US2734579A - Production from bituminous sands - Google Patents
Production from bituminous sands Download PDFInfo
- Publication number
- US2734579A US2734579A US2734579DA US2734579A US 2734579 A US2734579 A US 2734579A US 2734579D A US2734579D A US 2734579DA US 2734579 A US2734579 A US 2734579A
- Authority
- US
- United States
- Prior art keywords
- combustion
- deposit
- zone
- temperature
- bituminous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title description 10
- 238000002485 combustion reaction Methods 0.000 description 38
- 239000007789 gas Substances 0.000 description 23
- 239000003921 oil Substances 0.000 description 17
- 238000002347 injection Methods 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- 239000010426 asphalt Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000004576 sand Substances 0.000 description 10
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 239000003208 petroleum Substances 0.000 description 5
- 239000011269 tar Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000011275 tar sand Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000364021 Tulsa Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2401—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
Definitions
- bituminous deposits such as tar sands
- bituminous deposits such as tar sands
- the methods proposed can be generally classified as either mining the deposit with subsequent treatment of the bituminous deposit in a mill or retort with water, solvents, heat, etc., to separate the recoverable petroleum from the sand, or solvent treatments to remove petroleum from the tar sand in place. Neither of these classes has proved commercially successful.
- oil can be recovered from a solid bituminous deposit by application of heat to the material in place, in Which a part of the deposit is volatilized and driven off, leaving a combustible residue.
- This combustible residue is oxidized or burned in place by an oxidizing gas driven into the deposit.
- the hot gaseous products of combustion are forced through the deposit, carrying with them at least a part of the volatilized constituents of the tar sands.
- the temperature at the zone of combustion in the bituminous body is regulated to lie in the range of approximately 400 F. to about 1,000 or 1,200 F.
- This liquid can be treated by ordinary refining methods to produce gasoline, kerosense, naphtha, lubricating oil fractions, etc., as is already well-known in the art.
- the combustion process completely consumes the last residuum from the bituminous deposit, leaving simply the noncombustible sand or the like.
- it is only a relatively minor part of the combustibles originally present in the tar sands, the least desirable heavy ends, which are consumed by the combustion process, and the major part of the oil, that is, the liquid components of the bitumen, present is transxported to the producing wells for recovery.
- injection and production wells are drilled into the deposit and cased in the usual manner.
- a gas compressor is connected to the input well and an attempt made to force gas between this well and the surrounding production wells. If it is impossible to secure a reasonable flow of air between these wells, the Hydrafrac process, as described in the patents given above, or equivalent, is employed.
- the compressed air which may or may not be enriched by addition of oxygen from a small oxygen plant, is forced into the injection well at pressures of the order of about 250 p. s. i. up to approximately 500 p. s. i., or higher.
- a heating source in the injection well at the level of the bituminous deposit; for example, a suitable downthe-hole heater may be run in the injection well.
- a suitable down-the-hole heater may be run in the injection well.
- Several types of such down-the-hole heaters have already been given in the .art. One is shown in U. S. Patent 1,457,479 Wolcott. This is simply an electrical heater which can be placed at a desired elevation in the well. If combustible gas is available, it may be forced into the Well together with the oxygen-containing gas, in which case the down-the-hole heater can be a burner at the bottom of the well furnished with a spark plug or other ignition means.
- a third possibility consists in combusting a solid fuel at the deposit in the well, for example, by mining from the more accessible parts of the bituminous deposit a supply of bituminous sand and crushing this sand to pass through, for example, a ten-mesh sieve. This material is then placed loosely in the bottom of the well and burned, for example, by temporary injection of heated air at a temperature of 500 F. to 1,000 F. This causescombustion of this loose deposit.
- Other suitable heaters are found in the following U. S. patents: 2,186,035 Niles, 2,3 62,680 Troupe, and 2,332,708 Freeman.
- the doWn-the-hole heater is temporarily employed in conjunction with the inflow of the oxygencontaining gas under pressure to heat the surface of the deposit adjacent the Well and an area around the well from approximately two feet to approximately ten feet in diameter, by the combined action of radiation, convection, and conduction.
- This combined heat-generating action heats this area up to a temperature somewhere between 400 F. and about l,000 F. Once this temperature level has been developed in this small area, combustion of bitumen occurs.
- the heater can then be Withdrawn, and continued injection of air thereafter will supply oxygen to the heated bituminous sand to maintain this combustion reaction.
- bitumen is liquefied in place, part of it is at least partially cracked and distilled, leaving a coke or heavy hydrocarbon residue on the natural. formation rock material.
