US2754513A - Antenna - Google Patents
Antenna Download PDFInfo
- Publication number
- US2754513A US2754513A US259875A US25987551A US2754513A US 2754513 A US2754513 A US 2754513A US 259875 A US259875 A US 259875A US 25987551 A US25987551 A US 25987551A US 2754513 A US2754513 A US 2754513A
- Authority
- US
- United States
- Prior art keywords
- line
- energy
- antenna
- plates
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/12—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
- H01Q3/16—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
- H01Q3/20—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/104—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
Definitions
- This invention may be manufactured-and used by or for .the Government 'for governmental purposes without thepayment to me of any royalty thereon.
- This invention relates to antennas 'for'use with surface wave transmission lines.
- the surface wave transmission line which ,is fully described in my patent application, Ser.”No. 1511025, filed March 21, 1950, now Patent 2,685,068, issued July 27, 1954, has a broad field of utility in the transmission of radio energy.
- the presenttinvention relates toantennas for transforming electromagnetic surface wave energyto polarized wave energy for space radiation. 'These "antennas, which are utilized at the microwave frequencies encountered in surface wave transmission 'line applica- "tions, are designed to radiate electromagneticenergy-in ⁇ space at an angle to thetransmissionline. 'Severakmddifications provide a beam .of energy narrow in azimuth while other modifications provide omnidirectional-radiation in .a narrow vertical sector. "The first mentionedantennas may be rotated for use inscanning with the narrow ibeam ofenergy. The use of a surface wavetransmission 'line as the antenna mastobviates the needjof aseparate antenna. feed system.
- It is a further object of this invention'to' provide a directive antenna for asurface wave transmission line'wherein different surfaces of-the antenna are axially spaced one half wave length along a surface wave transmission 'line.
- .It is stillanother object of this invention toxprovide an antenna system that generates a scanning beam of electromagnetic energy.
- Figurel shows the antenna reflector plates of Figure 1
- Figure '3 isa diagrammatic sketch for'use in the expla' nationof 'the operation of the invention.
- Figure '9 is a further modification of the invention in (elevation.
- this invention comprises placing an .antennaon a surface "wave transmission line so that the energy that is being propagated along the line will'be ice 2 :radiated at 'an angle to .theline.
- This isiaccomplis'hed either by:reflection or bytheuse of radiating stubs spaced axially “and'horizontallyalong the transmission line.
- a surface 'wave transmission line 1 is shown connected to a suitable launching device 2, in this instance shown as a horn.
- a suitable launching device 2 in this instance shown as a horn.
- -Meansfor launching the electromagnetic energy upon line 1 are described in detail in my above referred to patent.
- the energy propagated by the line which will be referred totherein as surface wave electromagnetic energy, is wave energy in a non-radiating mode as isfully explained in myabove referredto application.
- Such plates are metal for optimum 'antenna efiiciencyalthou'gh other materials including dielectric material may be uti -lized if.a lowerantenna efficiency is desired.
- dielectric material may be uti -lized if.a lowerantenna efficiency is desired.
- adielectric material is usedand the plates positioned on a line, aportion of the wave energy willbe reflected and aportion'will continue along the line. It can -be'seen that this type of operation makes possible any desired radiation pattern by selectively positioning several reflecting antennas along the line at various angles to the line.
- Plates Sand '4 are positioned by a supporting member 5 shown in Figure *1 constructed of insulating material.
- the supportS may "be metallicin nature, it desired-for additional'streng'th. 'It is obvious that member 5 could'be formed in-a'variety of ways, the showingbeing illustrative only.
- Supporti has a bearing surface6 so that 'it may berotated, with"the'line as'theaxis of rotation, by a-rotator 9.
- Plates 3 and 4 are arranged at an angle-with the line, hereshown as 45 degrees, and axially spaced along-the line. It is to be understood that the invention is not limited to any specific angle of the plates with the line, 45 degrees being illustrative only.
- the amount of spacing is determined by the wave length of the electromagnetic waves, being in all cases, for optimum operation, one halfthe wave length of thepropagated energy. However, it is to belunderstood that some de- Viationfromthe specified 0ne-half wave length spacing :may be made .without rendering the system inoperative.
- the plates Sand 4 do not contact the line but are separated therefrom due to cut out portions 7 and 8 shown in Figure 2.
- the size ofplates 3 and 4 is determined by the radius of the field-aboutline 1, which is dependent upon the wave length being utilized and the surface conditions of the'line.
- the reflecting plates 3 and 4 should be approximately the same size as the field'of the surface waves propagatedalong line 1 to provide proper illumination of plates 3 and 4 by'the electromagnetic field.
