[go: up one dir, main page]

US2866754A - Well treatment composition - Google Patents

Well treatment composition Download PDF

Info

Publication number
US2866754A
US2866754A US647965A US64796557A US2866754A US 2866754 A US2866754 A US 2866754A US 647965 A US647965 A US 647965A US 64796557 A US64796557 A US 64796557A US 2866754 A US2866754 A US 2866754A
Authority
US
United States
Prior art keywords
thickening
petroleum fraction
tca
viscosity
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US647965A
Inventor
Paul H Cardwell
Louis H Eilers
Alfred R Hendrickson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US434072A external-priority patent/US2794779A/en
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US647965A priority Critical patent/US2866754A/en
Application granted granted Critical
Publication of US2866754A publication Critical patent/US2866754A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L7/00Fuels produced by solidifying fluid fuels
    • C10L7/02Fuels produced by solidifying fluid fuels liquid fuels
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/126Acids containing more than four carbon atoms
    • C07C53/128Acids containing more than four carbon atoms the carboxylic group being bound to a carbon atom bound to at least two other carbon atoms, e.g. neo-acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/64Oil-based compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/921Specified breaker component for emulsion or gel

Definitions

  • the invention relates to oil-base fluid compositions having a temporary high viscosity making them especially useful in various methods of treatment of deep wells, such as those drilled for oil and gas.
  • One of the methods of treatment of a deep well in which the composition of the invention find an application involves the so-called fracturing of an earth formation penetrated by a well so as to increase its capacity for fluid flow into or out of the well and thereby increase the output of the well if a producer or increase its receptivity for fluid if the well is for fluid disposal.
  • Such fracturing is usually accomplished by injecting into the well a more or less viscous liquid at a sufficient rate to create in the well hole against the formation to be fractured a pressure exceeding that which the formation can withstand without fracture or rupture.
  • Still another difiiculty is that fluids, which may be thick enough to penetrate the earth only under high pressures, do not return readily to the well hole when the injection pressure is released. In such circumstances, the fluid permeability of the earth formation may be adversely affected instead of being benefited from a fracturing operation.
  • a thick oil-base fluid such as a gelled gasoline
  • injections cannot be-depended upon always to reach and mingle with the thickened .fluid because of the limited space available in the interstices of the earth for mingling to occur. Similar difliculties arise on attempting to use thick liquids for conveying a particulated solid material into the fractures -or-cracks in the earth formation of the well.
  • composition contemplated by the invention and attaining the foregoing and related objects comprises a petroleum fraction which is liquid at ordinary temperatures, such as kerosene, diesel fuel, and distillate.
  • a thickening agent consisting of the aluminum salt of Z-ethyl hexoic acid having the formula:
  • This salt may be referred to herein by the short term aluminum octoate for convenience.
  • the aluminum octoate brings about a more or less partial gelling of the petroleum fraction upon the addition of a suitable catalytic agent referred to as a thickening controlling agent as later explained.
  • the amount of the aluminum octoate to use may be determined by trial in accordance with the amount of thickening to be produced as hereinafter explained. In general the amount of the aluminum octoate may range from about 10 to pounds per gallons of the petroleum fraction.
  • the aluminum octoate is dispersed in the petroleum fraction in any suitable manner as for example by means of a motor driven agitator operating in a tank in which the petroleum fraction and aluminum octoate are placed for mixing.
  • an agent herein referred to as a thickening controlling agent and designated TCA for short there is dispersed, as by a similar mixing operation, an agent herein referred to as a thickening controlling agent and designated TCA for short.
  • the TCA used in one having the property of causing the aluminum octoate to thicken the liquid petroleum fraction at ordinary temperature and subsequently to bring about at least partial thinning of the so-thickened or more or less gelled petroleum fraction.
  • the TCA accelerates both thickening and thinning of the liquid petroleum fraction to an extent which permits it to become thickened and to remain in a thickened condition for a predeterminable time depending upon the amount and kind ofTCA used.
  • TCA there may be used various petroleum oilsoluble organic chemical compounds or mixtures of them having a generally low dissociation constant, as for example, organic acids and bases and their petroleum oilsoluble salts having dissociation constants of about 1 X 10 to 1 X l0 or preferably between 10- and 10- It is advantageous to usetogether at least two such agents having different dissociation constants as this results in obtaining a better thinning effect than is obtainable usually .with but one such agent without adversely affecting thickening of the liquid petroleum fraction.
  • TCAs examples include: oleic acid, linoleic acid, p-toluidine, ammonium stearate, dinonyl phenol, di-Z-ethyl hexyl' amine acetate, and nonyl phenol.
  • the thickening controlling agent may be used in an amount between 0.15 to'9.4 percent of the weight of the petroleum fraction depending upon the rate and I extent of thickening desired.- In general from about 0.2
