US2817629A - Antimony plating bath - Google Patents
Antimony plating bath Download PDFInfo
- Publication number
- US2817629A US2817629A US388059A US38805953A US2817629A US 2817629 A US2817629 A US 2817629A US 388059 A US388059 A US 388059A US 38805953 A US38805953 A US 38805953A US 2817629 A US2817629 A US 2817629A
- Authority
- US
- United States
- Prior art keywords
- antimony
- per gallon
- ounces per
- approximately
- citrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052787 antimony Inorganic materials 0.000 title claims description 29
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 title claims description 29
- 238000007747 plating Methods 0.000 title description 14
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 36
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 claims description 10
- 235000010234 sodium benzoate Nutrition 0.000 claims description 10
- 239000004299 sodium benzoate Substances 0.000 claims description 10
- 239000003792 electrolyte Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000001509 sodium citrate Substances 0.000 claims description 7
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 2
- AVTYONGGKAJVTE-OLXYHTOASA-L potassium L-tartrate Chemical compound [K+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O AVTYONGGKAJVTE-OLXYHTOASA-L 0.000 claims 1
- 239000001472 potassium tartrate Substances 0.000 claims 1
- 229940111695 potassium tartrate Drugs 0.000 claims 1
- 235000011005 potassium tartrates Nutrition 0.000 claims 1
- 229940026189 antimony potassium tartrate Drugs 0.000 description 12
- WBTCZEPSIIFINA-MSFWTACDSA-J dipotassium;antimony(3+);(2r,3r)-2,3-dioxidobutanedioate;trihydrate Chemical compound O.O.O.[K+].[K+].[Sb+3].[Sb+3].[O-]C(=O)[C@H]([O-])[C@@H]([O-])C([O-])=O.[O-]C(=O)[C@H]([O-])[C@@H]([O-])C([O-])=O WBTCZEPSIIFINA-MSFWTACDSA-J 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000000576 coating method Methods 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 4
- 235000010334 sodium propionate Nutrition 0.000 description 4
- 239000004324 sodium propionate Substances 0.000 description 4
- 229960003212 sodium propionate Drugs 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 229910000846 In alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 2
- 150000001462 antimony Chemical class 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229940071264 lithium citrate Drugs 0.000 description 2
- WJSIUCDMWSDDCE-UHFFFAOYSA-K lithium citrate (anhydrous) Chemical compound [Li+].[Li+].[Li+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WJSIUCDMWSDDCE-UHFFFAOYSA-K 0.000 description 2
- 239000001508 potassium citrate Substances 0.000 description 2
- 229960002635 potassium citrate Drugs 0.000 description 2
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 2
- 235000011082 potassium citrates Nutrition 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000002140 antimony alloy Substances 0.000 description 1
- QQHJESKHUUVSIC-UHFFFAOYSA-N antimony lead Chemical compound [Sb].[Pb] QQHJESKHUUVSIC-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229960001790 sodium citrate Drugs 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/54—Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/06—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
- C25D11/08—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
Definitions
- This invention relates to improvements in the electro deposition of antimony and more particularly to an improved ele-ctrolyte and its use in the electrodeposition of antimony.
- Example I Sodium citrate 20.
- Antimony potassium tartrate (3.59 metallic antimony).
- Antimony potassium tartrate 12 (4.3 metallic antimony).
- Antimony potassium tartrate 1.5 (.54 metallic antimony).
- Example IV Lithium citrate 14.
- Antimony potassium tar-trate 10 (3.59 metallic antimony).
- citric acid is present in an amount within the range of approximately 2 to 7 ounces per gal lon of Water and dissolved antimony is present in an amount within the range of about .5 to 5 ounces per gallon of metallic antimony, i. e. approximately 2 to 12 ounces per gallon of antimony potassium tartrate.
- sodium benzoate may be omitted in certain applications, superior results are obtained when it is present in an amount not in excess of about 3 ounces per gallon of water, /2 ounce per gallon of water being preferred at present.
- the antimony potassium tartrate can be partially or completely replaced with other soluble antimony salts such as the chloride, acetate or sulfate.
- the sodium benzoate may be replaced with sodium propionate.
