US2823523A - Separation of nitrogen from methane - Google Patents
Separation of nitrogen from methane Download PDFInfo
- Publication number
- US2823523A US2823523A US573865A US57386556A US2823523A US 2823523 A US2823523 A US 2823523A US 573865 A US573865 A US 573865A US 57386556 A US57386556 A US 57386556A US 2823523 A US2823523 A US 2823523A
- Authority
- US
- United States
- Prior art keywords
- methane
- gas
- liquid
- pressure
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0257—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/12—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/30—Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/08—Internal refrigeration by flash gas recovery loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/927—Natural gas from nitrogen
Definitions
- This invention relates to an improved process for separating nitrogen from methane, or natural gas, which consists essentially of methane.
- methane or natural gas
- natural gas which consists essentially of methane
- the use of natural gas inthe-United States has expanded enormously in recent years and the demand continues toincrease.
- natural gas of higher nitrogen content becomes a more valuable resource.
- removal of thenitrogen reduces the volume of gas being conveyed so that only that portion which actually has heating value is sent through the line.
- a gas containing any substantial quantity of nitrogen cannot be employed by'consumers without adjustment of the appliance burners.
- the low grade gas could be made interchangeable with the high grade natural gas containing essentially methane.
- the present process involves low temperature liquefaction of the feed gas followed by fractional distillation.
- the gaseous mixture of methane and nitrogen is rectified and the separated nitrogen is compressed, cooled andused as the agent for supplying refrigeration for liquefaction.
- the major portion of the refrigeration requirements are supplied originally'by the latent heat of vapor- ;ization of a recirculatingstream of liquid methane.
- refrigeration available in the low temperature nitrogen, separated from the cooled feed gas is used to supply a portion of .the refrigeration requirements.
- a condensing methane cycle By utilizing a condensing methane cycle to provide refrigeration, a substantial savings in power requirements can be effected, amounting to one-third less than the power required where refrigeration is supplied primarily from the separated nitrogen and a recirculated nitrogen stream. This savings is effected by the reduced quantity of material recirculated and the'lower operating pressures required when methane is used as the refrigerant instead of nitrogen.
- the con- ,densing methane cycle operates so that each pound of methane provides refrigeration equal to its heat of vaporization plus sensible heat effect, a considerable advantage over the nitrogen cycle where only the sensible heat effect is used for refrigeration.
- the invention consists first in compressing a portion of the methane product gas (or methane from any suitable source, herein referred to as refrigerant methane) to ,superatmospheric pressure and cooling the compressed refrigerant methane to below its condensation ,temperature by passing it in heat exchange relationship with the product methane being discharged from the frac tionating or distillation column.
- refrigerant methane As the recirculated refrigerant methane is condensed it supplies the heat for vaporization of the product methane and the heat requiretion of the feed gas.
- the separated liquid is-again expanded toform a mixture of .gas and liquid.
- Aportion of the liquid phase is advanced to the third and final expansion step, while the remaining gas and liquid mixture is used to subcool the condensed feed gas, or for other cooling purpose.
- the third expansion step results in gasification of all the liquid to substantially atmospheric pressure.
- the heat absorbed by the vaporization of zliquid afterthe'third expansion step is preferably employed in condensing the refiuxnitrogen required for thedistillation column.
- the feed gas which consists of a mixture of methane and nitrogen, the proportion of nitrogen ranging up to, say, 30%,
- the distillation column will be operated at elevated .pressure, say, from ZQOto 300 pounds per square inch. -If the pressure of the feed gas is .higher than the operating pressure of .the .distillationcolumn, then his permitted to expand in the diced expansion turbine '10 from which it is discharged at-the desired pressure.
- the compressed gas flows through the line 24 intothe feed gas condenser 26 where sufficient heat is re-
- the liquefied gas at this temperature and just in excess of 200 pounds per square inch pressure may be introduced directly into the distillation column through valved line 28, or it may be still further cooled by passing through the liquid feed subcooler 3D.
- the liquid feed subcooler cools the compressed condensed gas ,to approximately 250- -F.
- This subcooled liquid is then introduced into the distillation column, either through the liquid pump 32 or the by-pass 34, depending upon the feed pressure. It is essential, of course, "that the pressure in the line 34 or 36 be in excess of the pressure prevailing within the distillation column 40.
- the feed is rectified,'the nitrogen being taken 01f as gaseous overhead in line 38, and the methane as liquid product through line 42 into product vaporizer 44.
- the heat of vaporization of the product methane is utilized to cool the recirculated methane gas which is cycled through the heat exchangers utilized for cooling and condensing the feed stock. As the product methane gains.
- Methane comprising part of the product gas, or supplied from any convenient source, is compressed in the compressor 50, shown to the far left of the drawing, and is circulated constantly from the compressor through the system in a closed circuit.
- This methane may be called refrigerant methane, as distinguished from the product methane.
- the gas is compressed to a pressure about 10 pounds per square inch greater than the column operating pressure.
- the compressed gas is after-cooled in the heat exchanger 52 and flows through the line 54 into heat exchanger 56 where it is precooled by gaseous methane which is returning to theicompressors from the feed gas condenser 26.
- the precooled compressed refrigerant methane gas then flows through the line 58 into the product vaporizer where it is. cooled and partially condensed by the product methane which is being converted back to the gaseous phase in'the vaporizer 44. Further cooling is efiected by passing the compressed refrigerant methane through the coil 6% disposed in the distillation column reboiler 41.
- the temperature of the liquid methane in the column-reboiler is sufficiently low to condense thecomprcssed and precooled methane which is flowing through coil 60.
- the liquid methane which has a temperature about F.
- Thewarmed gas is discharged through the line71, passes through heat exchanger 56 where it gives up most of the remainingrefrigeration therein to compressed methaneflowing from the compressor system couin'tereurrent through .the exchanger 5c via line 54, this pointthe methane gas is at substantially atmospheric temperature.. From the .heat
- the liquid methane withdrawn from the bottom of the separator 68 into the line 72 is then expanded again through valve 73, this time to a medium pressure of approximately one-fourth the column operating pressure and the resulting two phase stream enters the medium pressure separator 76.