  • Viscosities up to 100,000 cps. may be measured by means of the Brookfield synchro-electric viscosimeter. Viscosities beyond 100,000 cps. may be measured by determining the rate of flow of the thickened petroleum fraction through a straight tube 2 inches long having a cylindrical bore of A inch in diameter.
  • the rate at which thickening occurs varies with the kind of TCA used and roughly is more rapid the higher This is illustrated by the data of Table I.
  • the data of Table I are derived from tests in which 3 grams of aluminum octoate were dispersed in each of 7 batches of 100 ml. of kerosene at 80 F. The time required for the resulting mixtures to thicken to 10,000 cps. was observed after dispersing in the mixtures various phenolic thickening controlling agents (TCA) as noted in the table.
  • TCA phenolic thickening controlling agents
  • Thinning after thickening is also accelerated by the use of a more highly dissociated TCA along with a TCA which is less dissociated.
  • acetic acid with a dissociation constant of 1.75 10 at 25 C. shows a marked tendency to bring about thinning after thickening has occurred.
  • Similar effects are observed with butyric acid, potassium oleate, butyl amine, and octadecyl amine acetate, for example.
  • This thinning effect is illustrated in the data tabulated in Table III for three batches each of 100 ml. of kerosene thickened with 2 grams of aluminum octoate and containing 1 ml. of oleic acid. To one of the batches 0.04 ml. of acetic acid was added, to a second batch 0.08 ml. was added and to a third batch 0.12 ml. of acetic acid added.
  • Viscosities below 100,000 are in cps., higher viscosities are in .TVUs.
  • the operation of the introduction of the mixture into the well, and into the earth formation, it desired, is completed before the mixture becomes too thick to pump, as when the viscosity reaches about 25,000 cps.
  • the time interval before the mixture becomes too thick to pump can be made as long as needed to'make the in jection into the well and also into the adjacent earth, if desired.
  • the temperature is taken into account as the rate of thickening increases with increase of temperature.
  • This property also permits knowing in advance the length of time the petroleum fraction will remain thin before gelling or thickening commences so that the mixture of the petroleum fraction, aluminum octoate, and TCA may be introduced into a well bore and more or less deeply into the adjacent earth before the mixture becomes too thick to be readily pumped. Thickening thereafter may take place in the interstices of the earth formation away from the well hole thereby producing a temporary plugging effect beyond the well hole wall. Subsequently a liquid such as oil, water or brine may be injected under a suitable pressure to produce fractures deeply in the earth since the temporary plugging of the surrounding earth by the more or less gelled petroleum fluid confines the fracturing liquid to the regions in the formation adjacent to the gel.
  • a liquid such as oil, water or brine
  • the composition may be used for example in connection with perforating well casing in wells in which it is necessary to maintain hydrostatic control as by a column of drilling mud. In such wells, it is desirable to prevent the drilling mud from penetrating and permeating the formation following the r perforation operation.
  • the drilling mud By displacing the drilling mud with the composition of the invention from that portion of the casing to be perforated and conducting the perforating operation through the composition after it is allowed to thicken, the drilling mud will be prevented from passing into the formation through the perforations thus made and contaminating the formation.
  • the composition thins permitting its removal from the well along with the drilling mud.
  • composition may be used advantageously in general in all cases where it is desirable to protect an earth formation from fluid intrusion fromv a wellhole, as for example in acidizing a plurality of formations one at a time from the same well hole.
  • mixtures of oleic acid and acetic acid as a thickening controlling agent
  • other mixtures of oil-soluble organic compounds may be used similarly having dissociation constants within the aforesaid limits.
  • Slower rates of thickening may be achieved by the use of mixtures of nonyl phenol and glacial acetic acid.
  • Such mixtures also have the advantage of maintaining the thickened petroleum fraction at a high viscosity for a longer time before a breaking down or thinning of the gelled state occurs.
  • a mixture of 92.5 percent of nonyl phenol and 7.5 percent of glacial acetic acid by volume permits viscosities to be attained of up to 1,000,000 JVU. But before these viscosities are attained from 4 to 16 hours may elapse, at temperatures of to 170 F., during which the composition may be pumped or otherwise deposited in the well hole.
  • a fluid composition having a temporary high viscosity comprising a base of a liquid petroleum fraction, said base having dispersed therein as a thickening agent aluminum octoate and a thickening controlling agent consisting of a mixture of acetic acid and a phenolic compound selected from the group consisting of chlorophenol, phenol, metacresol, orthocresol, nonyl phenol, dinonyl phenol, the aluminum octoate being present in amount between 10 and pounds per gallons of the liquid petroleum fraction and the thickening controlling agent being present in amount between 0.15 and 9.4 percent of the weight of the petroleum fraction, the amount of the acetic acid being from 0.04 to 0.12 ml. per 100 ml. of the petroleum fraction, said thickening controlling agent causing the composition to thicken and thereafter to thin.
  • a thickening agent consisting of a mixture of acetic acid and a phenolic compound selected from the group consisting of chlorophenol, phenol, metacresol, orthocresol, nony
  • composition according to claim 1 in which the phenolic compound is nonyl phenol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Description