- Plating baths in accordance with this invention generally may be operated over a wide range of temperatures from room temperature up to a temperature determined primarily by the economic considerations of minimizing heating costs and evaporation losses. However, I have found that it is generally desirable to operate the bath at an elevated temperature within the range from approximately F. to 150 F., F. being preferred at present.
- the current density may be varied in different applications although I have found that a current density within the range of about 25 to 30 amperes per square foot produces excellent results in most instances.
- baths embodying the present invention operate most satisfactorily as an acid medium and produce superior results at a pH within the range of approximately 4 to 6, 5 being preferred.
- antimony anodes it will be understood of course that in certain instances it may be desirable to use inert anodes and to maintain the desired concentration of antimony in the plating bath by separate additions of soluble antimony salts.
- Plating baths of the present invention may be used to deposit antimony on any conventional cathode material such as lead, indium, alloys of lead and indium, copper, iron and steel, zinc, tin, cadmium, lead-antimony alloys or antimony-lead alloys.
- cathode material such as lead, indium, alloys of lead and indium, copper, iron and steel, zinc, tin, cadmium, lead-antimony alloys or antimony-lead alloys.
- 3 metallic article is first coated with lead, indium, or a lead-indium alloy to protect the article from corrosion in subsequent plating baths.
- This protective coating preferably has a smooth surface.
- mony is then electrodeposited over the protective coating from a plating bath comprising an aqueous solution of to 12 ounces per gallon of sodium citrate, 3 to 4 ounces per gallon of citric acid, 2 to 2.5 ounces per gallon of antimony potassium tartrate and .5 ounce per gallon of sodium benzoate.
- a subsequent thicker coating of antimony is then electrodeposited using a bath comprising an aqueous solution of 18 to ounces per gallon of sodium citrate, 6 to 7 ounces per gallon of citric acid, 10 to 12 ounces per gallon of antimony potassium tartrate and .5 ounce per gallon of sodium benzoatc.
- the resultant structure is then buffed or polished, it' necessary, and may be used without further treatment.
- the article may be subjected to a further electrodeposition process for the application of other metals such as nickel and/ or chromium for which an electrodeposited coating of antimony formed in accordance with the present invention is an excellent undercoat or base material.
- a process for electrodepositing antimony comprising the steps of establishing a flow of electricity from an antimony anode to a cathode through an electrolyte at a current density of approximately to A flash coating of anti asraeaa 30 amperes per square foot while said electrolyte is at a temperature within the range of approximately F. to F., and is maintained at a pH within the range of about 4 to 6, said electrolyte consisting essentially of an aqueous solution of approximately 18 to 20 ounces per gallon of sodium citrate, 6 to 7 ounces per gallon of citric acid, 10 to 12 ounces per gallon of antimony potassium tartrate and .5 ounce per gallon of sodium benzoate.
- An electrolytic bath consisting essentially of an aqueous solution of antimony potassium tartrate, an alkaline citrate, citric acid, and a substance selected from the group consisting of sodium propionate and sodium benzoate, the concentrations of the several ingredients per gallon of water being substantially as follows: antimony potassium tartrate 2 to 12 ounces, an alkaline citrate 5 to 26 ounces, citric acid 2 t0 7 ounces, and a substance selected from the group consisting of sodium benzoate and sodium propionate about 0.5 to 3 ounces.
- a process of electrodepositing antimony which comprises passing electric current from an anode to a cathode through the bath of claim 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Chemical Treatment Of Metals (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
Un t d States, Pstsffi F? ANTIMONY PLATING BATH Clarence F. Smart, Birmingham, Mich., assignor to General Motors Corporation, Detroit, Micln, a corporation of Delaware No Drawing. Application October 23, 1953 Serial No. 388,059
3 Claims. (Cl. 204-45) This invention relates to improvements in the electro deposition of antimony and more particularly to an improved ele-ctrolyte and its use in the electrodeposition of antimony.
It has heretofore been difficult to obtain satisfactory electrodeposits of antimony. Not only have prior plating procedures produced antimony coatings which are poorly adherent and difiicult to buff or polish, but frequently the electrodeposited antimony has been unsatisfactory because of pitting and other surface defects. Moreover, prior electrolytic solutions employed in antimony plating have generally exhibited poor stability which has heretofore limited when the prior solutions intermittently.