- the gas phase and most of the liquid phase are utilized in cooling, being conveyed through the line 78 into the liquid feed subcooler 30, where the liquid is vaporized and the gas warmed, and also through separator coils in the feed gas condenser 26 from which it is directed back to the compressor system through the line 80.
- This gas also passes through heat exchanger 56 to absorb heat from the freshly compressed methane flowing back to the distillation system through the line 54.
- Medium pressure methane goes through a first stage compressor 82, an after-cooler 84 and then flows into the main stream 57. It is further compressed in the compressor along with the returned methane from line 72.
- the liquid methane withdrawn from the medium pressure separator 76 flows through the line 86 and is expanded through the valve 88 to the final low pressure.
- the resulting two phase stream is directed to the reflux condenser 90 through line 89.
- the liquid As the liquid is vaporized in passing through the reflux condenser it absorbs heat from the gaseous nitrogen which flows countercurrent thereto,- condensing ,the liquid refluxrequired by the column.
- the nitrogen stream is introduced at the top of the condenser through the line 38.
- the treatment is similar to that of the gaseous methane returning through lines 72 and 80. It passes first through heat exchanger 56 and then into the low pressure compressor 96, through the after-cooler 98, and back into the main stream 57.
- the gaseous portion of the nitrogen is discharged from the top of the separator 98 through the line 162 and through liquid feed subcooler .30 to assist the circulating methane in cooling thecondensed feed gas.
- the gaseous nitrogen flows through the expansion turbine 104 where mechanical energy is recovered and the'temperature and pressure of the nitrogen reduced, and then through the reflux condenser 90 to help cool nitrogen flowing therethrough from line 33.
- T he partially expanded nitrogen gas then flows through a second turbine 196 via line lttdand after this expansion is circulated once again through the reflux condenser via line 108 at substantially atmospheric pressure.
- the nitrogen flows through line 110 to the subcooler 3t) and condenser 26.
- the remaining refrigeration in the gas is utilized in the feed precooler 16.
- the nitrogen flows from the line 112 through the feed precooler 16 and is then vented to the atmosphere or used as a feed stream for chemical manufacture.
- the following table summarizes data on the methane refrigeration system in accordance with the invention, setting forth the properties of the methane cooling liquid at various points in the system.
- the figures are given for column pressures of 200 and 300 pounds per square inch absolute, and for feed to the column through line 28.
- the medium pressure separator and the liquid feed subcooler are by-passed for the system operating under these conditions.
- Reboiler heat load B. t. u 2, 006 2, 177 Vaporizer heat load, 13. t. u 5, 072 4, 439 Recirculating methane pressure, p. s. i. a 210 310 Inlet temperature, gas, F -120 100 Outlet tern erature, liquid, F 176 158 Flow rate, b., stream 58 34. 99 36. 00
- a process for separating nitrogen from a gaseous mixture of methane and nitrogen feed gas which comprises compressing the feed gas to an elevated pressure and cooling it to below its condensation temperature, rectifying the condensed gas to separate its contained nitrogen and methane, passing the nitrogen resulting from said rectification through a first and second heat exchanger to supply part of the refrigeration for condensing and cooling said feed gas, compressing refrigerant methane from any source to superatmospheric pressure, cooling the compressed methane to below condensation temperature, partially expanding the cooled compressed methane to a gas and a liquid phase, and passing the gas phase through said second heat exchanger to supply a major proportion of the refrigeration required to condense the feed gas, further expanding at least a portion of said liquid phase and passing said further expanded phase through said first exchanger to supply the remainder of the refrigeration required to cool the condensed feed gas.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
Feb.- 18, 1958 B. E. EAKIN ET AL 2,823,523
SEPARATION OF NITROGEN FROM METHANE Filed Mar'ch 26, 1956 EXPANSION TURBINE d6 MED- PRESSURE SEPARATOR LIQUID FEED SUB- COOLER COLUMN FEED GAS CON- DENSER LOW PRESSURE FEED FEED PR D COMPRESSOR REBOILER BYPASS 42 HIGH PRESSURE T PRODUCT VAPORIZER WATE '10 43 I In M22250? 1" fierzl E. Ea/Jz'zz Rex IT. EZZzny-zfozz Til,
5. 2362 SEPARATIQN or NITROGEN FROM MET-HANE l lertE- Eakim; Chicago, Re'x ,T. Ellington, Evanston,
.IlL, assig ngrs to fl he Ipstitute, of. Gas Technology, Chi fcago, 111., a col pol'ation of Illinois Application March 26, 1956, Serial No. 573,865 aclaim tomb-175.5
This invention relates to an improved process for separating nitrogen from methane, or natural gas, which consists essentially of methane The use of natural gas inthe-United States has expanded enormously in recent years and the demand continues toincrease. As the reserves of relativelypure natural gas are depleted, natural gas of higher nitrogen content becomes a more valuable resource. It is desirable, however, to remove as much nitrogen as possible from this lower grade natural gas before introducing it into the pipelines. First of all, removal of thenitrogen reduces the volume of gas being conveyed so that only that portion which actually has heating value is sent through the line. Secondly, a gas containing any substantial quantity of nitrogen cannot be employed by'consumers without adjustment of the appliance burners. In other words, the low grade gas could be made interchangeable with the high grade natural gas containing essentially methane.
The present process involves low temperature liquefaction of the feed gas followed by fractional distillation. In prior processes of-this type the gaseous mixture of methane and nitrogen is rectified and the separated nitrogen is compressed, cooled andused as the agent for supplying refrigeration for liquefaction. .In the present invention the major portion of the refrigeration requirements are supplied originally'by the latent heat of vapor- ;ization of a recirculatingstream of liquid methane. The
refrigeration available in the low temperature nitrogen, separated from the cooled feed gas, is used to supply a portion of .the refrigeration requirements. By utilizing a condensing methane cycle to provide refrigeration, a substantial savings in power requirements can be effected, amounting to one-third less than the power required where refrigeration is supplied primarily from the separated nitrogen and a recirculated nitrogen stream. This savings is effected by the reduced quantity of material recirculated and the'lower operating pressures required when methane is used as the refrigerant instead of nitrogen. The con- ,densing methane cycle operates so that each pound of methane provides refrigeration equal to its heat of vaporization plus sensible heat effect, a considerable advantage over the nitrogen cycle where only the sensible heat effect is used for refrigeration.
