram of the material to pass through the tube, multiplied by the factor 9000, is taken as the relative viscosity of the material in jel viscosity units (herein abbreviated IVU). A liquid having a viscosity in. cps. of 100,000, as measured by the Brookfield synchro-electric viscosimeter, will have a viscosity of 100,000 JVU on being subject to a viscosity measurement by means of the tube just described.
The rate at which thickening occurs varies with the kind of TCA used and roughly is more rapid the higher This is illustrated by the data of Table I. The data of Table I are derived from tests in which 3 grams of aluminum octoate were dispersed in each of 7 batches of 100 ml. of kerosene at 80 F. The time required for the resulting mixtures to thicken to 10,000 cps. was observed after dispersing in the mixtures various phenolic thickening controlling agents (TCA) as noted in the table.
As illustrative of the effect on viscosity of the TCA in a dispersion of aluminum octoate in kerosene, the following data in Table II are cited. In obtaining these data, three batches of 100 ml. of kerosene and 3.5 grams 'of aluminum octoate were prepared by dispersing the .octoate in the kerosene. As a TCA, into one of the batches was dispersed 0.9 ml. of oleic acid and into another 1.4 ml. The third batch, with no TCA, served as a blank for comparison. The viscosity of each batch was measured by the tube method described above at various time intervals after preparation as shown in the table.
TABLE II Time vs. viscosity} 100 F.
From the foregoing data, it is manifest that the aluminum octoate-thickened petroleum liquid becomes highly viscous but gradually thins as it ages. Still further thinning takes place when crude oil mixes with and dilutes the thickened material as in an earth formation yielding crude oil.
Thinning after thickening is also accelerated by the use of a more highly dissociated TCA along with a TCA which is less dissociated. For example, acetic acid with a dissociation constant of 1.75 10 at 25 C. shows a marked tendency to bring about thinning after thickening has occurred. Similar effects are observed with butyric acid, potassium oleate, butyl amine, and octadecyl amine acetate, for example. This thinning effect is illustrated in the data tabulated in Table III for three batches each of 100 ml. of kerosene thickened with 2 grams of aluminum octoate and containing 1 ml. of oleic acid. To one of the batches 0.04 ml. of acetic acid was added, to a second batch 0.08 ml. was added and to a third batch 0.12 ml. of acetic acid added.
TABLE III Time vs. viscosity} thinning efiect of acetic acid, 100 F.
[Acetic acid added] Hours after preparation Batch 1- Batch 2 Batch 3- 0.04 ml. 0.08 ml 0.12 ml.
l Viscosities below 100,000 are in cps., higher viscosities are in .TVUs.
Inasmuch as the mixture of aluminum octoate and petroleurn liquid thickens more or less rapidly after adding a TCA, the operation of the introduction of the mixture into the well, and into the earth formation, it desired, is completed before the mixture becomes too thick to pump, as when the viscosity reaches about 25,000 cps. By using an amount of TCA which promotes the desired extent of thickening followed by thinning and having regard to the rate at which the mixture thickens, the time interval before the mixture becomes too thick to pump can be made as long as needed to'make the in jection into the well and also into the adjacent earth, if desired. In ascertaining the amount of TCA to use, the temperature is taken into account as the rate of thickening increases with increase of temperature. The eiIect of temperature on the rate at which mixtures of aluminum octoate and a liquid petroleum fraction thicken to a viscosity of 10,000 cps, for example, is illustrated by the data tabulated in Table IV in which 100 ml. batches of kerosene containing 3 grams of aluminum octcate were thickened at different temperatures with various amounts of a T CA composed of 96 parts of oleic acid and 4 parts of acetic acid.
TABLE IV Time vs. temperature to reach viscosity of 10,000 cps.
' Minutes elapsed in reaching viscosity of 10,000 cps.
Ml. TCA 1 at F. at 100 F. at 120 F.
Composed 01'96 parts of olcic and 4 parts of acetic acid by volume.
,F m t e d t 0i Tabl IV. it is evident hat byei he decreasing the amount of TCA or the temperature of operation the time available for handling the mixture before its viscosity exceeds 10,000 cps. is lengthened.