I have found that the aforementioned difiiculties are minimized and in many instances eliminated entirely when antimony is deposited from an aqueous solution of dis solved antimony and an alkaline citrate such as sodium citrate, lithium citrate, potassium citrate or ammonium citrate. In most instances it is desirable that the bath also contain small amounts of citric acid and/or sodium benzoate or sodium propionate.
The following examples in which the quantities are expressed in ounces per gallon of water are illustrative of have only been used plating baths embodying the present invention.
Example I Sodium citrate 20.
Citric acid 6.
Antimony potassium tartrate (3.59 metallic antimony).
Example Il Potassium citrate 25.
Citric acid 6.
Antimony potassium tartrate 12 (4.3 metallic antimony).
Example 111 Ammonium citrate (dibasic); 8.
Antimony potassium tartrate 1.5 (.54 metallic antimony).
Sodium benzoate .5.
Example IV Lithium citrate 14.
Citric acid 2.
Antimony potassium tar-trate 10 (3.59 metallic antimony). Sodium benzoate .5.
While the above examples illustrate specific plating baths embodying the invention, it is to be understood, of course, that the invention is not to be limited by these examples because I have found that excellent plating results are obtained when an alkaline citrate is employed in an amount within the range of about 5 to 26 ounces per gallon of water. In certain applications the quantity of alkaline citrate can be increased, the upper limit being determined by the limit of solubility of the alkaline citrate in the bath. Similarly, the minimum amount of alkaline citrate to be used in any particular application is that amount necessary to maintain adequate anode corrosion during plating. In a like manner, satisfactory results are obtained when the citric acid is present in an amount within the range of approximately 2 to 7 ounces per gal lon of Water and dissolved antimony is present in an amount within the range of about .5 to 5 ounces per gallon of metallic antimony, i. e. approximately 2 to 12 ounces per gallon of antimony potassium tartrate. Although the sodium benzoate may be omitted in certain applications, superior results are obtained when it is present in an amount not in excess of about 3 ounces per gallon of water, /2 ounce per gallon of water being preferred at present.
If desired, the antimony potassium tartrate can be partially or completely replaced with other soluble antimony salts such as the chloride, acetate or sulfate. Similarly, the sodium benzoate may be replaced with sodium propionate.
their useful life, especially Plating baths in accordance with this invention generally may be operated over a wide range of temperatures from room temperature up to a temperature determined primarily by the economic considerations of minimizing heating costs and evaporation losses. However, I have found that it is generally desirable to operate the bath at an elevated temperature within the range from approximately F. to 150 F., F. being preferred at present. The current density may be varied in different applications although I have found that a current density within the range of about 25 to 30 amperes per square foot produces excellent results in most instances.
I have found that baths embodying the present invention operate most satisfactorily as an acid medium and produce superior results at a pH within the range of approximately 4 to 6, 5 being preferred. In most applications I prefer to employ antimony anodes. It will be understood of course that in certain instances it may be desirable to use inert anodes and to maintain the desired concentration of antimony in the plating bath by separate additions of soluble antimony salts.
Plating baths of the present invention may be used to deposit antimony on any conventional cathode material such as lead, indium, alloys of lead and indium, copper, iron and steel, zinc, tin, cadmium, lead-antimony alloys or antimony-lead alloys.
At times, as in the electrodeposition of antimony over lead when: it is desired to improve the adhesion of antimony to the lead and to minimize resistance to blistering in subsequent cleaning and plating operations, it is desirable to initially deposit a thin flash coat of antimony over the cathode. For that purpose I have found that the following bath composition, in which the quantities are expressed in terms of ounces per gallon of water, provides excellent results:
Sodium citrate 10-12 Citric acid 3-4 Antimony potassium tartrate 2-2%a Patented Dec. 24,1957
3 metallic article is first coated with lead, indium, or a lead-indium alloy to protect the article from corrosion in subsequent plating baths. This protective coating preferably has a smooth surface. mony is then electrodeposited over the protective coating from a plating bath comprising an aqueous solution of to 12 ounces per gallon of sodium citrate, 3 to 4 ounces per gallon of citric acid, 2 to 2.5 ounces per gallon of antimony potassium tartrate and .5 ounce per gallon of sodium benzoate. A subsequent thicker coating of antimony is then electrodeposited using a bath comprising an aqueous solution of 18 to ounces per gallon of sodium citrate, 6 to 7 ounces per gallon of citric acid, 10 to 12 ounces per gallon of antimony potassium tartrate and .5 ounce per gallon of sodium benzoatc.