- the plates are preferably semi-elliptical since theprojection of these plates normalto the lines will belaicircle. Such aconfiguration provides a narrowconical beam of energy which isdesirable. 'For example, with one experimental antenna a beam of Wave energy of 2 degrees width, as normallydefined, was obtained. It is of course obvious that various shaped plates may be used to provide beams "that have different characteristics, and if the plates are .at angles other than 45 degrees to the line, their shape will have to be altered accordingly.
- the wave energy a-b, upon travelling to plate 3, will be reflected and after a certain period of time arrive at line cd.
- This same wave energy on the opposite side of the line will, during the the same period, be reflected from plate 4 and travel to line ef, one half wave length from line ca'.
- the E line components, in the plane of the paper, of the wave energy at line c-d will be 180 degrees out of phase with similar E lines at 2-
- the electric field reverses phase 180 degrees. Therefore, when the wave energy from e-f travels to cd, the E lines will be 180 degrees reversed in phase and consequently in phase with the E lines of energy reflected from plate 3. It is easily seen that the components of the E lines that are perpendicular to the plane of the drawing will cancel.
- vertically polarized electromagnetic wave energy will be propagated by this antenna arrangement.
- the half wave length spacing between the antenna plates is for the purpose of providing electromagnetic wave energy, reflected from plates 3 and 4, having cophasal electric fields.
- This embodiment and the below described embodiments of the invention may be utilized for receiving as well as transmitting antennas.
- electromagnetic wave energy from space that impinges upon an antenna in accordance with the invention will be transformedto surface wave energy for the same reasons the reverse action is true.
- the transforation phenomenon discussed above is reversible.
- Fig. 4 is a modification of Fig. 1 and operates in substantially the same manner except that the polarization of the propagated wave energy is 90 degrees rotated from the polarization of the energy radiated by, the antenna of Fig. 1. This is due to the different orientation ofthe antenna reflecting plates.
- the antenna of Fig. 4 consists of plates 16 and 11 positioned at an angle of 45 degrees with line 1 and axially displaced along the lineone half wave length. These plates are preferably positioned by a support 12 which is free to rotate about the line in the same manner as described in connection with Fig. 1. It is of course obvious that various other types of supports could be utilized, the specific embodiment being illustrative only.
- Figs. and 6 illustrate another modification of the invention.
- a single helical plate is utilized.
- This plate is preferably at an angle of 45 degrees with the line and is positioned by a support 22, which is free to rotate.
- the extremities of the plate are spaced one quarter wave length axially on the line for the purpose more fully set forth in. connection with Fig. 1. If the analysis of Fig. I is applied to this modification, it will be seen that a circularly polarized wave will be radiated by the antenna.
- the plate 20 is preferably shaped substantially elliptically, so that the projection of the plates normal to the line 1 will be a circle.
- Such a configuration will provide a sharp conical beam Plates and 33 are spaced 7 so I V the invention.
- Fig. 1 general shape of the reflector plates is preferably elliptical so that the projection of the plates will be a circle. If the analysis of Fig. 1 is applied to this modification, it will be seen that this configuration will radiate circularly polarized wave energy.
- the lower reflecting surfaces in 7 Figs. 4, 5, 6 and 7 are of a different configuration than the upper surfaces. This difierence is due to the half wave spacing between the reflecting plates which makes necessary the use of dissimilarly shaped plates if a true circle projection of the reflecting surfaces is desired.
- the antenna comprises a reflecting cone terminating line 1.
- the surface wave energy will be reflected as vertically polarized wave energy in a narrow vertical sector over 360 degrees of azimuth.
- V I 1 Figure 9 shows another modification of the invention.
- Line 1 is connectedto a conductor 40 to which stubs 41 are joined.
- a terminating element 42 may be employed to cap the conductive line 40 so that the wave energy traveling from line 1 proceeds along section 40 as a traveling wave.
- Stubs 41 spiral about the section 40 to provide points of discontinuity from which the wave energy is radiated, such energybeing horizontally polarized.
- the displacement in degrees wave length of two consecutive elements 41 along the line is equal to the displacement in degrees phase angle about the line.
- these stubs are spaced along the line at degree intervals, i. e., a quarter wave length, and are displaced horizontally by 90 degrees phase angle about the line. More or fewer stubs may be employed so long as they are spaced according to the above described pattern. For example, if the phase angle between two consecutivestubs about the line is 50 degrees, the distance between the'stubs along the line is I a 50A Where is the wave length on section 40..
- This antenna will radiate energy omi-directionally in a narrow vertical i been particularly described and illustrated, it will be understood that various other modifications and improvements, may be made without departing from the spirit of Therefore, it is not desired that the invention be limited to the precise details set forth.