Briefly, the invention consists first in compressing a portion of the methane product gas (or methane from any suitable source, herein referred to as refrigerant methane) to ,superatmospheric pressure and cooling the compressed refrigerant methane to below its condensation ,temperature by passing it in heat exchange relationship with the product methane being discharged from the frac tionating or distillation column. As the recirculated refrigerant methane is condensed it supplies the heat for vaporization of the product methane and the heat requiretion of the feed gas.
2,823,523 '-Paten,t,ed .E ,b- 1% .958
fiable methane being removed in; liquid form at the bottom liquid at such pressure is separated'from the stream for further expansionat the next step. The major proportion of the expandedrefrigerant'methane stream, which consists of both a-gaseous-and liquid phase, is sent through coils ina heat exchanger to absorb heatfrom and condensethe feed gas (methaneand nitrogen mixture). The
separated liquid is-again expanded toform a mixture of .gas and liquid. Aportion of the liquid phase is advanced to the third and final expansion step, while the remaining gas and liquid mixture is used to subcool the condensed feed gas, or for other cooling purpose. The third expansion step results in gasification of all the liquid to substantially atmospheric pressure. The heat absorbed by the vaporization of zliquid afterthe'third expansion step is preferably employed in condensing the refiuxnitrogen required for thedistillation column.
The invention will-be bettenunderstood by reference to the accompanying drawing, which illustrates diagrammatically the -flow .of materials in accordance with :the present invention.
Referring now vto the drawing, the feed gas which consists of a mixture of methane and nitrogen, the proportion of nitrogen ranging up to, say, 30%,
is either compressed or .expanded.depending upon its initial pressure. The distillation column will be operated at elevated .pressure, say, from ZQOto 300 pounds per square inch. -If the pressure of the feed gas is .higher than the operating pressure of .the .distillationcolumn, then his permitted to expand in the diced expansion turbine '10 from which it is discharged at-the desired pressure. The
expandedfeed gas exits from turbine :10 through-line 12 and enters the feed precooler 16 through line 14. :In
the event the ,feed gas pressure is below that maintained in the distillation column, its pressure must be increased and this is done bypassingtherlow pressure feed through the compressor 18. By-pass 20 is provided around the compressor in the eventthe feed gasis of substantially the same pressure as thedistillation column and requires. no treatment. In compressingthe .feed gas, a certain amountof heat is generated and torernove this heat the gas is passed through after-cooler 22 .which is supplied, with cooling water. Feed gas at a temperature slightly higher than thecooling water temperature and at a .pres sure just in excess of thecolumn operating pressure-them enters the feed precooler 16 which is essentially a heat exchanger. The refrigeration for the preco-ol er is sup plied'by nitrogen discharged from the system and methane product gas, as .will be explained hereafter.
16 the compressed gas flows through the line 24 intothe feed gas condenser 26 where sufficient heat is re- The temperature to moved to condense the feed gas. which the gas must be cooled in order to condense .it depends, of course, upon the pressure and the composi- However, where the distillation column is operating at around 200 pounds per square inch, a 30% nitrogen-70% methanemixture would'be cooled to approximately 230 F. The liquefied gas at this temperature and just in excess of 200 pounds per square inch pressure may be introduced directly into the distillation column through valved line 28, or it may be still further cooled by passing through the liquid feed subcooler 3D. The liquid feed subcooler cools the compressed condensed gas ,to approximately 250- -F.
This subcooled liquid is then introduced into the distillation column, either through the liquid pump 32 or the by-pass 34, depending upon the feed pressure. It is essential, of course, "that the pressure in the line 34 or 36 be in excess of the pressure prevailing within the distillation column 40. In the distillation column the feed is rectified,'the nitrogen being taken 01f as gaseous overhead in line 38, and the methane as liquid product through line 42 into product vaporizer 44. The heat of vaporization of the product methane is utilized to cool the recirculated methane gas which is cycled through the heat exchangers utilized for cooling and condensing the feed stock. As the product methane gains. heat, it is converted back to the gaseous phase and passes from the product vaporizer 44 through the line 46 into the precooler 16 where it absorbs heat from the warm feed gas flowing through the line 14. The product methane gas, now heated to about atmospheric temperature, is compressed to the desired transmission pressure in the product compressor 48, after-cooled in the heat exchanger 51 and sent to storage or into the pipeline, as desired. The heat exchanger 51 is cooled by means of water flowing through the coil disposed therein. V e
To provide the refrigeration required for cooling the feed gas we employ a circulating condensing methane system. Methane comprising part of the product gas, or supplied from any convenient source, is compressed in the compressor 50, shown to the far left of the drawing, and is circulated constantly from the compressor through the system in a closed circuit. This methane may be called refrigerant methane, as distinguished from the product methane. The gas is compressed to a pressure about 10 pounds per square inch greater than the column operating pressure. The compressed gas is after-cooled in the heat exchanger 52 and flows through the line 54 into heat exchanger 56 where it is precooled by gaseous methane which is returning to theicompressors from the feed gas condenser 26. The precooled compressed refrigerant methane gas then flows through the line 58 into the product vaporizer where it is. cooled and partially condensed by the product methane which is being converted back to the gaseous phase in'the vaporizer 44. Further cooling is efiected by passing the compressed refrigerant methane through the coil 6% disposed in the distillation column reboiler 41. The temperature of the liquid methane in the column-reboiler is sufficiently low to condense thecomprcssed and precooled methane which is flowing through coil 60. The liquid methane which has a temperature about F. higher than the column product stream at a pressure about pounds per square inch higher than the column operating pressure then flows through the line 62 and is expanded through the valve 64 to approximzitely onehalf of the column pressure. During expansion the liquid methane is partially converted to the gaseous phase and the two phases flow through line 66 into the high pressure separator 68. In the separator a small portion of the liquid phase is withdrawn from the bottom through line 72 and the major portionof the liquid phaseand allthe gaseousv phase is discharged from the side through line 70. Thetwo phasemethane stream from line 7i) is directed through coils in the feed gas'condenser 26 where it absorbs large quantities of heat from the feed gas flowing couutercurrentthereto as the liquid is vaporized and the gas. warmed. Thewarmed gas is discharged through the line71, passes through heat exchanger 56 where it gives up most of the remainingrefrigeration therein to compressed methaneflowing from the compressor system couin'tereurrent through .the exchanger 5c via line 54, this pointthe methane gas is at substantially atmospheric temperature.. From the .heat
The liquid methane withdrawn from the bottom of the separator 68 into the line 72 is then expanded again through valve 73, this time to a medium pressure of approximately one-fourth the column operating pressure and the resulting two phase stream enters the medium pressure separator 76. Again the gas phase and most of the liquid phase are utilized in cooling, being conveyed through the line 78 into the liquid feed subcooler 30, where the liquid is vaporized and the gas warmed, and also through separator coils in the feed gas condenser 26 from which it is directed back to the compressor system through the line 80. This gas also passes through heat exchanger 56 to absorb heat from the freshly compressed methane flowing back to the distillation system through the line 54. Medium pressure methane goes through a first stage compressor 82, an after-cooler 84 and then flows into the main stream 57. It is further compressed in the compressor along with the returned methane from line 72.