The maximum viscosities attained in a series of equal thickening times at various temperatures for various proportions of the aluminum octoate and the TCA are shown in Table V, in which the TCA is a mixture of 96 parts of oleic and 4 parts of acetic acid by volume, and in table VI, in which the TCA is a mixture of 99 parts of oleic and 1 part of acetic acid by volume.
TABLE V Viscosity vs. temperature and concentration of aluminum octoate and T CA 1 for the same thickening time at 80 F. to 150 F.
1 96 parts of oleic and 4 parts of acetic acid by volume. t I Ttilme taken to attain the viscosity listed which is the maximum atame TABLE VI Viscosity vs. temperature and concentration of aluminum octoate and T CA 1 for the same thickening time at 200 F. to 300 F.
Viscosities vs. ml. TCA per gram of Al Octoate Grams Al Octoate per 100 ml. 8 minutes 1 5.3 minutes 2 3.3 minutes 2 Kerosene 200 F. 0.35 ml. 250 F. 0.20 mi. 300 F. 0.15 ml.
150,000 JVU-.- 110,000 JVU 50,000 cps. 300,000 JVU 20 000 J 0,000 cps 475,000 JVU 350,000 JVU-. 175,000 JVU 750.000 JVU 0,000 J 250,000 JVU. 1,200,000 JVU 750,000 JVU. 375,000 JVU. 1,100,000 JVU--- 550,000 .IVU. 750,000 .TVU.
I 99 parts of oleic and 1 part of acetic acid by volume. t in'Iiime taken to attain the viscosity listed which is the maximum at- In some instances, as when it is desired to use the aluminum octoate-thickened liquid petroleum fraction as a fluid medium with which to convey a particulated solid, such as sand, into fractures or cracks and the like in an earth formation, an amount of TCA is used which will induce a suflicient viscosity to be attained to suspend the particles of the particulated solid, yet not too great to be beyond a pumpable stage before injection can be made into the earth. For example sand, 90 percent of which is of 25 to 40 mesh, will settle in an aluminum octoate-thickened petroleum liquid at the 'rate of 0.3 foot per minute at 80 F. when its viscosity is 260 cps. Such a mixture is readily conveyed by pumping yet the sand remains well suspend-ed during the time required for an injection. The sand falling rate in other mixtures of aluminum octoate-thickened kerosene is shown in the data of Table VII as further examples.
6 TABLE VH Al Viscos- Octoate, TCA, ml. ity, cps., Percent 80 F.
Ago 2 in Minutes Volume of Kerosene 100 ml.. .0 cresyllc acld 2, 500 30 .6 cresylic acid--- 220 .4 cresylic acid- 20 30 5 mixture 1 250 10 156 percent by volume of oleic acid and. 4 percent by volume of acetic c thickened by dispersing therein 2.25 grams of Al octoate followed by 1.8 ml. of TCA consisting of a mixture of percent by volume of oleic acid and 5 percent of acetic acid. Batch 1 was mixed with 10 ml. of crude oil; batch 2 was mixed with 10 ml. of brine; and the third was held as a blank for comparison. All three batches were aged at F. and their viscosities measured periodically as indicated in the table after the mixtures attained their maximum viscosities of 160,000 JVU.
TABLE VIII initial 5 hours 24hours 48 hours 1 (added crude oil) 35,000 65,000
J l Viscositles below 100,000 are in cps., viscosities above 100,000 are in Another series of tests similar to those of Table VIII are set forth in Table IX but instead of using 2.25 grams of aluminum oleate the mixtures contain 3.0, and instead of using 1.8 ml. of TCA the mixtures contain 1.2 ml. of the same TCA.
TABLE IX Viscosities 1 vs. time at F. Mixture under test initial 5 hours 24hours 48 hours 1 (added crude oil) 2 (added brine) 3 (blank) J iscosities below 100,000 are in cps., viscosities above 100,000 are in kerosene were thickened with 2.25 grams of Al octoate and 1.8 ml. of a TCA was then added consisting of a mixture of 95 percent by volume of oleic acid and 5 parts of acetic acid. These batches attained a maximum viscosity of 160,000 IVU at 100 F. After attaining TABLE X Viscosity, cps.