- a microwaveantenna system comprising. aplurality of reflecting surfaces and a surface wave transmission line, said surfaces being positioned around said line and being disposed at,an angle with said line, said surfaces .taken in combination being substantially elliptical and said surfaces being axially displaced from each other a total of one half wave length.
- a microwave antenna system for electromagnetic energy of a predetermined frequency comprising an elongated conductor having a surface conditioned to slightly reduce the phase velocity to concentrate the field of the energy near the conductor in a non-radiating ,mode,
- a microwave antenna system for electromagnetic energy of a predetermined frequency comprising an elongated conductor having a surface conditioned to slightly reduce the phase velocity to concentrate the field of the energy near the conductor in a non-radiating rnode, launching means coupled to said conductor for producing a field distribution which matches the field distribution on the conductor, directional antenna means positioned along said conductor at a point spaced from said launching means and illuminated by said field for converting said non-radiating mode to a radiating mode, said directional antenna being formed by a plurality of surfaces for reflecting electromagnetic wave energy, said surfaces positioned around said conductor and disposed at an angle to said conductor sdthat said electromagnetic energy is radiated by said surfaces at an angle to said conductor.
- a system as defined in claim 3 which includes means for rotating said antenna about said line.
- a microwave antenna system for electromagnetic energy of a predetermined frequency comprising an elongated conductor having a surface which slightly reduces the phase velocity of the energy to concentrate the field of the energy near the conductor in a non-radiating mode, launching means coupled to said conductor for producing a field distribution at said predetermined frequency which matches the field distribution on the conductor and radiating means having a plurality of reflecting surfaces positioned along said conductor and spaced from said launching means and illuminated by said concentrated field for converting said non-radiating mode into a radiating mode at said radiating means.
- a system as defined in claim 6 which includes means for rotating said reflecting surfaces about said line.
- a microwave antenna system for electromagnetic energy of a predetermined frequency comprising an elongated conductor having a surface conditioned to slightly reduce the phase velocity to concentrate the field of the energy near the conductor in a non-radiating mode, launching means coupled to said conductor for producing a field distribution which matches the field distribution on the conductor, directional antenna rneans illuminated by said field for converting said non-radiating mode to a radiating mode said directional antenna comprising a plurality of reflecting plates mounted at a predetermined angle to said conductor, said plates being spaced along said conductor, said'spacing along the conductor being directly proportional to the radial displacement of the plates from one another around said conductor so that said spacing along the conductor will be substantially one half wavelength at radial displacement between any pair of plates.
Landscapes
- Aerials With Secondary Devices (AREA)
Description
y 0, 1956 G. J. E. GOUBAU 2,754,513
ANTENNA Filed Dec. 4, 1951 2 Sheets-Sheet 1 Fri 2.
IN V EN TOR.
ATTORNEY July 10, 1956 G. J. E. GOUBAU 2,754,513
ANTENNA Filed Dec. 4, 1951 2 Sheets-Sheet 2 Fig.7.
Fig. 5.
I: Fig.3. 41.5,
IN V EN TOR.
Gemy ([5 Goubau BY United States Patent ANTENNA 'Georg J. -E. Goubau, Long' Branch, J., assignor to the United States of America :as represented by the 'Secretaryoftthe Army Application'December 4, 1951,"SerialN0. 1259;875
9' Claims. (Cl. 343-461) (Granted under Title 35,- U.-S. Code(1952), sec. 26.6)
This invention may be manufactured-and used by or for .the Government 'for governmental purposes without thepayment to me of any royalty thereon.
This invention relates to antennas 'for'use with surface wave transmission lines.
The surface wave transmission line, which ,is fully described in my patent application, Ser."No. 1511025, filed March 21, 1950, now Patent 2,685,068, issued July 27, 1954, has a broad field of utility in the transmission of radio energy. The presenttinvention relates toantennas for transforming electromagnetic surface wave energyto polarized wave energy for space radiation. 'These "antennas, which are utilized at the microwave frequencies encountered in surface wave transmission 'line applica- "tions, are designed to radiate electromagneticenergy-in {space at an angle to thetransmissionline. 'Severakmddifications provide a beam .of energy narrow in azimuth while other modifications provide omnidirectional-radiation in .a narrow vertical sector. "The first mentionedantennas may be rotated for use inscanning with the narrow ibeam ofenergy. The use of a surface wavetransmission 'line as the antenna mastobviates the needjof aseparate antenna. feed system.
It is therefore an object of this invention to provide antennas for transmitting and receiving electromagnetic wave energy for use with surface wave transmission lines.
It is another object of this invention to provide a highly .directive reflector type antenna for use with a surface wave transmission line.
It is a further object of this invention'to' provide a directive antenna for asurface wave transmission line'wherein different surfaces of-the antenna are axially spaced one half wave length along a surface wave transmission 'line.