- the air comes in contact with this coke residue, the coke is burned and additional heat is generated.
- the products of combustion are forced through the sand, driving the liquefied, cracked, and distilled hydrocarbons and water along in the permeable paths toward the producing wells.
- the liquid oil is produced from the adjacent producing wells in any conventional manner. Often the gaseous products of combustion are adequate to flow the oil; otherwise, conventional pumping units can be employed.
- the minimum temperature of this zone at which combustion normally can be maintained is of: the order of approximately 400 F. It is desirable to maintain the temperature higher than this value up to temperatures from 800 F. to 1,000 F. When the temperature rises substantially higher than these values', roughly above 1,200 F., combustion takes place too rapidly, the recoverable cracked products are minimized, the liquefaction occurs considerably ahead of the combustion zone, and, in general, the loss of valuable petroleum products in the combustion itself will become sufliciently great to make the process a good deal less economical. Control of the temperature within the reaction zone can be maintained in several ways.
- the increase in volume of oxygen-containing gas by application of higher injection gas pressure will increase this temperature;
- the higher temperature is maintained primarily by the fact that the time available for the loss of sensible heat to the formations adjacent and downstream from the combustion zone is minimized.
- the higher rate of injection and the increased supply of oxygen at the reaction zone by virtue of the higher pressures consumes additional oil in combustion above that required at lower rates and thereby generates more heat.
- it is possible to dilute the air with inart gas for example, by separating the inert gaseous products of combustion (principally oxides of nitrogen and carbon) from the produced hydrocarbons, and introducing it into the injection stream. This slows down the rate of heat generated and provides additional time for sensible heat loss to adjacent formations as well as to the formation itself in front beyond the combustion zone. Decreasing the injection gas pressure also decreases the combustion zone temperature.
- one of several tests which can be used to determine whether the air rate being used at a particular time is optimum consists in determining the gravity of the produced oil;- Greater air flow causes a higher combustion front temperature, greater cracking, and a higher gravity product. Accordingly, when the gravity of the resultant oil becomes above about 20 A. P. I., the rate of supplying the oxygen-containing gas should be decreased,.whereas if it drops much under 17 A. P. 1., this rate should be increased. It is also found that a simple analysis for the amount of unsaturated hydrocarbons present in the recovered oil can also be employed to'regulate the rate at which gas is injected. The greater the degree of unsaturation, the greater is the amount of air beingsupplied.
- Another means for adjusting the combustion Zone temperature involves the injection of water into a solid bituminous sand adjacent to but either above or below the zone being subjected to combustion drive. It is frequently found in such tar sand deposits that there are narrow impervious streaks of shale or the like interbedded with the bituminous deposit. These furnish barriers to vertical flow of gas and liquid productsin the combustion drive described, but do not stop the flow of heat. Typically, initially solid bitumen becomes less and less viscous as the temperature increases and, therefore, after a combustion front has been going for some time, it is often possible to inject water into an adjacent warmed zone of previously solid bitumen, and drive liquefied products from this adjacent zone into a well for production.
- the water flooding both aids in producing additional hydrocarbons from a previously solid bitumen bed, and also in temperature control ofthe combustion zone. It is found desirable to arrange the oxygen-containing gas injection wells as dual completion wells, so that through one conduit compressed air, for instance, can be injected into the combustion zone, while a water flood in the opposite direction from the flow of hot gas is forcing.
- a method for recovering oil from a solid deposit of bitumen in which at least two wells have been driven into said deposit and in which combustion of said bitumen heats said deposit and drives oil therefrom to production wells, said deposit being separated from an adjacent zone by an impervious barrier, the improvement involving maintaining the temperature in the region of combustion in said deposit within a predetermined range lying between approximately 400 F. and 1200 F. by measuring a physical characteristic of the fluids driven to said production wells indicative of said temperature, injecting water into said adjacent zone when said measurement indicates said temperature exceeds said range, and increasing the flow rate of said injected air when said measurement indicates said temperature is nearing the low end of said range.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Working-Up Tar And Pitch (AREA)
Description
PRODUCTION FROM BITUMINOUS SANDS Lloyd E. Elkin's, Tulsa, Okla., assignor to Stanolind Oil and Gas Company, Tulsa, Okla,, a corporation of Delaware N Drawing. Application June 28, 1952,
Serial No. 296,250
r 1 Claim. (Cl. 16611) This invention pertains to the art of recovering oil from a solid bituminous deposit, such as the Athabaska tar sands or the like.