The resultant structure is then buffed or polished, it' necessary, and may be used without further treatment. On the other hand, the article may be subjected to a further electrodeposition process for the application of other metals such as nickel and/ or chromium for which an electrodeposited coating of antimony formed in accordance with the present invention is an excellent undercoat or base material.
It is to be understood that although the invention has been described With specific reference to particular embodiments thereof, it is not to be so limited since changes and alterations therein may be made which are Within the full intended scope of this invention as defined by the appended claims.
What is claimed is:
1. A process for electrodepositing antimony, said process comprising the steps of establishing a flow of electricity from an antimony anode to a cathode through an electrolyte at a current density of approximately to A flash coating of anti asraeaa 30 amperes per square foot while said electrolyte is at a temperature within the range of approximately F. to F., and is maintained at a pH within the range of about 4 to 6, said electrolyte consisting essentially of an aqueous solution of approximately 18 to 20 ounces per gallon of sodium citrate, 6 to 7 ounces per gallon of citric acid, 10 to 12 ounces per gallon of antimony potassium tartrate and .5 ounce per gallon of sodium benzoate.
2. An electrolytic bath consisting essentially of an aqueous solution of antimony potassium tartrate, an alkaline citrate, citric acid, and a substance selected from the group consisting of sodium propionate and sodium benzoate, the concentrations of the several ingredients per gallon of water being substantially as follows: antimony potassium tartrate 2 to 12 ounces, an alkaline citrate 5 to 26 ounces, citric acid 2 t0 7 ounces, and a substance selected from the group consisting of sodium benzoate and sodium propionate about 0.5 to 3 ounces.
3. A process of electrodepositing antimony which comprises passing electric current from an anode to a cathode through the bath of claim 2.
References Cited in the file of this patent UNITED STATES PATENTS
Claims (1)
1. A PROCESS FOR ELECTRODEPOSITING ANTIMONY, SAID PROCESS COMPRISING THE STEPS OF ESTABLISHING A FLOW OF ELECTRICITY FRON ANTIMONY ANODE TO A CATHODE THROUGH AN ELECTROLYTE AT A CURRENT DENSITY OF APPROXIMATELY 25 TO 30 AMPERES PER SQUARE FOOT WHILE SAID ELECTROLYTE IS AT A TEMPERATURE WITHIN THE RANGE OF APPROXIMATELY 125* F. TO 140*F., AND IS MAINTAINED AT A PH WITHIN THE RANGE OF ABOUT 4 TO 6, AND ELECTROLYTE CONSISTING ESSENTIALLY OF AN AQUEOUS SOLUTION OF APPROXIMATELY 18 TO 20 OUNCES PER GALLON OF SODIUM CITRATE, 6 TO 7 OUNCES PER GALLONON OF CITRIC ACID, 10 TO 12 OUNCES PER GALLON OF ANTIOMONY POTASSIUM TARTRATE AND .5 OUNCES PER GALLON OF SODIUM BENZOATE.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US388059A US2817629A (en) | 1953-10-23 | 1953-10-23 | Antimony plating bath |
GB28081/54A GB760084A (en) | 1953-10-23 | 1954-09-29 | Improvements in and relating to the electrodeposition of antimony |
DEG15651A DE959243C (en) | 1953-10-23 | 1954-10-24 | Galvanic bath and process for the deposition of antimony coatings |
GB31646/54A GB763549A (en) | 1953-10-23 | 1954-11-02 | Improvements in or relating to process for producing a protective coating by oxidation on a surface of an article predominatly of aluminum |
FR1113563D FR1113563A (en) | 1953-10-23 | 1954-11-18 | Improvements to a process for obtaining a protective coating by oxidation on a surface consisting mainly of aluminum |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US388059A US2817629A (en) | 1953-10-23 | 1953-10-23 | Antimony plating bath |
US763549XA | 1953-11-23 | 1953-11-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2817629A true US2817629A (en) | 1957-12-24 |
Family