It is yet afurther object ofthis invention to pr'ovide an antenna for a surface wave transmission line that transforms electromagnetic wave energy in a non-radiating mode to electromagnetic energy in a radiating mode.
.It is stillanother object of this invention toxprovide an antenna system that generates a scanning beam of electromagnetic energy.
Itisyet another object of this invention'toprovide an Iantenna for use with a surface wave transmission line that .utilizes spaced stubs-t terminate the line.
These and further objects of this invention willbe "more fully understood-when the following description is read inconnection with the accompanying drawingin which:
Figure l'illustrates one form of the invention in aparitially. sectioned elevation;
Figurel shows the antenna reflector plates of Figure 1;
Figure '3 isa diagrammatic sketch for'use in the expla' nationof 'the operation of the invention;
Figures '4 through 8 are modifications of theinvention shown in perspective; and
Figure '9 is a further modification of the invention in (elevation.
In general terms, this invention comprises placing an .antennaon a surface "wave transmission line so that the energy that is being propagated along the line will'be ice 2 :radiated at 'an angle to .theline. This isiaccomplis'hed "either by:reflection or bytheuse of radiating stubs spaced axially "and'horizontallyalong the transmission line.
Examining Figures 1 and 2 in detail, a surface 'wave transmission line 1 is shown connected to a suitable launching device 2, in this instance shown as a horn. -Meansfor launching the electromagnetic energy upon line 1 are described in detail in my above referred to patent. The energy propagated by the line, which will be referred totherein as surface wave electromagnetic energy, is wave energy in a non-radiating mode as isfully explained in myabove referredto application. Located on line land preferably terminatingthe line is a directional antenna preferably formed .by semi=elliptical plates 3 and 4. Such plates are metal for optimum 'antenna efiiciencyalthou'gh other materials including dielectric material may be uti -lized if.a lowerantenna efficiency is desired. 'For example, if adielectric material is usedand the plates positioned on a line, aportion of the wave energy willbe reflected and aportion'will continue along the line. It can -be'seen that this type of operation makes possible any desired radiation pattern by selectively positioning several reflecting antennas along the line at various angles to the line.
Plates Sand '4 are positioned by a supporting member 5 shown in Figure *1 constructed of insulating material. However, the supportS may "be metallicin nature, it desired-for additional'streng'th. 'It is obvious that member 5 could'be formed in-a'variety of ways, the showingbeing illustrative only. Supporti "has a bearing surface6 so that 'it may berotated, with"the'line as'theaxis of rotation, by a-rotator 9. Plates 3 and 4are arranged at an angle-with the line, hereshown as 45 degrees, and axially spaced along-the line. It is to be understood that the invention is not limited to any specific angle of the plates with the line, 45 degrees being illustrative only. The amount of spacing is determined by the wave length of the electromagnetic waves, being in all cases, for optimum operation, one halfthe wave length of thepropagated energy. However, it is to belunderstood that some de- Viationfromthe specified 0ne-half wave length spacing :may be made .without rendering the system inoperative.
The plates Sand 4 do not contact the line but are separated therefrom due to cut out portions 7 and 8 shown in Figure 2. The size ofplates 3 and 4 is determined by the radius of the field-aboutline 1, which is dependent upon the wave length being utilized and the surface conditions of the'line. For optimum operation of the antenna system, the reflecting plates 3 and 4 should be approximately the same size as the field'of the surface waves propagatedalong line 1 to provide proper illumination of plates 3 and 4 by'the electromagnetic field.
'The plates are preferably semi-elliptical since theprojection of these plates normalto the lines will belaicircle. Such aconfiguration provides a narrowconical beam of energy which isdesirable. 'For example, with one experimental antenna a beam of Wave energy of 2 degrees width, as normallydefined, was obtained. It is of course obvious that various shaped plates may be used to provide beams "that have different characteristics, and if the plates are .at angles other than 45 degrees to the line, their shape will have to be altered accordingly.
The operation of the system will be explained withparticular reference being made to Figure 3. Surface wave electromagnetic energy that is traveling along line 1 is indicated by lines ,9 with arrow heads showing the direction of energy propagation. This wave energy will encounter reflecting plates 3 and 4 and be radiated therefrom in the direction indicated. The electric field of the surface wave energy can be.though of as a number of radial'E lines about line :1. It can be seen that if plates '3and-4 were not-aXially-spaced, the wave energy reflected therefrom would not be properly polarized since the wave energy E line components from plate 3 that are in the plane of the paper would be 180 degrees out of phase with similar E lines of the energy reflected from plate 4. Therefore, the two antenna plates are spaced one-half wave length to provide a suitable phase shift. By following the path of wave energy from line a-b, the principle of operation will be clear.