Various methods have been proposed for recovery of petroleum from bituminous deposits, such as tar sands, in which the bituminous deposit is normally in a solid state intermixed with more or less sand or the like. The methods proposed can be generally classified as either mining the deposit with subsequent treatment of the bituminous deposit in a mill or retort with water, solvents, heat, etc., to separate the recoverable petroleum from the sand, or solvent treatments to remove petroleum from the tar sand in place. Neither of these classes has proved commercially successful.
I have found that oil can be recovered from a solid bituminous deposit by application of heat to the material in place, in Which a part of the deposit is volatilized and driven off, leaving a combustible residue. This combustible residue is oxidized or burned in place by an oxidizing gas driven into the deposit. The hot gaseous products of combustion are forced through the deposit, carrying with them at least a part of the volatilized constituents of the tar sands. Ordinarily, the temperature at the zone of combustion in the bituminous body is regulated to lie in the range of approximately 400 F. to about 1,000 or 1,200 F. Under these conditions, part of the heavier hydrocarbons present in the deposit will be cracked; therefore, the petroleum fractions which are driven by the hot gases to the producing wells will be of considerably higher A. P. I. gravity than were the original deposits. As a result, the oil reaching the production well or wells will be liquid and can be removed from the well by conventional pumping means. Additionally, the passage of the lighter petroleum fractions through the bituminous deposits, together with the local heating of these deposits, causes part of the heavier materials to be dissolved in the lighter fraction. This, therefore, results in a recovery of the major part of the bitumen present in the deposit in the form of a liquid. This liquid can be treated by ordinary refining methods to produce gasoline, kerosense, naphtha, lubricating oil fractions, etc., as is already well-known in the art. The combustion process completely consumes the last residuum from the bituminous deposit, leaving simply the noncombustible sand or the like. As will be shown subsequently, it is only a relatively minor part of the combustibles originally present in the tar sands, the least desirable heavy ends, which are consumed by the combustion process, and the major part of the oil, that is, the liquid components of the bitumen, present is transxported to the producing wells for recovery.
Frequently, it will be found that the permeability of the bituminous deposit is too low initially to permit forcing a gas between an input well and a producing well. In such cases, it is necessary to isolate a zone in the input well by means of packers or the like, as is now wellknown, and carry out in the confined zone a fracturing process; for example, by using the techniquesoutlined in U. S. Patents Nos. 2,596,843 Farris and 2,596,844
i i i j l 'nited A States Patent 0 Clark. By use of this process, it is possible to form a fracture or series of fractures between injection and production wells located a considerable distance apart, and, accordingly, one can develop initial permeability sufficient for gas to flow between these wells. In such an instance it may be necessary to maintain air injection pressures at high enough levels to keep the fracture open until it becomes thoroughly heated up with hot oil, thus preventing solidification and plugging of the fracture.
In carrying out the process, first, injection and production wells are drilled into the deposit and cased in the usual manner. After the wells are completed, a gas compressor is connected to the input well and an attempt made to force gas between this well and the surrounding production wells. If it is impossible to secure a reasonable flow of air between these wells, the Hydrafrac process, as described in the patents given above, or equivalent, is employed. In any case, after gas permeability has been secured, the compressed air, which may or may not be enriched by addition of oxygen from a small oxygen plant, is forced into the injection well at pressures of the order of about 250 p. s. i. up to approximately 500 p. s. i., or higher.
Before routine injection of the air, it is desirable to place a heating source in the injection well at the level of the bituminous deposit; for example, a suitable downthe-hole heater may be run in the injection well. Several types of such down-the-hole heaters have already been given in the .art. One is shown in U. S. Patent 1,457,479 Wolcott. This is simply an electrical heater which can be placed at a desired elevation in the well. If combustible gas is available, it may be forced into the Well together with the oxygen-containing gas, in which case the down-the-hole heater can be a burner at the bottom of the well furnished with a spark plug or other ignition means. A third possibility consists in combusting a solid fuel at the deposit in the well, for example, by mining from the more accessible parts of the bituminous deposit a supply of bituminous sand and crushing this sand to pass through, for example, a ten-mesh sieve. This material is then placed loosely in the bottom of the well and burned, for example, by temporary injection of heated air at a temperature of 500 F. to 1,000 F. This causescombustion of this loose deposit. Other suitable heaters are found in the following U. S. patents: 2,186,035 Niles, 2,3 62,680 Troupe, and 2,332,708 Freeman.