Again, the liquid methane withdrawn from the medium pressure separator 76, flows through the line 86 and is expanded through the valve 88 to the final low pressure. The resulting two phase stream is directed to the reflux condenser 90 through line 89. As the liquid is vaporized in passing through the reflux condenser it absorbs heat from the gaseous nitrogen which flows countercurrent thereto,- condensing ,the liquid refluxrequired by the column. The nitrogen stream is introduced at the top of the condenser through the line 38., To utilize all of the remaining refrigeration in the methane gas, which is at the temperature of liquid nitrogen upon being discharged from the reflux condenser, it is directed through the line 92 into the liquid feed subcooler 30 and the feed gas condenser26fromwhich it is conveyed through the line 94 back to the compressor system. The treatment is similar to that of the gaseous methane returning through lines 72 and 80. It passes first through heat exchanger 56 and then into the low pressure compressor 96, through the after-cooler 98, and back into the main stream 57. Thus, it will be seen that all three returning I methane gas streams are joined in the line 57 and subsequently compressed to the desired pressure before being recondensed and recycled through the stepwise expansion system used for supplying the refrigeration for the process.
All of the refrigeration required is not provided directly by the methane condensing cycle just recited. A certain amount of refrigeration is available from the gaseous nitrogen (originally cooled by methane as part of feed gas) being discharged from the top of the distillation column and it is, of course, most economical to utilize the ability of this gas to absorb heat. It is, therefore, passed through the reflux condenser 90 into the separator 98. The temperature of the nitrogen after passing throughthe reflux condenser is sufliciently low so that at least a portion of the nitrogen has been condensed to a liquid. The liquid phase flows from the bottom of the separator through the line back into the distillation column where it is utilized as reflux for the distillation column. The gaseous portion of the nitrogen is discharged from the top of the separator 98 through the line 162 and through liquid feed subcooler .30 to assist the circulating methane in cooling thecondensed feed gas. From the subcooler 30 the gaseous nitrogen flows through the expansion turbine 104 where mechanical energy is recovered and the'temperature and pressure of the nitrogen reduced, and then through the reflux condenser 90 to help cool nitrogen flowing therethrough from line 33. T he partially expanded nitrogen gas then flows through a second turbine 196 via line lttdand after this expansion is circulated once again through the reflux condenser via line 108 at substantially atmospheric pressure. After the/second pass through the I reflux condenser, "the nitrogen flows through line 110 to the subcooler 3t) and condenser 26. The remaining refrigeration in the gas is utilized in the feed precooler 16. The nitrogen flows from the line 112 through the feed precooler 16 and is then vented to the atmosphere or used as a feed stream for chemical manufacture.
It will be apparent to those skilled in the art that variations of the process shown are possible. For example, it is not essential that the liquid methane be expanded in three different steps. It may be expanded only twice to produce one high pressure and one low pressure stream. Furthermore, there are obvious modifications which can be made in the particular form of equipment employed and it is not our intention to limit the invention otherwise than as necessitated by the scope of the appended claims.
The following table summarizes data on the methane refrigeration system in accordance with the invention, setting forth the properties of the methane cooling liquid at various points in the system. The figures are given for column pressures of 200 and 300 pounds per square inch absolute, and for feed to the column through line 28. The medium pressure separator and the liquid feed subcooler are by-passed for the system operating under these conditions.