The wave energy a-b, upon travelling to plate 3, will be reflected and after a certain period of time arrive at line cd. This same wave energy on the opposite side of the line will, during the the same period, be reflected from plate 4 and travel to line ef, one half wave length from line ca'. At this instant, the E line components, in the plane of the paper, of the wave energy at line c-d will be 180 degrees out of phase with similar E lines at 2- However, it is well known that in one half wave length of travel, the electric field reverses phase 180 degrees. Therefore, when the wave energy from e-f travels to cd, the E lines will be 180 degrees reversed in phase and consequently in phase with the E lines of energy reflected from plate 3. It is easily seen that the components of the E lines that are perpendicular to the plane of the drawing will cancel. Thus, vertically polarized electromagnetic wave energy will be propagated by this antenna arrangement.
Stated more simply, the half wave length spacing between the antenna plates is for the purpose of providing electromagnetic wave energy, reflected from plates 3 and 4, having cophasal electric fields.
This embodiment and the below described embodiments of the invention may be utilized for receiving as well as transmitting antennas. Thus, electromagnetic wave energy from space that impinges upon an antenna in accordance with the invention will be transformedto surface wave energy for the same reasons the reverse action is true. In other words, the transforation phenomenon discussed above is reversible.
Fig. 4 is a modification of Fig. 1 and operates in substantially the same manner except that the polarization of the propagated wave energy is 90 degrees rotated from the polarization of the energy radiated by, the antenna of Fig. 1. This is due to the different orientation ofthe antenna reflecting plates. The antenna of Fig. 4 consists of plates 16 and 11 positioned at an angle of 45 degrees with line 1 and axially displaced along the lineone half wave length. These plates are preferably positioned by a support 12 which is free to rotate about the line in the same manner as described in connection with Fig. 1. It is of course obvious that various other types of supports could be utilized, the specific embodiment being illustrative only.
Figs. and 6 illustrate another modification of the invention. In this modification, in place of the two reflector plates previously described, a single helical plate is utilized. This plate is preferably at an angle of 45 degrees with the line and is positioned by a support 22, which is free to rotate. The extremities of the plate are spaced one quarter wave length axially on the line for the purpose more fully set forth in. connection with Fig. 1. If the analysis of Fig. I is applied to this modification, it will be seen that a circularly polarized wave will be radiated by the antenna. The plate 20 is preferably shaped substantially elliptically, so that the projection of the plates normal to the line 1 will be a circle.
Such a configuration will provide a sharp conical beam Plates and 33 are spaced 7 so I V the invention.
general shape of the reflector plates is preferably elliptical so that the projection of the plates will be a circle. If the analysis of Fig. 1 is applied to this modification, it will be seen that this configuration will radiate circularly polarized wave energy.
It is to be noted that the lower reflecting surfaces in 7 Figs. 4, 5, 6 and 7 are of a different configuration than the upper surfaces. This difierence is due to the half wave spacing between the reflecting plates which makes necessary the use of dissimilarly shaped plates if a true circle projection of the reflecting surfaces is desired.
Another modification of the invention is illustrated in Fig. 8. The antenna comprises a reflecting cone terminating line 1. The surface wave energy will be reflected as vertically polarized wave energy in a narrow vertical sector over 360 degrees of azimuth.
It should be noted that all spacings are measured in wave length of the guided wave energy. Usually the diflerence between free space wave length and wave length on the guide is small, an exception being the modification described below. In this case, the wave length on the antenna section is considerably smaller than the free space wave length. V I 1 Figure 9 shows another modification of the invention. Line 1 is connectedto a conductor 40 to which stubs 41 are joined. A terminating element 42 may be employed to cap the conductive line 40 so that the wave energy traveling from line 1 proceeds along section 40 as a traveling wave. Stubs 41 spiral about the section 40 to provide points of discontinuity from which the wave energy is radiated, such energybeing horizontally polarized. In the most general case, the, displacement in degrees wave length of two consecutive elements 41 along the line is equal to the displacement in degrees phase angle about the line. In the arrangement illustrated, these stubs are spaced along the line at degree intervals, i. e., a quarter wave length, and are displaced horizontally by 90 degrees phase angle about the line. More or fewer stubs may be employed so long as they are spaced according to the above described pattern. For example, if the phase angle between two consecutivestubs about the line is 50 degrees, the distance between the'stubs along the line is I a 50A Where is the wave length on section 40.. This antenna .will radiate energy omi-directionally in a narrow vertical i been particularly described and illustrated, it will be understood that various other modifications and improvements, may be made without departing from the spirit of Therefore, it is not desired that the invention be limited to the precise details set forth.