In all cases, the doWn-the-hole heater is temporarily employed in conjunction with the inflow of the oxygencontaining gas under pressure to heat the surface of the deposit adjacent the Well and an area around the well from approximately two feet to approximately ten feet in diameter, by the combined action of radiation, convection, and conduction. This combined heat-generating action heats this area up to a temperature somewhere between 400 F. and about l,000 F. Once this temperature level has been developed in this small area, combustion of bitumen occurs. The heater can then be Withdrawn, and continued injection of air thereafter will supply oxygen to the heated bituminous sand to maintain this combustion reaction. During this reaction, the bitumen is liquefied in place, part of it is at least partially cracked and distilled, leaving a coke or heavy hydrocarbon residue on the natural. formation rock material. As the air comes in contact with this coke residue, the coke is burned and additional heat is generated. The products of combustion are forced through the sand, driving the liquefied, cracked, and distilled hydrocarbons and water along in the permeable paths toward the producing wells.
. The entire contacted sand zone behind the combustion front is completely cleaned of all hydrocarbon and water content. The heat generated in the process is dissipated partially by the cracking process, but largely by the conductance of the heat away from the production zone. The heat flowing from the combustion zone to the producing wells (transferred by the hot gaseous products of com bustion and the warmed liquid oil) tends to increasecontinuously the permeability to fluid now through the deposit by the gradual liquefaction and removal of solid bitumen.
The liquid oil is produced from the adjacent producing wells in any conventional manner. Often the gaseous products of combustion are adequate to flow the oil; otherwise, conventional pumping units can be employed.
It is important to control the temperature within the reaction zone. I have found that the minimum temperature of this zone at which combustion normally can be maintained is of: the order of approximately 400 F. It is desirable to maintain the temperature higher than this value up to temperatures from 800 F. to 1,000 F. When the temperature rises substantially higher than these values', roughly above 1,200 F., combustion takes place too rapidly, the recoverable cracked products are minimized, the liquefaction occurs considerably ahead of the combustion zone, and, in general, the loss of valuable petroleum products in the combustion itself will become sufliciently great to make the process a good deal less economical. Control of the temperature within the reaction zone can be maintained in several ways. The increase in volume of oxygen-containing gas by application of higher injection gas pressure will increase this temperature; The higher temperature is maintained primarily by the fact that the time available for the loss of sensible heat to the formations adjacent and downstream from the combustion zone is minimized. in addition, the higher rate of injection and the increased supply of oxygen at the reaction zone by virtue of the higher pressures consumes additional oil in combustion above that required at lower rates and thereby generates more heat. To keep the temperature from becoming too high, it is possible to dilute the air with inart gas, for example, by separating the inert gaseous products of combustion (principally oxides of nitrogen and carbon) from the produced hydrocarbons, and introducing it into the injection stream. This slows down the rate of heat generated and provides additional time for sensible heat loss to adjacent formations as well as to the formation itself in front beyond the combustion zone. Decreasing the injection gas pressure also decreases the combustion zone temperature.
Ordinarily, it will be found that when air is used as the oxygen-containing gas, it should be furnished to the formation at a rate which is initially low and which rises roughly linearly with time. Approximately 200 to about 1,000 cubic feet of air per hour, for example 500 cubic feet per hour, should be supplied to the burning zone per square foot frontage of this zone. Thus, for example, if the bituminous deposit is feet thick and the burning zone is at a diameter of approximately 32 feet, the combustion zone will have a circumference of roughly 100 feet, an area of approximately 1,000 square feet, and should be supplied compressed air at the rate of approximately 50,000 standard cubic feet per hour. It will be found that gas rates near the upper end of this range, i. e., around 1,000 standard cubic feet per hour per square foot, will produce temperatures in the average bituminous deposit of around 1,000 P. to 1,200 F., which is about as high as the combustion temperature should be carried without excessive losses. When the median rate of 500 standard cubic feet per square foot per hour is employed using Athabaska tar sand, I found a recoveiy of approximately 70 to 90 per cent ofthe hydrocarbons in the deposit, having an everage gravity of 19 A. P. 1., whereas the original bitumen had a gravity ranging from 6 to 7 A. P. I. This particular sample of the tar sands had a content of approximately 90 per cent bitumen and 10 per cent sand by weight. it is apparent from this that there was a conof the oil.