Summary of data on methane refrigeration system for 100 MMCF. per day of 70% methane-30% nitrogen feed gas Column pressure, p. s. l. a 200 300 Basis, feed gas per..- 1 MOF MOF Reflux Condenser:
Pressure, p. s. i. a.. 22. 5 Inlet temperature, F 261. 5 248. 5 Inlet condition, percent liquid- 75. 9 81. 8 Outlet temperature, F -253 242 Flow rate, b, stream 89-- 6. 10 8. 66 Heat load, B. t. u 1, 159 1, 465 Feed Condenser:
Low pressure methane stream 92, pressure, 1np.s.i.a 13 22.5 et temperature, F 263 242 Outlet tem erature, F 179 --161 Flow rate, b 6.10 8.66 Heat load, B. t. u 152 364 High pressure methane stream 70, pressure,
p. s. a 70 135 Inlet temperature, F 2i7. 5 -199 Inlet condition (corrected for excess v or) percent liquid 67. 5 74. 6 Outlet temperature, F -179 161 Flow rate, lb 28. 90 28.05 Heat load, B. t. u 5, 044 4,195 Total heat load supplied by Methane, B. t. u 5, 196 4, 559 Column Reboiler and Product Vaporizer:
Reboiler heat load, B. t. u 2, 006 2, 177 Vaporizer heat load, 13. t. u 5, 072 4, 439 Recirculating methane pressure, p. s. i. a 210 310 Inlet temperature, gas, F -120 100 Outlet tern erature, liquid, F 176 158 Flow rate, b., stream 58 34. 99 36. 00
What we claim as new and desire to secure by Letters Patent of the United States is:
1. In a process for separating nitrogen from a gaseous mixture of methane and nitrogen by liquefaction and fractional distillation in a distillation column maintained at elevated pressure, the steps of compressing methane refrigerant gas to above said elevated pressure, passing the compressed methane sequentially through a vaporizer containing cold product methane from the distillation column to vaporize the product methane and through cold product methane in the lower reboiler portion of the distillation column to supply heat for operating the column, thereby simultaneously reducing the temperature of the compressed methane to condense said compressed methane, firstly partially expanding said condensed methane to a gas and a liquid phase at about onehalf said elevated pressure, passing the gas phase and a portion of the liquid phase through a heat exchanger to supply part of the refrigeration required to condense the feed gas, secondly further expanding the remainder of the liquid phase to a mixture of gas and liquid at about one-fourth said elevated pressure, passing the gas and most of the liquid at said reduced pressure through a second heat exchanger to supply refrigeration for subcooling said condensed feed gas before introduction into the distillation column, and finally expanding the remaining liquid from said reduced pressure to substantially atmospheric pressure to provide refrigeration for a reflux condenser connected to said distillation column,
2. A process for separating nitrogen from a gaseous mixture of methane and nitrogen feed gas which comprises compressing the feed gas to an elevated pressure and cooling it to below its condensation temperature, rectifying the condensed gas to separate its contained nitrogen and methane, passing the nitrogen resulting from said rectification through a first and second heat exchanger to supply part of the refrigeration for condensing and cooling said feed gas, compressing refrigerant methane from any source to superatmospheric pressure, cooling the compressed methane to below condensation temperature, partially expanding the cooled compressed methane to a gas and a liquid phase, and passing the gas phase through said second heat exchanger to supply a major proportion of the refrigeration required to condense the feed gas, further expanding at least a portion of said liquid phase and passing said further expanded phase through said first exchanger to supply the remainder of the refrigeration required to cool the condensed feed gas.
References Cited in the file of this patent UNITED STATES PATENTS 2,082,189 Twomey June 1, 1937 2,495,549 Roberts Jan. 24,1950 2,500,118 Cooper Mar. 7, 1950 2,534,274 Kniel Dec. 19, 1950 2,534,903 Etienne Dec. 19, 1950 2,583,090 Cost Ian. 22, 1952 2,677,945 Miller May 11, 1954 FOREIGN PATENTS 876,651 France Aug. 10, 1942
Claims (1)
1. IN A PROCESS FOR SEPARATING NITROGEN FROM A GASEOUS MIXTURE OF METHANE AND NITROGEN BY LIQUEFACTION AND FRACTIONAL DISTILLATION IN A DISTILLATION COLUMN MAINTAINED AT ELEVATED PRESSURE, THE STEPS OF COMPRESSING METHANE REFRIGERANT GAS TO ABOVE SAID ELEVATED PRESSURE, PASSING THE COMPRESSED METHANE SEQUENTIALLY THROUGH A VAPORIZER CONTAINING COLD PRODUCT METHANE FROM THE DISTILLATION COLUMN TO VAPORIZE THE PRODUCT METHANE AND THROUGH COLD PRODUCT METHANE IN THE LOWER REBOILER PORTION OF THE DISTILLATION COLUMN TO SUPPLY HEAT FOR OPERATING THE COLUMN, THEREBY SIMULTANEOUSLY REDUCING THE TEMPERATURE OF THE COMPRESSED METHANE TO CONDENSE SAID COMPRESSED METHANE, FIRSTLY PARTIALLY EXPANDING SAID CONDENSED METHANE TO A GAS AND A LIQUID PHASE AT ABOUT ONEHALF SAID ELEVATED PRESSURE, PASSING THE GAS PHASE AND PORTION OF THE LIQUID PHASE THROUGH A HEAT EXCHANGER TO SUPPLY PART OF THE REFRIGERATION REQUIRED TO CONDENSE THE FEED GAS, SECONDLY FURTHER EXPANDING THE REMAINDER OF THE LIQUID PHASE TO A MIXTURE OF GAS AND LIQUID AT ABOUT ONE-FOURTH SAID ELEVATED PRESSURE, PASSING THE GAS AND MOST OF THE LIQUID AT SAID REDUCED PRESSURE THROUGH A SECOND HEAT EXCHANGER TO SUPPLY REFRIGERATION FOR SUBCOOLING SAID CONDENSED FEED GAS BEFORE INTRODUCTION INTO THE DISTILLATION COLUMN, AND FINALLY EXPANDING THE REMAINING LIQUID FROM SAID REDUCED PRESSURE TO SUBSTANTIALLY ATMOSPHERIC PRESSURE TO PROVIDE REFRIGERATION FOR A REFLUX CONDENSER CONNECTED TO SAID DISTILLATION COLUMN.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US573865A US2823523A (en) | 1956-03-26 | 1956-03-26 | Separation of nitrogen from methane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US573865A US2823523A (en) | 1956-03-26 | 1956-03-26 | Separation of nitrogen from methane |