' What is claimed is:
1. A microwaveantenna system comprising. aplurality of reflecting surfaces and a surface wave transmission line, said surfaces being positioned around said line and being disposed at,an angle with said line, said surfaces .taken in combination being substantially elliptical and said surfaces being axially displaced from each other a total of one half wave length. V
2. A microwave antenna system for electromagnetic energy of a predetermined frequency comprising an elongated conductor having a surface conditioned to slightly reduce the phase velocity to concentrate the field of the energy near the conductor in a non-radiating ,mode,
7 launching means coupled to said conductor for producing between them. The supports for these plates have'bee'n omitted for purposes of clarity but manytake the'form a of the supports illustrated in Figs; 1, 4 or 5. Again the a field distribution which matches the field distribution on the conductor, directional antenna means positioned along said conductor at a point spaced from said launching means and ,illuminatedby said .field for converting said nonradiating mode to a radiating mode, and means for rotating said directional antenna about said conductor. 3. A microwave antenna system for electromagnetic energy of a predetermined frequency comprising an elongated conductor having a surface conditioned to slightly reduce the phase velocity to concentrate the field of the energy near the conductor in a non-radiating rnode, launching means coupled to said conductor for producing a field distribution which matches the field distribution on the conductor, directional antenna means positioned along said conductor at a point spaced from said launching means and illuminated by said field for converting said non-radiating mode to a radiating mode, said directional antenna being formed by a plurality of surfaces for reflecting electromagnetic wave energy, said surfaces positioned around said conductor and disposed at an angle to said conductor sdthat said electromagnetic energy is radiated by said surfaces at an angle to said conductor.
4. A system as defined in claim 3 which includes means for rotating said antenna about said line.
5. A microwave antenna system for electromagnetic energy of a predetermined frequency comprising an elongated conductor having a surface which slightly reduces the phase velocity of the energy to concentrate the field of the energy near the conductor in a non-radiating mode, launching means coupled to said conductor for producing a field distribution at said predetermined frequency which matches the field distribution on the conductor and radiating means having a plurality of reflecting surfaces positioned along said conductor and spaced from said launching means and illuminated by said concentrated field for converting said non-radiating mode into a radiating mode at said radiating means.
6. An antenna system as in claim 5 wherein said surfaces are positioned around said line and being disposed at an angle with said line, said surfaces being axially displaced from each other.
7. A system as defined in claim 6 wherein said angle is degrees.
8. A system as defined in claim 6 which includes means for rotating said reflecting surfaces about said line.
9. A microwave antenna system for electromagnetic energy of a predetermined frequency comprising an elongated conductor having a surface conditioned to slightly reduce the phase velocity to concentrate the field of the energy near the conductor in a non-radiating mode, launching means coupled to said conductor for producing a field distribution which matches the field distribution on the conductor, directional antenna rneans illuminated by said field for converting said non-radiating mode to a radiating mode said directional antenna comprising a plurality of reflecting plates mounted at a predetermined angle to said conductor, said plates being spaced along said conductor, said'spacing along the conductor being directly proportional to the radial displacement of the plates from one another around said conductor so that said spacing along the conductor will be substantially one half wavelength at radial displacement between any pair of plates.
References Cited in the file of this patent UNITED STATES PATENTS 1,931,980 Clavier Oct. 24, 1933 2,298,449 Bailey Oct. 13, 1942 2,438,795 Wheeler Mar. 30, 1948 2,542,844 Smith Feb. 20, 1951 2,575,058 King Nov. 13, 1951 2,588,610 Boothroyd et al Mar. 11, 1952 2,595,271 Kline May 6, 1952 2,595,912 Alford May 6, 1952 2,599,705 Erwin June 10, 1952 2,659,817 Cutler Nov. 17, 1953
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US259875A US2754513A (en) | 1951-12-04 | 1951-12-04 | Antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US259875A US2754513A (en) | 1951-12-04 | 1951-12-04 | Antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
US2754513A true US2754513A (en) | 1956-07-10 |
Family
ID=22986791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US259875A Expired - Lifetime US2754513A (en) | 1951-12-04 | 1951-12-04 | Antenna |
Country Status (1)
Country | Link |
---|---|
US (1) | US2754513A (en) |
Cited By (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4002058A1 (en) * | 1990-01-25 | 1991-08-01 | Telefunken Systemtechnik | Conical microwave range antenna - has reflector directing emission through cylinder dome for circular polar diagram |