United States atent flice 2,866,754 Patented Dec. 30, 1958 WELL TREATMENT OMPOSITION Paul H. Cardwell, Midland, Mich., and Louis H. Eilers and Alfred R. Hendrickson, Tulsa, Okla., assignors to The Dow Chemical Company, Midland, Mich., a corporation of Delaware No Drawing. Original application June 2, 1954, Serial No. 434,072, now Patent No. 2,794,779, dated June 4, 1957. Divided and this application March 25, 1957, Serial No. 647,965
. 2 Claims. ((31.252-855) The invention relates to oil-base fluid compositions having a temporary high viscosity making them especially useful in various methods of treatment of deep wells, such as those drilled for oil and gas.
One of the methods of treatment of a deep well in which the composition of the invention find an application involves the so-called fracturing of an earth formation penetrated by a well so as to increase its capacity for fluid flow into or out of the well and thereby increase the output of the well if a producer or increase its receptivity for fluid if the well is for fluid disposal. Such fracturing is usually accomplished by injecting into the well a more or less viscous liquid at a sufficient rate to create in the well hole against the formation to be fractured a pressure exceeding that which the formation can withstand without fracture or rupture. In this way it is believed that cracks and fractures are produced, because, on observing the pressure on the liquid so injected into the well it is found to more or less suddenly decline during the injection after the pressure has reached one which is calculated to be sufficient to overcome the resistance of the earth formation to the rapid inflow of fluid. Following or during such a relatively high pressure injection, a particulated solid material, such a sand, usually also is carried into the earth formation so as to deposit fluid permeable masses of solid particles in the cracks, fractures, or other openings produced by'the injection. For conveying such particulated solid material into the well formations, more or less viscous fluid media are preferably used.
Various difliculties arise with the fluids heretofore used in such operations which leave much to be desired. One of the difficulties is that if the liquid or fluid is thin enough to be readily pumped and injected into the well hole, it may drain away or seep into the earth formation without exerting in the well hole as high a pressureas desired. On the other hand if the fluid be made thick enough so that it strongly resists penetration into the earth, and thereby allows high pressure to be exerted in the well hole without excessive seepage, the fluid is diflicult to pump and transmit through the well here to the face of the formation to be treated. Still another difiiculty is that fluids, which may be thick enough to penetrate the earth only under high pressures, do not return readily to the well hole when the injection pressure is released. In such circumstances, the fluid permeability of the earth formation may be adversely affected instead of being benefited from a fracturing operation. Although it has been proposed to inject into the earth formation diluents or gel breakers after an injection of a thick oil-base fluid, such as a gelled gasoline, following a fracturing operation, such injections cannot be-depended upon always to reach and mingle with the thickened .fluid because of the limited space available in the interstices of the earth for mingling to occur. Similar difliculties arise on attempting to use thick liquids for conveying a particulated solid material into the fractures -or-cracks in the earth formation of the well.
Accordingly, it is an object of the invention to provide a fluid composition which is initially easily conveyed through the well tubing or casing, as the case may be, and attains in the well hole after a time a gelled state in which it can be injected into the earth but only by applying high pressure yet, in spite of its low formationpenetrating characteristics, spontaneously thins after a predeterminable time, the thinning being assisted by oil or brine, thereby allowing it to be returned to the well hole from the earth formation by the fluid therefrom produced.
Other objects and advantages will appear as the description of the invention proceeds.
The composition contemplated by the invention and attaining the foregoing and related objects comprises a petroleum fraction which is liquid at ordinary temperatures, such as kerosene, diesel fuel, and distillate. To the petroleum fraction is added a thickening agent, consisting of the aluminum salt of Z-ethyl hexoic acid having the formula:
CHaCH2CH2CHzCHC AlOH C2Ha 0 z This salt may be referred to herein by the short term aluminum octoate for convenience. The aluminum octoate brings about a more or less partial gelling of the petroleum fraction upon the addition of a suitable catalytic agent referred to as a thickening controlling agent as later explained.
The amount of the aluminum octoate to use may be determined by trial in accordance with the amount of thickening to be produced as hereinafter explained. In general the amount of the aluminum octoate may range from about 10 to pounds per gallons of the petroleum fraction.