Publications (1)
Publication Number | Publication Date |
---|---|
US2823523A true US2823523A (en) | 1958-02-18 |
Family
ID=24293708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US573865A Expired - Lifetime US2823523A (en) | 1956-03-26 | 1956-03-26 | Separation of nitrogen from methane |
Country Status (1)
Country | Link |
---|---|
US (1) | US2823523A (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2932173A (en) * | 1957-12-13 | 1960-04-12 | Beech Aircraft Corp | Method of liquefying helium |
US2960837A (en) * | 1958-07-16 | 1960-11-22 | Conch Int Methane Ltd | Liquefying natural gas with low pressure refrigerants |
US2983585A (en) * | 1957-12-11 | 1961-05-09 | British Oxygen Co Ltd | Preparation of liquid hydrogen |
US3020723A (en) * | 1957-11-25 | 1962-02-13 | Conch Int Methane Ltd | Method and apparatus for liquefaction of natural gas |
US3076318A (en) * | 1958-11-21 | 1963-02-05 | Linde Eismasch Ag | Process for the decomposition of gas |
US3108937A (en) * | 1957-07-17 | 1963-10-29 | Siemens Ag | Coolant-moderator circulation system for heterogeneous nuclear reactors |
US3123457A (en) * | 1960-12-22 | 1964-03-03 | E smith | |
US3144316A (en) * | 1960-05-31 | 1964-08-11 | Union Carbide Corp | Process and apparatus for liquefying low-boiling gases |
US3162519A (en) * | 1958-06-30 | 1964-12-22 | Conch Int Methane Ltd | Liquefaction of natural gas |
US3188823A (en) * | 1961-01-19 | 1965-06-15 | Joy Mfg Co | Cryogenic method |
US3224211A (en) * | 1961-11-20 | 1965-12-21 | Phillips Petroleum Co | Processing low b.t.u. gas from natural gas |
US3224207A (en) * | 1962-02-12 | 1965-12-21 | Conch Int Methane Ltd | Liquefaction of gases |
US3261167A (en) * | 1962-09-19 | 1966-07-19 | Conch Int Methane Ltd | Method for removal of contaminants from gas |
US3327489A (en) * | 1960-08-25 | 1967-06-27 | Air Prod & Chem | Method for separating gaseous mixtures |
US3359743A (en) * | 1966-04-29 | 1967-12-26 | Nat Distillers Chem Corp | Low temperature process for the recovery of ethane from a stripped natural gas stream |
US3360946A (en) * | 1966-04-29 | 1968-01-02 | Nat Distillers Chem Corp | Low temperature process for the recovery of ethane from a stripped natural gas stream |
US3405530A (en) * | 1966-09-23 | 1968-10-15 | Exxon Research Engineering Co | Regasification and separation of liquefied natural gas |
US3511058A (en) * | 1966-05-27 | 1970-05-12 | Linde Ag | Liquefaction of natural gas for peak demands using split-stream refrigeration |
US3516262A (en) * | 1967-05-01 | 1970-06-23 | Mc Donnell Douglas Corp | Separation of gas mixtures such as methane and nitrogen mixtures |
US3589137A (en) * | 1967-10-12 | 1971-06-29 | Mc Donnell Douglas Corp | Method and apparatus for separating nitrogen and hydrocarbons by fractionation using the fluids-in-process for condenser and reboiler duty |
US3656312A (en) * | 1967-12-15 | 1972-04-18 | Messer Griesheim Gmbh | Process for separating a liquid gas mixture containing methane |
US3702541A (en) * | 1968-12-06 | 1972-11-14 | Fish Eng & Construction Inc | Low temperature method for removing condensable components from hydrocarbon gas |
US3747359A (en) * | 1969-08-01 | 1973-07-24 | Linde Ag | Gas liquefaction by a fractionally condensed refrigerant |
US3756035A (en) * | 1966-04-04 | 1973-09-04 | Mc Donnell Douglas Corp | Separation of the components of gas mixtures and air |
US3797261A (en) * | 1970-05-12 | 1974-03-19 | Linde Ag | Single-stage fractionation of natural gas containing nitrogen |
US3813890A (en) * | 1969-07-02 | 1974-06-04 | B Bligh | Process of continuous distillation |
US3818714A (en) * | 1971-03-04 | 1974-06-25 | Linde Ag | Process for the liquefaction and subcooling of natural gas |
US3827245A (en) * | 1971-09-22 | 1974-08-06 | Stone & Webster Eng Corp | Recovery and purification of ethylene from direct hydration ethanol vent gas streams |
US3837172A (en) * | 1972-06-19 | 1974-09-24 | Synergistic Services Inc | Processing liquefied natural gas to deliver methane-enriched gas at high pressure |
US3857251A (en) * | 1971-12-27 | 1974-12-31 | Technigaz | Lng storage tank vapor recovery by nitrogen cycle refrigeration with refrigeration make-up provided by separation of same vapor |
US3929438A (en) * | 1970-09-28 | 1975-12-30 | Phillips Petroleum Co | Refrigeration process |
US4163652A (en) * | 1976-03-26 | 1979-08-07 | Snamprogetti S.P.A. | Refrigerative fractionation of cracking-gases in ethylene production plants |
US4230469A (en) * | 1977-07-28 | 1980-10-28 | Linde Aktiengesellschaft | Distillation of methane from a methane-containing crude gas |
US4274850A (en) * | 1978-11-14 | 1981-06-23 | Linde Aktiengesellschaft | Rectification of natural gas |
US4592767A (en) * | 1985-05-29 | 1986-06-03 | Union Carbide Corporation | Process for separating methane and nitrogen |
US4676812A (en) * | 1984-11-12 | 1987-06-30 | Linde Aktiengesellschaft | Process for the separation of a C2+ hydrocarbon fraction from natural gas |
US5287703A (en) * | 1991-08-16 | 1994-02-22 | Air Products And Chemicals, Inc. | Process for the recovery of C2 + or C3 + hydrocarbons |
US5442924A (en) * | 1994-02-16 | 1995-08-22 | The Dow Chemical Company | Liquid removal from natural gas |
US5505049A (en) * | 1995-05-09 | 1996-04-09 | The M. W. Kellogg Company | Process for removing nitrogen from LNG |
US20040103687A1 (en) * | 2002-09-06 | 2004-06-03 | Clare Stephen Roger | Nitrogen rejection method and apparatus |
US20040231359A1 (en) * | 2003-05-22 | 2004-11-25 | Brostow Adam Adrian | Nitrogen rejection from condensed natural gas |