As a matter of fact, one of several tests which can be used to determine whether the air rate being used at a particular time is optimum consists in determining the gravity of the produced oil;- Greater air flow causes a higher combustion front temperature, greater cracking, and a higher gravity product. Accordingly, when the gravity of the resultant oil becomes above about 20 A. P. I., the rate of supplying the oxygen-containing gas should be decreased,.whereas if it drops much under 17 A. P. 1., this rate should be increased. It is also found that a simple analysis for the amount of unsaturated hydrocarbons present in the recovered oil can also be employed to'regulate the rate at which gas is injected. The greater the degree of unsaturation, the greater is the amount of air beingsupplied. Accordingly, by such a test, it is possible todetermiue when the rate of air is insufficient or excessive. Other tests which can be employed are determining the gas/ oil ratio of the recovered hydrocarbons, which ratio increases with increased air flow to the combustion front, and measuring the temperature somewhere near the combustion front. As already stated, this temperature should roughly lie between 400 F. and 1,200" F., for example, 1,000 F. It is possible to drill a small hole or the like through the deposit somewhere near the front and measure the formation temperature directly as the combustion front passes. Or, if the burning is progressively outward past a first series of wells and then to a second series of Wells, the deposit temperature as the combustion front passes the first series of wells can be used as an indication of the oxygen rate thereafter. Modifications of these methods of measurement will be apparent to those skilled in this art.
Another means for adjusting the combustion Zone temperature involves the injection of water into a solid bituminous sand adjacent to but either above or below the zone being subjected to combustion drive. It is frequently found in such tar sand deposits that there are narrow impervious streaks of shale or the like interbedded with the bituminous deposit. These furnish barriers to vertical flow of gas and liquid productsin the combustion drive described, but do not stop the flow of heat. Typically, initially solid bitumen becomes less and less viscous as the temperature increases and, therefore, after a combustion front has been going for some time, it is often possible to inject water into an adjacent warmed zone of previously solid bitumen, and drive liquefied products from this adjacent zone into a well for production. For example, if the ten-foot zone previously discussed were being subjected to combustion, and if heat loss from that zone elevates the temperatures" on adjacent zones separated from the combustion zone by an impervious shale barrier up to, say, 200 to 300 F.,. these latter zones can be 'very satisfactorily water flooded to produce increased amounts of hydrocarbons. Frequently, relatively thin zones in a thick tar sand region are separated by shale beds thin but relatively impervious. By the water flooding technique, particularly if the flood water is heated nearly to its boiling point before injection, the zones separated by shale stringers from the zone in which combustion takes place can be depleted of their bitumen content. The water flooding both aids in producing additional hydrocarbons from a previously solid bitumen bed, and also in temperature control ofthe combustion zone. It is found desirable to arrange the oxygen-containing gas injection wells as dual completion wells, so that through one conduit compressed air, for instance, can be injected into the combustion zone, while a water flood in the opposite direction from the flow of hot gas is forcing.-
can be carried out without departing from the spirit of this invention, which is best defined by the scope of the appended claim.
I claim:
In a method for recovering oil from a solid deposit of bitumen in which at least two wells have been driven into said deposit and in which combustion of said bitumen heats said deposit and drives oil therefrom to production wells, said deposit being separated from an adjacent zone by an impervious barrier, the improvement involving maintaining the temperature in the region of combustion in said deposit within a predetermined range lying between approximately 400 F. and 1200 F. by measuring a physical characteristic of the fluids driven to said production wells indicative of said temperature, injecting water into said adjacent zone when said measurement indicates said temperature exceeds said range, and increasing the flow rate of said injected air when said measurement indicates said temperature is nearing the low end of said range.