The aluminum octoate is dispersed in the petroleum fraction in any suitable manner as for example by means of a motor driven agitator operating in a tank in which the petroleum fraction and aluminum octoate are placed for mixing.
Into the dispersion so-obtained, there is dispersed, as by a similar mixing operation, an agent herein referred to as a thickening controlling agent and designated TCA for short. The TCA used in one having the property of causing the aluminum octoate to thicken the liquid petroleum fraction at ordinary temperature and subsequently to bring about at least partial thinning of the so-thickened or more or less gelled petroleum fraction. The TCA accelerates both thickening and thinning of the liquid petroleum fraction to an extent which permits it to become thickened and to remain in a thickened condition for a predeterminable time depending upon the amount and kind ofTCA used.
As a TCA there may be used various petroleum oilsoluble organic chemical compounds or mixtures of them having a generally low dissociation constant, as for example, organic acids and bases and their petroleum oilsoluble salts having dissociation constants of about 1 X 10 to 1 X l0 or preferably between 10- and 10- It is advantageous to usetogether at least two such agents having different dissociation constants as this results in obtaining a better thinning effect than is obtainable usually .with but one such agent without adversely affecting thickening of the liquid petroleum fraction. Examples of suitable TCAs are: oleic acid, linoleic acid, p-toluidine, ammonium stearate, dinonyl phenol, di-Z-ethyl hexyl' amine acetate, and nonyl phenol.
The thickening controlling agent (TCA) may be used in an amount between 0.15 to'9.4 percent of the weight of the petroleum fraction depending upon the rate and I extent of thickening desired.- In general from about 0.2
a the dissociation constant of the agent.
to 4.5 percent by weight of the petroleum fraction suffices for most purposes. 1
As soon as a TCA is dispersed in the liquid petroleum fraction in which the aluminum octoate is dispersed thickening commences and at a rate which depends upon the amount and kind used. The viscosities attained may exceed 100,000 centipoises (cps). Viscosities up to 100,000 cps. may be measured by means of the Brookfield synchro-electric viscosimeter. Viscosities beyond 100,000 cps. may be measured by determining the rate of flow of the thickened petroleum fraction through a straight tube 2 inches long having a cylindrical bore of A inch in diameter. In makinga viscosity measureinent with the tube the material to be measured is forced through the tube under a pressure of 2 pounds per square inch and the time in seconds required for one gram of the material to pass through the tube, multiplied by the factor 9000, is taken as the relative viscosity of the material in jel viscosity units (herein abbreviated IVU). A liquid having a viscosity in. cps. of 100,000, as measured by the Brookfield synchro-electric viscosimeter, will have a viscosity of 100,000 JVU on being subject to a viscosity measurement by means of the tube just described.
The rate at which thickening occurs varies with the kind of TCA used and roughly is more rapid the higher This is illustrated by the data of Table I. The data of Table I are derived from tests in which 3 grams of aluminum octoate were dispersed in each of 7 batches of 100 ml. of kerosene at 80 F. The time required for the resulting mixtures to thicken to 10,000 cps. was observed after dispersing in the mixtures various phenolic thickening controlling agents (TCA) as noted in the table.
As illustrative of the effect on viscosity of the TCA in a dispersion of aluminum octoate in kerosene, the following data in Table II are cited. In obtaining these data, three batches of 100 ml. of kerosene and 3.5 grams 'of aluminum octoate were prepared by dispersing the .octoate in the kerosene. As a TCA, into one of the batches was dispersed 0.9 ml. of oleic acid and into another 1.4 ml. The third batch, with no TCA, served as a blank for comparison. The viscosity of each batch was measured by the tube method described above at various time intervals after preparation as shown in the table.
TABLE II Time vs. viscosity} 100 F.
From the foregoing data, it is manifest that the aluminum octoate-thickened petroleum liquid becomes highly viscous but gradually thins as it ages. Still further thinning takes place when crude oil mixes with and dilutes the thickened material as in an earth formation yielding crude oil.
Thinning after thickening is also accelerated by the use of a more highly dissociated TCA along with a TCA which is less dissociated. For example, acetic acid with a dissociation constant of 1.75 10 at 25 C. shows a marked tendency to bring about thinning after thickening has occurred. Similar effects are observed with butyric acid, potassium oleate, butyl amine, and octadecyl amine acetate, for example. This thinning effect is illustrated in the data tabulated in Table III for three batches each of 100 ml. of kerosene thickened with 2 grams of aluminum octoate and containing 1 ml. of oleic acid. To one of the batches 0.04 ml. of acetic acid was added, to a second batch 0.08 ml. was added and to a third batch 0.12 ml. of acetic acid added.