Ml. crude oil added per 100 1111. Hours after adding crude oil By using a combination of two thickening controlling agents having different dissociation constants, the one having the smaller dissociation constant does more to promote thickening than thinning and the one having the higher dissociation constant does more to promote thinning than thickening. As a result better control of the duration of the thickened state may be had. This is a desirable feature of the invention as it permits obtaining a long and controllable time during which the more or less gelled petroleum fraction very strongly resists penetration into earth formations. This property also permits knowing in advance the length of time the petroleum fraction will remain thin before gelling or thickening commences so that the mixture of the petroleum fraction, aluminum octoate, and TCA may be introduced into a well bore and more or less deeply into the adjacent earth before the mixture becomes too thick to be readily pumped. Thickening thereafter may take place in the interstices of the earth formation away from the well hole thereby producing a temporary plugging effect beyond the well hole wall. Subsequently a liquid such as oil, water or brine may be injected under a suitable pressure to produce fractures deeply in the earth since the temporary plugging of the surrounding earth by the more or less gelled petroleum fluid confines the fracturing liquid to the regions in the formation adjacent to the gel.
Various advantages accrue to the invention in addition to those already mentioned. The composition may be used for example in connection with perforating well casing in wells in which it is necessary to maintain hydrostatic control as by a column of drilling mud. In such wells, it is desirable to prevent the drilling mud from penetrating and permeating the formation following the r perforation operation. By displacing the drilling mud with the composition of the invention from that portion of the casing to be perforated and conducting the perforating operation through the composition after it is allowed to thicken, the drilling mud will be prevented from passing into the formation through the perforations thus made and contaminating the formation. the composition thins permitting its removal from the well along with the drilling mud.
The composition may be used advantageously in general in all cases where it is desirable to protect an earth formation from fluid intrusion fromv a wellhole, as for example in acidizing a plurality of formations one at a time from the same well hole.
While many of the examples of the invention involve.
the use of mixtures of oleic acid and acetic acid as a thickening controlling agent, it is to be-understood that other mixtures of oil-soluble organic compounds may be used similarly having dissociation constants within the aforesaid limits. Slower rates of thickening, where desired, may be achieved by the use of mixtures of nonyl phenol and glacial acetic acid. Such mixtures also have the advantage of maintaining the thickened petroleum fraction at a high viscosity for a longer time before a breaking down or thinning of the gelled state occurs. For example, a mixture of 92.5 percent of nonyl phenol and 7.5 percent of glacial acetic acid by volume permits viscosities to be attained of up to 1,000,000 JVU. But before these viscosities are attained from 4 to 16 hours may elapse, at temperatures of to 170 F., during which the composition may be pumped or otherwise deposited in the well hole.
This application is a division of our copending application Serial No. 434,072, filed June 2, 1954, on which Patent No. 2,794,779 issued June 4, 1957.
We claim:
1. A fluid composition having a temporary high viscosity comprising a base of a liquid petroleum fraction, said base having dispersed therein as a thickening agent aluminum octoate and a thickening controlling agent consisting of a mixture of acetic acid and a phenolic compound selected from the group consisting of chlorophenol, phenol, metacresol, orthocresol, nonyl phenol, dinonyl phenol, the aluminum octoate being present in amount between 10 and pounds per gallons of the liquid petroleum fraction and the thickening controlling agent being present in amount between 0.15 and 9.4 percent of the weight of the petroleum fraction, the amount of the acetic acid being from 0.04 to 0.12 ml. per 100 ml. of the petroleum fraction, said thickening controlling agent causing the composition to thicken and thereafter to thin.