US5422623A (en) * | 1990-10-04 | 1995-06-06 | Federal Signal Corporation | Programmable emergency signalling device and system |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9525210B2 (en) | 2014-10-21 | 2016-12-20 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9531427B2 (en) | 2014-11-20 | 2016-12-27 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9577307B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9755697B2 (en) | 2014-09-15 | 2017-09-05 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10396887B2 (en) | 2015-06-03 | 2019-08-27 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1931980A (en) * | 1931-12-16 | 1933-10-24 | Int Communications Lab Inc | Direction finding system with microrays |
US2298449A (en) * | 1941-11-08 | 1942-10-13 | Bell Telephone Labor Inc | Antenna |
US2438795A (en) * | 1943-12-13 | 1948-03-30 | Hazeltine Research Inc | Wave-guide system |
US2542844A (en) * | 1943-08-14 | 1951-02-20 | Bell Telephone Labor Inc | Microwave directive antenna |
US2575038A (en) * | 1945-07-19 | 1951-11-13 | Frank W Banka | Powered trimmer |
US2588610A (en) * | 1946-06-07 | 1952-03-11 | Philco Corp | Directional antenna system |
US2595271A (en) * | 1943-12-20 | 1952-05-06 | Kline Morris | Antenna lobe shifting device |
US2595912A (en) * | 1946-04-09 | 1952-05-06 | Us Sec War | Turbine rotated antenna with electromagnetic answer-back means |
US2599705A (en) * | 1948-06-16 | 1952-06-10 | Gen Motors Corp | Short wave antenna |
US2659817A (en) * | 1948-12-31 | 1953-11-17 | Bell Telephone Labor Inc | Translation of electromagnetic waves |
-
1951
- 1951-12-04 US US259875A patent/US2754513A/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1931980A (en) * | 1931-12-16 | 1933-10-24 | Int Communications Lab Inc | Direction finding system with microrays |
US2298449A (en) * | 1941-11-08 | 1942-10-13 | Bell Telephone Labor Inc | Antenna |
US2542844A (en) * | 1943-08-14 | 1951-02-20 | Bell Telephone Labor Inc | Microwave directive antenna |
US2438795A (en) * | 1943-12-13 | 1948-03-30 | Hazeltine Research Inc | Wave-guide system |
US2595271A (en) * | 1943-12-20 | 1952-05-06 | Kline Morris | Antenna lobe shifting device |
US2575038A (en) * | 1945-07-19 | 1951-11-13 | Frank W Banka | Powered trimmer |
US2595912A (en) * | 1946-04-09 | 1952-05-06 | Us Sec War | Turbine rotated antenna with electromagnetic answer-back means |
US2588610A (en) * | 1946-06-07 | 1952-03-11 | Philco Corp | Directional antenna system |
US2599705A (en) * | 1948-06-16 | 1952-06-10 | Gen Motors Corp | Short wave antenna |
US2659817A (en) * | 1948-12-31 | 1953-11-17 | Bell Telephone Labor Inc | Translation of electromagnetic waves |
Cited By (227)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4002058A1 (en) * | 1990-01-25 | 1991-08-01 | Telefunken Systemtechnik | Conical microwave range antenna - has reflector directing emission through cylinder dome for circular polar diagram |
US5422623A (en) * | 1990-10-04 | 1995-06-06 | Federal Signal Corporation | Programmable emergency signalling device and system |
US6100791A (en) * | 1990-10-04 | 2000-08-08 | Federal Signal Corporation | Programmable emergency signalling device and system |
US9699785B2 (en) | 2012-12-05 | 2017-07-04 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US9119127B1 (en) | 2012-12-05 | 2015-08-25 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US9788326B2 (en) | 2012-12-05 | 2017-10-10 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10194437B2 (en) | 2012-12-05 | 2019-01-29 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10091787B2 (en) | 2013-05-31 | 2018-10-02 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9930668B2 (en) | 2013-05-31 | 2018-03-27 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US10051630B2 (en) | 2013-05-31 | 2018-08-14 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9674711B2 (en) | 2013-11-06 | 2017-06-06 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US10098011B2 (en) | 2013-11-06 | 2018-10-09 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9882607B2 (en) | 2013-11-06 | 2018-01-30 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9042812B1 (en) | 2013-11-06 | 2015-05-26 | At&T Intellectual Property I, Lp | Surface-wave communications and methods thereof |
US9467870B2 (en) | 2013-11-06 | 2016-10-11 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9877209B2 (en) | 2013-11-06 | 2018-01-23 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9661505B2 (en) | 2013-11-06 | 2017-05-23 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9154966B2 (en) | 2013-11-06 | 2015-10-06 | At&T Intellectual Property I, Lp | Surface-wave communications and methods thereof |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9794003B2 (en) | 2013-12-10 | 2017-10-17 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9876584B2 (en) | 2013-12-10 | 2018-01-23 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9479266B2 (en) | 2013-12-10 | 2016-10-25 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US10096881B2 (en) | 2014-08-26 | 2018-10-09 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9755697B2 (en) | 2014-09-15 | 2017-09-05 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9998932B2 (en) | 2014-10-02 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9973416B2 (en) | 2014-10-02 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9866276B2 (en) | 2014-10-10 | 2018-01-09 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9705610B2 (en) | 2014-10-21 | 