TABLE III Time vs. viscosity} thinning efiect of acetic acid, 100 F.
[Acetic acid added] Hours after preparation Batch 1- Batch 2 Batch 3- 0.04 ml. 0.08 ml 0.12 ml.
l Viscosities below 100,000 are in cps., higher viscosities are in .TVUs.
Inasmuch as the mixture of aluminum octoate and petroleurn liquid thickens more or less rapidly after adding a TCA, the operation of the introduction of the mixture into the well, and into the earth formation, it desired, is completed before the mixture becomes too thick to pump, as when the viscosity reaches about 25,000 cps. By using an amount of TCA which promotes the desired extent of thickening followed by thinning and having regard to the rate at which the mixture thickens, the time interval before the mixture becomes too thick to pump can be made as long as needed to'make the in jection into the well and also into the adjacent earth, if desired. In ascertaining the amount of TCA to use, the temperature is taken into account as the rate of thickening increases with increase of temperature. The eiIect of temperature on the rate at which mixtures of aluminum octoate and a liquid petroleum fraction thicken to a viscosity of 10,000 cps, for example, is illustrated by the data tabulated in Table IV in which 100 ml. batches of kerosene containing 3 grams of aluminum octcate were thickened at different temperatures with various amounts of a T CA composed of 96 parts of oleic acid and 4 parts of acetic acid.
TABLE IV Time vs. temperature to reach viscosity of 10,000 cps.
' Minutes elapsed in reaching viscosity of 10,000 cps.
Ml. TCA 1 at F. at 100 F. at 120 F.
Composed 01'96 parts of olcic and 4 parts of acetic acid by volume.
,F m t e d t 0i Tabl IV. it is evident hat byei he decreasing the amount of TCA or the temperature of operation the time available for handling the mixture before its viscosity exceeds 10,000 cps. is lengthened.
The maximum viscosities attained in a series of equal thickening times at various temperatures for various proportions of the aluminum octoate and the TCA are shown in Table V, in which the TCA is a mixture of 96 parts of oleic and 4 parts of acetic acid by volume, and in table VI, in which the TCA is a mixture of 99 parts of oleic and 1 part of acetic acid by volume.
TABLE V Viscosity vs. temperature and concentration of aluminum octoate and T CA 1 for the same thickening time at 80 F. to 150 F.
1 96 parts of oleic and 4 parts of acetic acid by volume. t I Ttilme taken to attain the viscosity listed which is the maximum atame TABLE VI Viscosity vs. temperature and concentration of aluminum octoate and T CA 1 for the same thickening time at 200 F. to 300 F.
Viscosities vs. ml. TCA per gram of Al Octoate Grams Al Octoate per 100 ml. 8 minutes 1 5.3 minutes 2 3.3 minutes 2 Kerosene 200 F. 0.35 ml. 250 F. 0.20 mi. 300 F. 0.15 ml.
150,000 JVU-.- 110,000 JVU 50,000 cps. 300,000 JVU 20 000 J 0,000 cps 475,000 JVU 350,000 JVU-. 175,000 JVU 750.000 JVU 0,000 J 250,000 JVU. 1,200,000 JVU 750,000 JVU. 375,000 JVU. 1,100,000 JVU--- 550,000 .IVU. 750,000 .TVU.
I 99 parts of oleic and 1 part of acetic acid by volume. t in'Iiime taken to attain the viscosity listed which is the maximum at- In some instances, as when it is desired to use the aluminum octoate-thickened liquid petroleum fraction as a fluid medium with which to convey a particulated solid, such as sand, into fractures or cracks and the like in an earth formation, an amount of TCA is used which will induce a suflicient viscosity to be attained to suspend the particles of the particulated solid, yet not too great to be beyond a pumpable stage before injection can be made into the earth. For example sand, 90 percent of which is of 25 to 40 mesh, will settle in an aluminum octoate-thickened petroleum liquid at the 'rate of 0.3 foot per minute at 80 F. when its viscosity is 260 cps. Such a mixture is readily conveyed by pumping yet the sand remains well suspend-ed during the time required for an injection. The sand falling rate in other mixtures of aluminum octoate-thickened kerosene is shown in the data of Table VII as further examples.
6 TABLE VH Al Viscos- Octoate, TCA, ml. ity, cps., Percent 80 F.
Ago 2 in Minutes Volume of Kerosene 100 ml.. .0 cresyllc acld 2, 500 30 .6 cresylic acid--- 220 .4 cresylic acid- 20 30 5 mixture 1 250 10 156 percent by volume of oleic acid and. 4 percent by volume of acetic c thickened by dispersing therein 2.25 grams of Al octoate followed by 1.8 ml. of TCA consisting of a mixture of percent by volume of oleic acid and 5 percent of acetic acid. Batch 1 was mixed with 10 ml. of crude oil; batch 2 was mixed with 10 ml. of brine; and the third was held as a blank for comparison. All three batches were aged at F. and their viscosities measured periodically as indicated in the table after the mixtures attained their maximum viscosities of 160,000 JVU.
TABLE VIII initial 5 hours 24hours 48 hours 1 (added crude oil) 35,000 65,000
J l Viscositles below 100,000 are in cps., viscosities above 100,000 are in Another series of tests similar to those of Table VIII are set forth in Table IX but instead of using 2.25 grams of aluminum oleate the mixtures contain 3.0, and instead of using 1.8 ml. of TCA the mixtures contain 1.2 ml. of the same TCA.