2. A composition according to claim 1 in which the phenolic compound is nonyl phenol.
References Cited in the file of this patent After a, timev
Claims (1)
1. A FLUID COMPOSITION HAVING A TEMPORARY HIGH VISCOSITY COMPRISING A BASE OF A LIQUID PETROLEUM FRACTION, SAID BASE HAVING DISPERSED THEREIN AS A THICKENING AGENT ALUMINUM OCTOATE AND A THICKENING CONTROLLING AGENT CONSISTING OF A MIXTURE OF ACETIC ACID AND A PHENOLIC COMPOUND SELECTED FROM THE GROUP CONSISTING OF CHLOROPHENOL, PHENOL, METACRESOL, ORTHOCRESOL, NONYL PHENOL, DINONYL PHENOL, THE ALUMINUM OCTOATE BEING PRESENT IN AMOUNT BETWEEN 10 AND 90 POUNDS PER 100 GALLONS OF THE LIQUID PETROLEUM FRACTION AND THE THICKENING CONTROLLING AGENT BEING PRESENT IN AMOUNT BETWEEN 0.15 AND 9.4 PERCENT OF THE WEIGHT OF THE PETROLEUM FRACTION, THE AMOUNT OF THE ACETIC ACID BEING FROM 0.04 TO 0.12 ML. PER 100 ML. OF THE PETROLEUM FRACTION, SAID THICKENING CONTROLLING AGENT CAUSING THE COMPOSITION TO THICKEN AND THEREAFTER TO THIN.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US647965A US2866754A (en) | 1954-06-02 | 1957-03-25 | Well treatment composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US434072A US2794779A (en) | 1954-06-02 | 1954-06-02 | Well treatment composition |
US647965A US2866754A (en) | 1954-06-02 | 1957-03-25 | Well treatment composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US2866754A true US2866754A (en) | 1958-12-30 |
Family
ID=27030066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US647965A Expired - Lifetime US2866754A (en) | 1954-06-02 | 1957-03-25 | Well treatment composition |
Country Status (1)
Country | Link |
---|---|
US (1) | US2866754A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3164138A (en) * | 1962-11-21 | 1965-01-05 | Texaco Inc | Method of operating an internal combustion engine and motor fuel therefor |
US3398792A (en) * | 1964-03-16 | 1968-08-27 | Mobil Oil Corp | Liquid flow in a permeable earth formation |
US3417819A (en) * | 1966-11-01 | 1968-12-24 | Gulf Research Development Co | Method of fracturing with a high-viscosity liquid |
US3446746A (en) * | 1965-06-22 | 1969-05-27 | Roussel Uclaf | Novel three phase aerosols |
US3461079A (en) * | 1964-06-11 | 1969-08-12 | Irving B Goldberg | Gelled propellant compositions useful in aerosol dispensers |
US3637013A (en) * | 1970-03-02 | 1972-01-25 | Mobil Oil Corp | In situ combustion process using time-dependent shear-thinning liquid barrier |
US3799267A (en) * | 1972-11-21 | 1974-03-26 | Halliburton Co | Hydraulic fracturing method using benzoic acid to further increase the viscosity of liquid hydrocarbon |
US3900070A (en) * | 1974-05-06 | 1975-08-19 | Halliburton Co | Gelling liquid hydrocarbons |
US3915888A (en) * | 1970-11-06 | 1975-10-28 | Raymond W Hoeppel | Oil base gel having low viscosity before gelation and method for its preparation |
WO2001009482A1 (en) * | 1999-07-29 | 2001-02-08 | Crompton Corporation | Gelling system for hydrocarbon fluids |
US20090305914A1 (en) * | 2008-05-07 | 2009-12-10 | Leiming Li | Phosphorus-Free Gelled Hydrocarbon Compositions and Method for Use Thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2390609A (en) * | 1942-07-29 | 1945-12-11 | Nuodex Products Co Inc | Bodying agent for liquid hydrocarbons |
US2596844A (en) * | 1949-12-31 | 1952-05-13 | Stanolind Oil & Gas Co | Treatment of wells |
US2675354A (en) * | 1950-05-18 | 1954-04-13 | Stanolind Oil & Gas Co | Method of producing gels |
US2794779A (en) * | 1954-06-02 | 1957-06-04 | Dow Chemical Co | Well treatment composition |
-
1957