References Cited in the file of this patent UNITED STATES PATENTS
Publications (1)
Publication Number | Publication Date |
---|---|
US2734579A true US2734579A (en) | 1956-02-14 |
Family
ID=3444063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US2734579D Expired - Lifetime US2734579A (en) | Production from bituminous sands |
Country Status (1)
Country | Link |
---|---|
US (1) | US2734579A (en) |
Cited By (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2803305A (en) * | 1953-05-14 | 1957-08-20 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2839141A (en) * | 1956-01-30 | 1958-06-17 | Worthington Corp | Method for oil recovery with "in situ" combustion |
US2859818A (en) * | 1956-08-20 | 1958-11-11 | Pan American Petroleum Corp | Method of recovering petroleum |
US2914309A (en) * | 1953-05-25 | 1959-11-24 | Svenska Skifferolje Ab | Oil and gas recovery from tar sands |
US2917296A (en) * | 1957-03-08 | 1959-12-15 | Phillips Petroleum Co | Recovery of hydrocarbon from oil shale adjoining a permeable oilbearing stratum |
US2939688A (en) * | 1955-10-05 | 1960-06-07 | Sinclair Oil & Gas Company | Opening fissures in low-permeability strata |
US2994376A (en) * | 1957-12-27 | 1961-08-01 | Phillips Petroleum Co | In situ combustion process |
US2994375A (en) * | 1957-12-23 | 1961-08-01 | Phillips Petroleum Co | Recovery of hydrocarbons by in situ combustion |
US3000441A (en) * | 1958-07-18 | 1961-09-19 | Texaco Inc | In situ combustion |
US3004594A (en) * | 1956-11-19 | 1961-10-17 | Phillips Petroleum Co | Process for producing oil |
US3010513A (en) * | 1958-06-12 | 1961-11-28 | Phillips Petroleum Co | Initiation of in situ combustion in carbonaceous stratum |
US3013609A (en) * | 1958-06-11 | 1961-12-19 | Texaco Inc | Method for producing hydrocarbons in an in situ combustion operation |
US3016953A (en) * | 1958-06-23 | 1962-01-16 | Phillips Petroleum Co | Prevention of h2o invasion of in situ combustion zones |
US3032103A (en) * | 1958-08-11 | 1962-05-01 | Phillips Petroleum Co | Increasing fluid flow thru an injection borehole |
US3044543A (en) * | 1956-10-25 | 1962-07-17 | Socony Mobil Oil Co Inc | Subterranean recovery process by combustion |
US3048221A (en) * | 1958-05-12 | 1962-08-07 | Phillips Petroleum Co | Hydrocarbon recovery by thermal drive |
US3050116A (en) * | 1958-05-26 | 1962-08-21 | Phillips Petroleum Co | Multiple zone production by in situ combustion |
US3054448A (en) * | 1958-04-17 | 1962-09-18 | Continental Oil Co | Counterflow in situ combustion process |
US3091292A (en) * | 1959-02-12 | 1963-05-28 | Texaco Inc | Recovering hydrocarbons from subsurface formations |
US3116792A (en) * | 1959-07-27 | 1964-01-07 | Phillips Petroleum Co | In situ combustion process |
US3126955A (en) * | 1964-03-31 | Oil recovery process | ||
US3132692A (en) * | 1959-07-27 | 1964-05-12 | Phillips Petroleum Co | Use of formation heat from in situ combustion |
US3145772A (en) * | 1962-09-13 | 1964-08-25 | Gulf Research Development Co | Temperature controlled in-situ combustion process |
US3159215A (en) * | 1958-09-23 | 1964-12-01 | California Research Corp | Assisted petroleum recovery by selective combustion in multi-bedded reservoirs |
US3167120A (en) * | 1961-06-15 | 1965-01-26 | Phillips Petroleum Co | Recovery of crude petroleum from plural strata by hot fluid drive |
US3180413A (en) * | 1962-12-31 | 1965-04-27 | Jersey Prod Res Co | Cross flow thermal oil recovery process |
US3208514A (en) * | 1962-10-31 | 1965-09-28 | Continental Oil Co | Recovery of hydrocarbons by in-situ hydrogenation |
US3209825A (en) * | 1962-02-14 | 1965-10-05 | Continental Oil Co | Low temperature in-situ combustion |
US3228471A (en) * | 1958-06-11 | 1966-01-11 | Texaco Inc | Method for producing hydrocarbons in an in situ combustion operation |
US3240270A (en) * | 1958-05-02 | 1966-03-15 | Phillips Petroleum Co | Recovery of hydrocarbons by in situ combustion |
US3259185A (en) * | 1958-10-27 | 1966-07-05 | Mobil Oil Corp | Method of prolonging the usefulness of production wells in thermal-recovery procedures |
US3360044A (en) * | 1963-03-21 | 1967-12-26 | Deutsche Erdoel Ag | Process and apparatus for the recovery of liquid bitumen from underground deposits |
US3372750A (en) * | 1965-11-19 | 1968-03-12 | Pan American Petroleum Corp | Recovery of heavy oil by steam injection |
US3421583A (en) * | 1967-08-30 | 1969-01-14 | Mobil Oil Corp | Recovering oil by cyclic steam injection combined with hot water drive |