2017-07-11 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9871558B2 (en) | 2014-10-21 | 2018-01-16 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9876587B2 (en) | 2014-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9954286B2 (en) | 2014-10-21 | 2018-04-24 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9948355B2 (en) | 2014-10-21 | 2018-04-17 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9596001B2 (en) | 2014-10-21 | 2017-03-14 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9577307B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9571209B2 (en) | 2014-10-21 | 2017-02-14 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9912033B2 (en) | 2014-10-21 | 2018-03-06 | At&T Intellectual Property I, Lp | Guided wave coupler, coupling module and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9960808B2 (en) | 2014-10-21 | 2018-05-01 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9525210B2 (en) | 2014-10-21 | 2016-12-20 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9712350B2 (en) | 2014-11-20 | 2017-07-18 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9749083B2 (en) | 2014-11-20 | 2017-08-29 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9531427B2 (en) | 2014-11-20 | 2016-12-27 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9742521B2 (en) | 2014-11-20 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876571B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9831912B2 (en) | 2015-04-24 | 2017-11-28 | At&T Intellectual Property I, Lp | Directional coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9887447B2 (en) | 2015-05-14 | 2018-02-06 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10050697B2 (en) | 2015-06-03 | 2018-08-14 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9935703B2 (en) | 2015-06-03 | 2018-04-03 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10396887B2 (en) | 2015-06-03 | 2019-08-27 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US10797781B2 (en) | 2015-06-03 | 2020-10-06 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9912382B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9967002B2 (en) | 2015-06-03 | 2018-05-08 | At&T Intellectual I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10027398B2 (en) | 2015-06-11 | 2018-07-17 | At&T Intellectual Property I, Lp | Repeater and methods for use therewith |
US10142010B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9787412B2 (en) | 2015-06-25 | 2017-10-10 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9882657B2 (en) | 2015-06-25 | 2018-01-30 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US10069185B2 (en) | 2015-06-25 | 2018-09-04 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US10090601B2 (en) | 2015-06-25 | 2018-10-02 | At&T Intellectual Property I, L.P. | Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9947982B2 (en) | 2015-07-14 | 2018-04-17 | At&T Intellectual Property I, Lp | Dielectric transmission medium connector and methods for use therewith |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9929755B2 (en) | 2015-07-14 | 2018-03-27 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9806818B2 (en) | 2015-07-23 | 2017-10-31 | At&T Intellectual Property I, Lp | Node device, repeater and methods for use therewith |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US10074886B2 (en) | 2015-07-23 | 2018-09-11 | At&T Intellectual Property I, L.P. | Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9838078B2 (en) | 2015-07-31 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10225842B2 (en) | 2015-09-16 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method, device and storage medium for communications using a modulated signal and a reference signal |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10349418B2 (en) | 2015-09-16 | 2019-07-09 | At&T Intellectual Property I, L.P. | Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2754513A (en) | Antenna | |
US3231892A (en) | Antenna feed system simultaneously operable at two frequencies utilizing polarization independent frequency selective intermediate reflector | |
US3413637A (en) | Multifunction antenna having selective radiation patterns | |
US3573838A (en) | Broadband multimode horn antenna | |
US4899164A (en) | Slot coupled microstrip constrained lens | |
US2993205A (en) | Surface wave antenna array with radiators for coupling surface wave to free space wave | |
US3541559A (en) | Antenna for producing circular polarization over wide angles | |
US4931808A (en) | Embedded surface wave antenna | |
US2981949A (en) | Flush-mounted plural waveguide slot antenna | |
US2430568A (en) | Antenna system | |
US2908002A (en) | Electromagnetic reflector | |
US4125837A (en) | Dual notch fed electric microstrip dipole antennas | |
US3852762A (en) | Scanning lens antenna | |
US4398199A (en) | Circularly polarized microstrip line antenna | |
JPH0586682B2 (en) | ||
US3189907A (en) | Zone plate radio transmission system | |
US2677766A (en) | Scalloped limacon pattern antenna | |
US3348228A (en) | Circular dipole antenna array | |
US2790169A (en) | Antenna | |
US3419870A (en) | Dual-plane frequency-scanned antenna array | |
US2611869A (en) | Aerial system | |
US3218644A (en) | Frequency independent slot antenna | |
US2188649A (en) | Antenna | |
US3102265A (en) | New aerial system radiating several beams | |
US3938159A (en) | Dual frequency feed horn using notched fins for phase and amplitude control |