- 1957-03-25 US US647965A patent/US2866754A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2390609A (en) * | 1942-07-29 | 1945-12-11 | Nuodex Products Co Inc | Bodying agent for liquid hydrocarbons |
US2596844A (en) * | 1949-12-31 | 1952-05-13 | Stanolind Oil & Gas Co | Treatment of wells |
US2675354A (en) * | 1950-05-18 | 1954-04-13 | Stanolind Oil & Gas Co | Method of producing gels |
US2794779A (en) * | 1954-06-02 | 1957-06-04 | Dow Chemical Co | Well treatment composition |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3164138A (en) * | 1962-11-21 | 1965-01-05 | Texaco Inc | Method of operating an internal combustion engine and motor fuel therefor |
US3398792A (en) * | 1964-03-16 | 1968-08-27 | Mobil Oil Corp | Liquid flow in a permeable earth formation |
US3461079A (en) * | 1964-06-11 | 1969-08-12 | Irving B Goldberg | Gelled propellant compositions useful in aerosol dispensers |
US3446746A (en) * | 1965-06-22 | 1969-05-27 | Roussel Uclaf | Novel three phase aerosols |
US3417819A (en) * | 1966-11-01 | 1968-12-24 | Gulf Research Development Co | Method of fracturing with a high-viscosity liquid |
US3637013A (en) * | 1970-03-02 | 1972-01-25 | Mobil Oil Corp | In situ combustion process using time-dependent shear-thinning liquid barrier |
US3915888A (en) * | 1970-11-06 | 1975-10-28 | Raymond W Hoeppel | Oil base gel having low viscosity before gelation and method for its preparation |
US3799267A (en) * | 1972-11-21 | 1974-03-26 | Halliburton Co | Hydraulic fracturing method using benzoic acid to further increase the viscosity of liquid hydrocarbon |
US3900070A (en) * | 1974-05-06 | 1975-08-19 | Halliburton Co | Gelling liquid hydrocarbons |
WO2001009482A1 (en) * | 1999-07-29 | 2001-02-08 | Crompton Corporation | Gelling system for hydrocarbon fluids |
US6248699B1 (en) * | 1999-07-29 | 2001-06-19 | Crompton Corporation | Gelling system for hydrocarbon fluids |
US20090305914A1 (en) * | 2008-05-07 | 2009-12-10 | Leiming Li | Phosphorus-Free Gelled Hydrocarbon Compositions and Method for Use Thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2802531A (en) | Well treatment | |
US2596843A (en) | Fracturing formations in wells | |
US3378074A (en) | Method for fracturing subterranean formations | |
US2890752A (en) | New squeeze cement proces and slurry | |
US3710865A (en) | Method of fracturing subterranean formations using oil-in-water emulsions | |
US3251415A (en) | Acid treating process | |
US4622155A (en) | Method for fracturing subterranean formations | |
US2596137A (en) | Removing deposits from wells | |
US4695389A (en) | Aqueous gelling and/or foaming agents for aqueous acids and methods of using the same | |
US3968840A (en) | Controlled rate acidization process | |
US3375872A (en) | Method of plugging or sealing formations with acidic silicic acid solution | |
US2866754A (en) | Well treatment composition | |
US2838116A (en) | Producing multiple fractures in a formation penetrated by a well | |
USRE23733E (en) | Fracturing formations in wells | |
US7156177B2 (en) | Scale dissolver fluid | |
US3799266A (en) | Fracturing method using acid external emulsions | |
US3500929A (en) | Temporary diverting agent and use thereof in treatmeint of subterranean strata | |
US2742426A (en) | Composition for hydraulically fracturing formations | |
US2645291A (en) | Hydraulically fracturing well formation | |
US2966457A (en) | Gelled fracturing fluids | |
US2689009A (en) | Acidizing wells | |
US2596845A (en) | Treatment of wells | |
US2811207A (en) | Method of vertically fracturing formations in wells | |
US3227212A (en) | Temporary plugging agent | |
US3343602A (en) | Method of retarding reaction of acid on limestone |