TABLE IX Viscosities 1 vs. time at F. Mixture under test initial 5 hours 24hours 48 hours 1 (added crude oil) 2 (added brine) 3 (blank) J iscosities below 100,000 are in cps., viscosities above 100,000 are in kerosene were thickened with 2.25 grams of Al octoate and 1.8 ml. of a TCA was then added consisting of a mixture of 95 percent by volume of oleic acid and 5 parts of acetic acid. These batches attained a maximum viscosity of 160,000 IVU at 100 F. After attaining TABLE X Viscosity, cps.
Ml. crude oil added per 100 1111. Hours after adding crude oil By using a combination of two thickening controlling agents having different dissociation constants, the one having the smaller dissociation constant does more to promote thickening than thinning and the one having the higher dissociation constant does more to promote thinning than thickening. As a result better control of the duration of the thickened state may be had. This is a desirable feature of the invention as it permits obtaining a long and controllable time during which the more or less gelled petroleum fraction very strongly resists penetration into earth formations. This property also permits knowing in advance the length of time the petroleum fraction will remain thin before gelling or thickening commences so that the mixture of the petroleum fraction, aluminum octoate, and TCA may be introduced into a well bore and more or less deeply into the adjacent earth before the mixture becomes too thick to be readily pumped. Thickening thereafter may take place in the interstices of the earth formation away from the well hole thereby producing a temporary plugging effect beyond the well hole wall. Subsequently a liquid such as oil, water or brine may be injected under a suitable pressure to produce fractures deeply in the earth since the temporary plugging of the surrounding earth by the more or less gelled petroleum fluid confines the fracturing liquid to the regions in the formation adjacent to the gel.
Various advantages accrue to the invention in addition to those already mentioned. The composition may be used for example in connection with perforating well casing in wells in which it is necessary to maintain hydrostatic control as by a column of drilling mud. In such wells, it is desirable to prevent the drilling mud from penetrating and permeating the formation following the r perforation operation. By displacing the drilling mud with the composition of the invention from that portion of the casing to be perforated and conducting the perforating operation through the composition after it is allowed to thicken, the drilling mud will be prevented from passing into the formation through the perforations thus made and contaminating the formation. the composition thins permitting its removal from the well along with the drilling mud.
The composition may be used advantageously in general in all cases where it is desirable to protect an earth formation from fluid intrusion fromv a wellhole, as for example in acidizing a plurality of formations one at a time from the same well hole.
While many of the examples of the invention involve.
the use of mixtures of oleic acid and acetic acid as a thickening controlling agent, it is to be-understood that other mixtures of oil-soluble organic compounds may be used similarly having dissociation constants within the aforesaid limits. Slower rates of thickening, where desired, may be achieved by the use of mixtures of nonyl phenol and glacial acetic acid. Such mixtures also have the advantage of maintaining the thickened petroleum fraction at a high viscosity for a longer time before a breaking down or thinning of the gelled state occurs. For example, a mixture of 92.5 percent of nonyl phenol and 7.5 percent of glacial acetic acid by volume permits viscosities to be attained of up to 1,000,000 JVU. But before these viscosities are attained from 4 to 16 hours may elapse, at temperatures of to 170 F., during which the composition may be pumped or otherwise deposited in the well hole.
This application is a division of our copending application Serial No. 434,072, filed June 2, 1954, on which Patent No. 2,794,779 issued June 4, 1957.
We claim:
1. A fluid composition having a temporary high viscosity comprising a base of a liquid petroleum fraction, said base having dispersed therein as a thickening agent aluminum octoate and a thickening controlling agent consisting of a mixture of acetic acid and a phenolic compound selected from the group consisting of chlorophenol, phenol, metacresol, orthocresol, nonyl phenol, dinonyl phenol, the aluminum octoate being present in amount between 10 and pounds per gallons of the liquid petroleum fraction and the thickening controlling agent being present in amount between 0.15 and 9.4 percent of the weight of the petroleum fraction, the amount of the acetic acid being from 0.04 to 0.12 ml. per 100 ml. of the petroleum fraction, said thickening controlling agent causing the composition to thicken and thereafter to thin.
2. A composition according to claim 1 in which the phenolic compound is nonyl phenol.
References Cited in the file of this patent After a, timev