US3599714A (en) * | 1969-09-08 | 1971-08-17 | Roger L Messman | Method of recovering hydrocarbons by in situ combustion |
US3999606A (en) * | 1975-10-06 | 1976-12-28 | Cities Service Company | Oil recovery rate by throttling production wells during combustion drive |
US4068715A (en) * | 1975-10-08 | 1978-01-17 | Texaco Inc. | Method for recovering viscous petroleum |
US4271904A (en) * | 1978-07-17 | 1981-06-09 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
US4323120A (en) * | 1978-07-17 | 1982-04-06 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
US4323121A (en) * | 1978-07-17 | 1982-04-06 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
US4343360A (en) * | 1978-07-17 | 1982-08-10 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
US4343361A (en) * | 1978-07-17 | 1982-08-10 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
WO2001081239A2 (en) * | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a hydrocarbon containing formation |
US20030080604A1 (en) * | 2001-04-24 | 2003-05-01 | Vinegar Harold J. | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20030079877A1 (en) * | 2001-04-24 | 2003-05-01 | Wellington Scott Lee | In situ thermal processing of a relatively impermeable formation in a reducing environment |
US20030098149A1 (en) * | 2001-04-24 | 2003-05-29 | Wellington Scott Lee | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US20030155111A1 (en) * | 2001-04-24 | 2003-08-21 | Shell Oil Co | In situ thermal processing of a tar sands formation |
US20030173085A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Upgrading and mining of coal |
US20030173072A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US20030173081A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | In situ thermal processing of an oil reservoir formation |
US20030173082A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | In situ thermal processing of a heavy oil diatomite formation |
US20030178191A1 (en) * | 2000-04-24 | 2003-09-25 | Maher Kevin Albert | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US20030192693A1 (en) * | 2001-10-24 | 2003-10-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US20040140095A1 (en) * | 2002-10-24 | 2004-07-22 | Vinegar Harold J. | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US20050269093A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Variable frequency temperature limited heaters |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US20070045265A1 (en) * | 2005-04-22 | 2007-03-01 | Mckinzie Billy J Ii | Low temperature barriers with heat interceptor wells for in situ processes |
US20070095537A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US20070108201A1 (en) * | 2005-04-22 | 2007-05-17 | Vinegar Harold J | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration |
US20080017380A1 (en) * | 2006-04-21 | 2008-01-24 | Vinegar Harold J | Non-ferromagnetic overburden casing |
US20080128134A1 (en) * | 2006-10-20 | 2008-06-05 | Ramesh Raju Mudunuri | Producing drive fluid in situ in tar sands formations |
US20090071652A1 (en) * | 2007-04-20 | 2009-03-19 | Vinegar Harold J | In situ heat treatment from multiple layers of a tar sands formation |
US20090189617A1 (en) * | 2007-10-19 | 2009-07-30 | David Burns | Continuous subsurface heater temperature measurement |
US20090260824A1 (en) * | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20100089586A1 (en) * | 2008-10-13 | 2010-04-15 | John Andrew Stanecki | Movable heaters for treating subsurface hydrocarbon containing formations |
US20100258290A1 (en) * | 2009-04-10 | 2010-10-14 | Ronald Marshall Bass | Non-conducting heater casings |
US20120037363A1 (en) * | 2007-05-10 | 2012-02-16 | Shell Oil Company | Systems and methods for producing oil and/or gas |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1237139A (en) * | 1917-08-14 | Method of and apparatus for extracting oil from subterranean strata | ||
US1457479A (en) * | 1920-01-12 | 1923-06-05 | Edson R Wolcott | Method of increasing the yield of oil wells |
US2382471A (en) * | 1941-03-03 | 1945-08-14 | Phillips Petroleum Co | Method of recovering hydrocarbons |
US2390770A (en) * | 1942-10-10 | 1945-12-11 | Sun Oil Co | Method of producing petroleum |
US2481051A (en) * | 1945-12-15 | 1949-09-06 | Texaco Development Corp | Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations |
US2584605A (en) * | 1948-04-14 | 1952-02-05 | Edmund S Merriam | Thermal drive method for recovery of oil |
US2584606A (en) * | 1948-07-02 | 1952-02-05 | Edmund S Merriam | Thermal drive method for recovery of oil |
US2642943A (en) * | 1949-05-20 | 1953-06-23 | Sinclair Oil & Gas Co | Oil recovery process |