US20110005273A1 (en) * | 2009-07-09 | 2011-01-13 | Gahier Vanessa | Method for producing a flow rich in methane and a flow rich in c2+ hydrocarbons, and associated installation |
EP3161113A4 (en) * | 2014-06-27 | 2017-07-19 | RTJ Technologies Inc. | Method and arrangement for producing liquefied methane gas (lmg) from various gas sources |
US10393430B2 (en) | 2015-09-11 | 2019-08-27 | Rtj Technologies Inc. | Method and system to control the methane mass flow rate for the production of liquefied methane gas (LMG) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2082189A (en) * | 1934-05-09 | 1937-06-01 | Lee S Twomey | Method of liquefying and storing fuel gases |
FR876651A (en) * | 1939-02-02 | 1942-11-12 | Lindes Eismaschinen Ag | Process for fractionation of gas mixtures by compression and cooling by means of an auxiliary gas circulation |
US2495549A (en) * | 1949-03-15 | 1950-01-24 | Elliott Co | Separation of ternary gaseous mixtures containing hydrogen and methane |
US2500118A (en) * | 1945-08-18 | 1950-03-07 | Howell C Cooper | Natural gas liquefaction |
US2534903A (en) * | 1940-12-19 | 1950-12-19 | Air Liquide | Process for separating by liquefaction gaseous mixtures into their constituents |
US2534274A (en) * | 1947-01-28 | 1950-12-19 | Lummus Co | Fractional distillation |
US2583090A (en) * | 1950-12-29 | 1952-01-22 | Elliott Co | Separation of natural gas mixtures |
US2677945A (en) * | 1948-01-21 | 1954-05-11 | Chemical Foundation Inc | Transportation of natural gas |
-
1956
- 1956-03-26 US US573865A patent/US2823523A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2082189A (en) * | 1934-05-09 | 1937-06-01 | Lee S Twomey | Method of liquefying and storing fuel gases |
FR876651A (en) * | 1939-02-02 | 1942-11-12 | Lindes Eismaschinen Ag | Process for fractionation of gas mixtures by compression and cooling by means of an auxiliary gas circulation |
US2534903A (en) * | 1940-12-19 | 1950-12-19 | Air Liquide | Process for separating by liquefaction gaseous mixtures into their constituents |
US2500118A (en) * | 1945-08-18 | 1950-03-07 | Howell C Cooper | Natural gas liquefaction |
US2534274A (en) * | 1947-01-28 | 1950-12-19 | Lummus Co | Fractional distillation |
US2677945A (en) * | 1948-01-21 | 1954-05-11 | Chemical Foundation Inc | Transportation of natural gas |
US2495549A (en) * | 1949-03-15 | 1950-01-24 | Elliott Co | Separation of ternary gaseous mixtures containing hydrogen and methane |
US2583090A (en) * | 1950-12-29 | 1952-01-22 | Elliott Co | Separation of natural gas mixtures |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3108937A (en) * | 1957-07-17 | 1963-10-29 | Siemens Ag | Coolant-moderator circulation system for heterogeneous nuclear reactors |
US3020723A (en) * | 1957-11-25 | 1962-02-13 | Conch Int Methane Ltd | Method and apparatus for liquefaction of natural gas |
US2983585A (en) * | 1957-12-11 | 1961-05-09 | British Oxygen Co Ltd | Preparation of liquid hydrogen |
US2932173A (en) * | 1957-12-13 | 1960-04-12 | Beech Aircraft Corp | Method of liquefying helium |
US3162519A (en) * | 1958-06-30 | 1964-12-22 | Conch Int Methane Ltd | Liquefaction of natural gas |
US2960837A (en) * | 1958-07-16 | 1960-11-22 | Conch Int Methane Ltd | Liquefying natural gas with low pressure refrigerants |
US3076318A (en) * | 1958-11-21 | 1963-02-05 | Linde Eismasch Ag | Process for the decomposition of gas |
US3144316A (en) * | 1960-05-31 | 1964-08-11 | Union Carbide Corp | Process and apparatus for liquefying low-boiling gases |
US3327489A (en) * | 1960-08-25 | 1967-06-27 | Air Prod & Chem | Method for separating gaseous mixtures |
US3123457A (en) * | 1960-12-22 | 1964-03-03 | E smith | |
US3188823A (en) * | 1961-01-19 | 1965-06-15 | Joy Mfg Co | Cryogenic method |
US3224211A (en) * | 1961-11-20 | 1965-12-21 | Phillips Petroleum Co | Processing low b.t.u. gas from natural gas |
US3224207A (en) * | 1962-02-12 | 1965-12-21 | Conch Int Methane Ltd | Liquefaction of gases |
US3261167A (en) * | 1962-09-19 | 1966-07-19 | Conch Int Methane Ltd | Method for removal of contaminants from gas |
US3756035A (en) * | 1966-04-04 | 1973-09-04 | Mc Donnell Douglas Corp | Separation of the components of gas mixtures and air |
US3359743A (en) * | 1966-04-29 | 1967-12-26 | Nat Distillers Chem Corp | Low temperature process for the recovery of ethane from a stripped natural gas stream |
US3360946A (en) * | 1966-04-29 | 1968-01-02 | Nat Distillers Chem Corp | Low temperature process for the recovery of ethane from a stripped natural gas stream |
US3511058A (en) * | 1966-05-27 | 1970-05-12 | Linde Ag | Liquefaction of natural gas for peak demands using split-stream refrigeration |
US3405530A (en) * | 1966-09-23 | 1968-10-15 | Exxon Research Engineering Co | Regasification and separation of liquefied natural gas |
US3516262A (en) * | 1967-05-01 | 1970-06-23 | Mc Donnell Douglas Corp | Separation of gas mixtures such as methane and nitrogen mixtures |
US3589137A (en) * | 1967-10-12 | 1971-06-29 | Mc Donnell Douglas Corp | Method and apparatus for separating nitrogen and hydrocarbons by fractionation using the fluids-in-process for condenser and reboiler duty |
US3656312A (en) * | 1967-12-15 | 1972-04-18 | Messer Griesheim Gmbh | Process for separating a liquid gas mixture containing methane |
US3702541A (en) * | 1968-12-06 | 1972-11-14 | Fish Eng & Construction Inc | Low temperature method for removing condensable components from hydrocarbon gas |
US3813890A (en) * | 1969-07-02 | 1974-06-04 | B Bligh | Process of continuous distillation |
US3747359A (en) * | 1969-08-01 | 1973-07-24 | Linde Ag | Gas liquefaction by a fractionally condensed refrigerant |