Claims (1)

1. A FLUID COMPOSITION HAVING A TEMPORARY HIGH VISCOSITY COMPRISING A BASE OF A LIQUID PETROLEUM FRACTION, SAID BASE HAVING DISPERSED THEREIN AS A THICKENING AGENT ALUMINUM OCTOATE AND A THICKENING CONTROLLING AGENT CONSISTING OF A MIXTURE OF ACETIC ACID AND A PHENOLIC COMPOUND SELECTED FROM THE GROUP CONSISTING OF CHLOROPHENOL, PHENOL, METACRESOL, ORTHOCRESOL, NONYL PHENOL, DINONYL PHENOL, THE ALUMINUM OCTOATE BEING PRESENT IN AMOUNT BETWEEN 10 AND 90 POUNDS PER 100 GALLONS OF THE LIQUID PETROLEUM FRACTION AND THE THICKENING CONTROLLING AGENT BEING PRESENT IN AMOUNT BETWEEN 0.15 AND 9.4 PERCENT OF THE WEIGHT OF THE PETROLEUM FRACTION, THE AMOUNT OF THE ACETIC ACID BEING FROM 0.04 TO 0.12 ML. PER 100 ML. OF THE PETROLEUM FRACTION, SAID THICKENING CONTROLLING AGENT CAUSING THE COMPOSITION TO THICKEN AND THEREAFTER TO THIN.
US647965A 1954-06-02 1957-03-25 Well treatment composition Expired - Lifetime US2866754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US647965A US2866754A (en) 1954-06-02 1957-03-25 Well treatment composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US434072A US2794779A (en) 1954-06-02 1954-06-02 Well treatment composition
US647965A US2866754A (en) 1954-06-02 1957-03-25 Well treatment composition