ID=31980802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US388059A Expired - Lifetime US2817629A (en) | 1953-10-23 | 1953-10-23 | Antimony plating bath |
Country Status (4)
Country | Link |
---|---|
US (1) | US2817629A (en) |
DE (1) | DE959243C (en) |
FR (1) | FR1113563A (en) |
GB (2) | GB760084A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1273954B (en) * | 1963-03-05 | 1968-07-25 | Philips Nv | Process for the galvanic coating of p-conducting germanium with antimony, lead or alloys of these metals |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3530048A (en) * | 1968-02-08 | 1970-09-22 | Reynolds Metals Co | Bright anodized aluminum alloy |
KR101590657B1 (en) * | 2008-02-22 | 2016-02-18 | 콜로라도 스테이트 유니버시티 리써치 파운데이션 | Lithium-ion battery |
CN109778259B (en) * | 2019-01-04 | 2020-09-08 | 中国计量大学 | A kind of antimony electroplating solution and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2683114A (en) * | 1952-12-04 | 1954-07-06 | Harshaw Chem Corp | Electrodeposition of antimony |
US2721836A (en) * | 1952-08-07 | 1955-10-25 | Harshaw Chem Corp | Electrodeposition of antimony |
-
1953
- 1953-10-23 US US388059A patent/US2817629A/en not_active Expired - Lifetime
-
1954
- 1954-09-29 GB GB28081/54A patent/GB760084A/en not_active Expired
- 1954-10-24 DE DEG15651A patent/DE959243C/en not_active Expired
- 1954-11-02 GB GB31646/54A patent/GB763549A/en not_active Expired
- 1954-11-18 FR FR1113563D patent/FR1113563A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2721836A (en) * | 1952-08-07 | 1955-10-25 | Harshaw Chem Corp | Electrodeposition of antimony |
US2683114A (en) * | 1952-12-04 | 1954-07-06 | Harshaw Chem Corp | Electrodeposition of antimony |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1273954B (en) * | 1963-03-05 | 1968-07-25 | Philips Nv | Process for the galvanic coating of p-conducting germanium with antimony, lead or alloys of these metals |
Also Published As
Publication number | Publication date |
---|---|
DE959243C (en) | 1957-02-28 |
GB763549A (en) | 1956-12-12 |
GB760084A (en) | 1956-10-31 |
FR1113563A (en) | 1956-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3193474A (en) | Plating on aluminum | |
US2580773A (en) | Method and composition for coating aluminum with zinc | |
JPH0585640B2 (en) | ||
EP2171130A2 (en) | Method of providing a metallic coating layer and substrate provided with said coating layer | |
US2693444A (en) | Electrodeposition of chromium and alloys thereof | |
KR910004972B1 (en) | Manufacturing method of tin-cobalt, tin-nickel, tin-lead binary alloy electroplating bath and electroplating bath manufactured by this method | |
US2250556A (en) | Electrodeposition of copper and bath therefor | |
TWI507571B (en) | Method of obtaining a yellow gold alloy deposition by galvanoplasty without using toxic metals or metalloids | |
US2750333A (en) | Electrodeposition of antimony and antimony alloys | |
GB1272536A (en) | Electroplating solutions and process for electroplating using such solutions | |
US2817629A (en) | Antimony plating bath | |
US2811484A (en) | Electrodeposition of zinc on magnesium and its alloys | |
US4265715A (en) | Silver electrodeposition process | |
US2423624A (en) | Indium plating | |
US2511952A (en) | Process of plating zinc on aluminum | |
US1904732A (en) | Alloy plated iron and steel and process of making the same | |
US3522155A (en) | Method of electrodepositing a tinbismuth alloy and compositions therefor | |
US4167459A (en) | Electroplating with Ni-Cu alloy | |
US2751341A (en) | Electrodeposition of lead and lead alloys | |
GB2086428A (en) | Hardened gold plating process | |
US2599178A (en) | Electrodeposition of alloys of molybdenum with cobalt, nickel, and iron | |
US2793990A (en) | Electrodeposition of alloys containing copper and tin | |
US2039069A (en) | Corrosion resisting rubber coated article | |
US2921888A (en) | Electroplating titanium ano titanium alloys | |
US1566984A (en) | Electroplating method and electroplated articles |