US3797261A (en) * | 1970-05-12 | 1974-03-19 | Linde Ag | Single-stage fractionation of natural gas containing nitrogen |
US3929438A (en) * | 1970-09-28 | 1975-12-30 | Phillips Petroleum Co | Refrigeration process |
US3818714A (en) * | 1971-03-04 | 1974-06-25 | Linde Ag | Process for the liquefaction and subcooling of natural gas |
US3827245A (en) * | 1971-09-22 | 1974-08-06 | Stone & Webster Eng Corp | Recovery and purification of ethylene from direct hydration ethanol vent gas streams |
US3857251A (en) * | 1971-12-27 | 1974-12-31 | Technigaz | Lng storage tank vapor recovery by nitrogen cycle refrigeration with refrigeration make-up provided by separation of same vapor |
US3837172A (en) * | 1972-06-19 | 1974-09-24 | Synergistic Services Inc | Processing liquefied natural gas to deliver methane-enriched gas at high pressure |
US4163652A (en) * | 1976-03-26 | 1979-08-07 | Snamprogetti S.P.A. | Refrigerative fractionation of cracking-gases in ethylene production plants |
US4230469A (en) * | 1977-07-28 | 1980-10-28 | Linde Aktiengesellschaft | Distillation of methane from a methane-containing crude gas |
US4274850A (en) * | 1978-11-14 | 1981-06-23 | Linde Aktiengesellschaft | Rectification of natural gas |
US4676812A (en) * | 1984-11-12 | 1987-06-30 | Linde Aktiengesellschaft | Process for the separation of a C2+ hydrocarbon fraction from natural gas |
US4592767A (en) * | 1985-05-29 | 1986-06-03 | Union Carbide Corporation | Process for separating methane and nitrogen |
US5287703A (en) * | 1991-08-16 | 1994-02-22 | Air Products And Chemicals, Inc. | Process for the recovery of C2 + or C3 + hydrocarbons |
US5442924A (en) * | 1994-02-16 | 1995-08-22 | The Dow Chemical Company | Liquid removal from natural gas |
US5505049A (en) * | 1995-05-09 | 1996-04-09 | The M. W. Kellogg Company | Process for removing nitrogen from LNG |
US20040103687A1 (en) * | 2002-09-06 | 2004-06-03 | Clare Stephen Roger | Nitrogen rejection method and apparatus |
US7127915B2 (en) * | 2002-09-06 | 2006-10-31 | The Boc Group Plc | Nitrogen rejection method and apparatus |
US7373790B2 (en) * | 2002-09-06 | 2008-05-20 | The Boc Group, Plc | Nitrogen rejection method and apparatus |
US20060230783A1 (en) * | 2002-09-06 | 2006-10-19 | Clare Stephen R | Nitrogen rejection method and apparatus |
US20040231359A1 (en) * | 2003-05-22 | 2004-11-25 | Brostow Adam Adrian | Nitrogen rejection from condensed natural gas |
US6978638B2 (en) * | 2003-05-22 | 2005-12-27 | Air Products And Chemicals, Inc. | Nitrogen rejection from condensed natural gas |
US20110005273A1 (en) * | 2009-07-09 | 2011-01-13 | Gahier Vanessa | Method for producing a flow rich in methane and a flow rich in c2+ hydrocarbons, and associated installation |
US9310128B2 (en) * | 2009-07-09 | 2016-04-12 | Technip France | Method for producing a flow rich in methane and a flow rich in C2 + hydrocarbons, and associated installation |
US9823015B2 (en) | 2009-07-09 | 2017-11-21 | Technip France | Method for producing a flow rich in methane and a flow rich in C2+ hydrocarbons, and associated installation |
EP3161113A4 (en) * | 2014-06-27 | 2017-07-19 | RTJ Technologies Inc. | Method and arrangement for producing liquefied methane gas (lmg) from various gas sources |
JP2017532524A (en) * | 2014-06-27 | 2017-11-02 | アールティージェー テクノロジース インコーポレイテッド | Method and apparatus for producing LMG from various gas sources {METHOD AND ARRANGEMENT FOR PRODUCING LIQUEFIED METANE GAS FROM VARIOUS GAS SOURCES} |
US10240863B2 (en) | 2014-06-27 | 2019-03-26 | Rtj Technologies Inc. | Method and arrangement for producing liquefied methane gas (LMG) from various gas sources |
US10393430B2 (en) | 2015-09-11 | 2019-08-27 | Rtj Technologies Inc. | Method and system to control the methane mass flow rate for the production of liquefied methane gas (LMG) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2823523A (en) | Separation of nitrogen from methane | |
US3218816A (en) | Process for cooling a gas mixture to a low temperature | |
US3721099A (en) | Fractional condensation of natural gas | |
US2557171A (en) | Method of treating natural gas | |
US3780534A (en) | Liquefaction of natural gas with product used as absorber purge | |
US3818714A (en) | Process for the liquefaction and subcooling of natural gas | |
US2960837A (en) | Liquefying natural gas with low pressure refrigerants | |
US3360944A (en) | Gas liquefaction with work expansion of major feed portion | |
US3347055A (en) | Method for recuperating refrigeration | |
US3797261A (en) | Single-stage fractionation of natural gas containing nitrogen | |
US3886758A (en) | Processes for the production of nitrogen and oxygen | |
US3083544A (en) | Rectification of gases | |
US3516262A (en) | Separation of gas mixtures such as methane and nitrogen mixtures | |
US2495549A (en) | Separation of ternary gaseous mixtures containing hydrogen and methane | |
US2696088A (en) | Manipulation of nitrogen-contaminated natural gases | |
US3401531A (en) | Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production | |
US3932154A (en) | Refrigerant apparatus and process using multicomponent refrigerant | |
US3327489A (en) | Method for separating gaseous mixtures | |
US4586942A (en) | Process and plant for the cooling of a fluid and in particular the liquefaction of natural gas | |
US2409458A (en) | Separation of the constituents of gaseous mixtures | |
US2685181A (en) | Separation of the constituents of gaseous mixtures | |
GB1278974A (en) | Improvements in or relating to the liquefication of natural gas | |
US2146197A (en) | Method of and apparatus for separating mixed gases and vapors | |
US2582068A (en) | Method and apparatus for separating gases | |
US2287137A (en) | Method of and apparatus for eliminating impurities when separating gas mixtures |