Publications (1)

Publication Number Publication Date
US2866754A true US2866754A (en) 1958-12-30

Family

ID=27030066

Family Applications (1)

Application Number Title Priority Date Filing Date
US647965A Expired - Lifetime US2866754A (en) 1954-06-02 1957-03-25 Well treatment composition

Country Status (1)

Country Link
US (1) US2866754A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164138A (en) * 1962-11-21 1965-01-05 Texaco Inc Method of operating an internal combustion engine and motor fuel therefor
US3398792A (en) * 1964-03-16 1968-08-27 Mobil Oil Corp Liquid flow in a permeable earth formation
US3417819A (en) * 1966-11-01 1968-12-24 Gulf Research Development Co Method of fracturing with a high-viscosity liquid
US3446746A (en) * 1965-06-22 1969-05-27 Roussel Uclaf Novel three phase aerosols
US3461079A (en) * 1964-06-11 1969-08-12 Irving B Goldberg Gelled propellant compositions useful in aerosol dispensers
US3637013A (en) * 1970-03-02 1972-01-25 Mobil Oil Corp In situ combustion process using time-dependent shear-thinning liquid barrier
US3799267A (en) * 1972-11-21 1974-03-26 Halliburton Co Hydraulic fracturing method using benzoic acid to further increase the viscosity of liquid hydrocarbon
US3900070A (en) * 1974-05-06 1975-08-19 Halliburton Co Gelling liquid hydrocarbons
US3915888A (en) * 1970-11-06 1975-10-28 Raymond W Hoeppel Oil base gel having low viscosity before gelation and method for its preparation
WO2001009482A1 (en) * 1999-07-29 2001-02-08 Crompton Corporation Gelling system for hydrocarbon fluids
US20090305914A1 (en) * 2008-05-07 2009-12-10 Leiming Li Phosphorus-Free Gelled Hydrocarbon Compositions and Method for Use Thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2390609A (en) * 1942-07-29 1945-12-11 Nuodex Products Co Inc Bodying agent for liquid hydrocarbons
US2596844A (en) * 1949-12-31 1952-05-13 Stanolind Oil & Gas Co Treatment of wells
US2675354A (en) * 1950-05-18 1954-04-13 Stanolind Oil & Gas Co Method of producing gels
US2794779A (en) * 1954-06-02 1957-06-04 Dow Chemical Co Well treatment composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2390609A (en) * 1942-07-29 1945-12-11 Nuodex Products Co Inc Bodying agent for liquid hydrocarbons
US2596844A (en) * 1949-12-31 1952-05-13 Stanolind Oil & Gas Co Treatment of wells
US2675354A (en) * 1950-05-18 1954-04-13 Stanolind Oil & Gas Co Method of producing gels
US2794779A (en) * 1954-06-02 1957-06-04 Dow Chemical Co Well treatment composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164138A (en) * 1962-11-21 1965-01-05 Texaco Inc Method of operating an internal combustion engine and motor fuel therefor
US3398792A (en) * 1964-03-16 1968-08-27 Mobil Oil Corp Liquid flow in a permeable earth formation
US3461079A (en) * 1964-06-11 1969-08-12 Irving B Goldberg Gelled propellant compositions useful in aerosol dispensers
US3446746A (en) * 1965-06-22 1969-05-27 Roussel Uclaf Novel three phase aerosols
US3417819A (en) * 1966-11-01 1968-12-24 Gulf Research Development Co Method of fracturing with a high-viscosity liquid
US3637013A (en) * 1970-03-02 1972-01-25 Mobil Oil Corp In situ combustion process using time-dependent shear-thinning liquid barrier
US3915888A (en) * 1970-11-06 1975-10-28 Raymond W Hoeppel Oil base gel having low viscosity before gelation and method for its preparation
US3799267A (en) * 1972-11-21 1974-03-26 Halliburton Co Hydraulic fracturing method using benzoic acid to further increase the viscosity of liquid hydrocarbon
US3900070A (en) * 1974-05-06 1975-08-19 Halliburton Co Gelling liquid hydrocarbons
WO2001009482A1 (en) * 1999-07-29 2001-02-08 Crompton Corporation Gelling system for hydrocarbon fluids
US6248699B1 (en) * 1999-07-29 2001-06-19 Crompton Corporation Gelling system for hydrocarbon fluids
US20090305914A1 (en) * 2008-05-07 2009-12-10 Leiming Li Phosphorus-Free Gelled Hydrocarbon Compositions and Method for Use Thereof

Similar Documents

Publication Publication Date Title
US2802531A (en) Well treatment
US2596843A (en) Fracturing formations in wells
US3378074A (en) Method for fracturing subterranean formations
US2890752A (en) New squeeze cement proces and slurry
US3710865A (en) Method of fracturing subterranean formations using oil-in-water emulsions
US3251415A (en) Acid treating process
US4622155A (en) Method for fracturing subterranean formations
US2596137A (en) Removing deposits from wells
US4695389A (en) Aqueous gelling and/or foaming agents for aqueous acids and methods of using the same
US3968840A (en) Controlled rate acidization process
US3375872A (en) Method of plugging or sealing formations with acidic silicic acid solution
US2866754A (en) Well treatment composition
US2838116A (en) Producing multiple fractures in a formation penetrated by a well
USRE23733E (en) Fracturing formations in wells
US7156177B2 (en) Scale dissolver fluid
US3799266A (en) Fracturing method using acid external emulsions
US3500929A (en) Temporary diverting agent and use thereof in treatmeint of subterranean strata
US2742426A (en) Composition for hydraulically fracturing formations
US2645291A (en) Hydraulically fracturing well formation
US2966457A (en) Gelled fracturing fluids
US2689009A (en) Acidizing wells
US2596845A (en) Treatment of wells
US2811207A (en) Method of vertically fracturing formations in wells
US3227212A (en) Temporary plugging agent
US3343602A (en) Method of retarding reaction of acid on limestone