-
0
- US US2734579D patent/US2734579A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1237139A (en) * | 1917-08-14 | Method of and apparatus for extracting oil from subterranean strata | ||
US1457479A (en) * | 1920-01-12 | 1923-06-05 | Edson R Wolcott | Method of increasing the yield of oil wells |
US2382471A (en) * | 1941-03-03 | 1945-08-14 | Phillips Petroleum Co | Method of recovering hydrocarbons |
US2390770A (en) * | 1942-10-10 | 1945-12-11 | Sun Oil Co | Method of producing petroleum |
US2481051A (en) * | 1945-12-15 | 1949-09-06 | Texaco Development Corp | Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations |
US2584605A (en) * | 1948-04-14 | 1952-02-05 | Edmund S Merriam | Thermal drive method for recovery of oil |
US2584606A (en) * | 1948-07-02 | 1952-02-05 | Edmund S Merriam | Thermal drive method for recovery of oil |
US2642943A (en) * | 1949-05-20 | 1953-06-23 | Sinclair Oil & Gas Co | Oil recovery process |
Cited By (497)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3126955A (en) * | 1964-03-31 | Oil recovery process | ||
US2803305A (en) * | 1953-05-14 | 1957-08-20 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2914309A (en) * | 1953-05-25 | 1959-11-24 | Svenska Skifferolje Ab | Oil and gas recovery from tar sands |
US2939688A (en) * | 1955-10-05 | 1960-06-07 | Sinclair Oil & Gas Company | Opening fissures in low-permeability strata |
US2839141A (en) * | 1956-01-30 | 1958-06-17 | Worthington Corp | Method for oil recovery with "in situ" combustion |
US2859818A (en) * | 1956-08-20 | 1958-11-11 | Pan American Petroleum Corp | Method of recovering petroleum |
US3044543A (en) * | 1956-10-25 | 1962-07-17 | Socony Mobil Oil Co Inc | Subterranean recovery process by combustion |
US3004594A (en) * | 1956-11-19 | 1961-10-17 | Phillips Petroleum Co | Process for producing oil |
US2917296A (en) * | 1957-03-08 | 1959-12-15 | Phillips Petroleum Co | Recovery of hydrocarbon from oil shale adjoining a permeable oilbearing stratum |
US2994375A (en) * | 1957-12-23 | 1961-08-01 | Phillips Petroleum Co | Recovery of hydrocarbons by in situ combustion |
US2994376A (en) * | 1957-12-27 | 1961-08-01 | Phillips Petroleum Co | In situ combustion process |
US3054448A (en) * | 1958-04-17 | 1962-09-18 | Continental Oil Co | Counterflow in situ combustion process |
US3240270A (en) * | 1958-05-02 | 1966-03-15 | Phillips Petroleum Co | Recovery of hydrocarbons by in situ combustion |
US3048221A (en) * | 1958-05-12 | 1962-08-07 | Phillips Petroleum Co | Hydrocarbon recovery by thermal drive |
US3050116A (en) * | 1958-05-26 | 1962-08-21 | Phillips Petroleum Co | Multiple zone production by in situ combustion |
US3228471A (en) * | 1958-06-11 | 1966-01-11 | Texaco Inc | Method for producing hydrocarbons in an in situ combustion operation |
US3013609A (en) * | 1958-06-11 | 1961-12-19 | Texaco Inc | Method for producing hydrocarbons in an in situ combustion operation |
US3010513A (en) * | 1958-06-12 | 1961-11-28 | Phillips Petroleum Co | Initiation of in situ combustion in carbonaceous stratum |
US3016953A (en) * | 1958-06-23 | 1962-01-16 | Phillips Petroleum Co | Prevention of h2o invasion of in situ combustion zones |
US3000441A (en) * | 1958-07-18 | 1961-09-19 | Texaco Inc | In situ combustion |
US3032103A (en) * | 1958-08-11 | 1962-05-01 | Phillips Petroleum Co | Increasing fluid flow thru an injection borehole |
US3159215A (en) * | 1958-09-23 | 1964-12-01 | California Research Corp | Assisted petroleum recovery by selective combustion in multi-bedded reservoirs |
US3259185A (en) * | 1958-10-27 | 1966-07-05 | Mobil Oil Corp | Method of prolonging the usefulness of production wells in thermal-recovery procedures |
US3091292A (en) * | 1959-02-12 | 1963-05-28 | Texaco Inc | Recovering hydrocarbons from subsurface formations |
US3116792A (en) * | 1959-07-27 | 1964-01-07 | Phillips Petroleum Co | In situ combustion process |
US3132692A (en) * | 1959-07-27 | 1964-05-12 | Phillips Petroleum Co | Use of formation heat from in situ combustion |
US3167120A (en) * | 1961-06-15 | 1965-01-26 | Phillips Petroleum Co | Recovery of crude petroleum from plural strata by hot fluid drive |
US3209825A (en) * | 1962-02-14 | 1965-10-05 | Continental Oil Co | Low temperature in-situ combustion |
US3145772A (en) * | 1962-09-13 | 1964-08-25 | Gulf Research Development Co | Temperature controlled in-situ combustion process |
US3208514A (en) * | 1962-10-31 | 1965-09-28 | Continental Oil Co | Recovery of hydrocarbons by in-situ hydrogenation |
US3180413A (en) * | 1962-12-31 | 1965-04-27 | Jersey Prod Res Co | Cross flow thermal oil recovery process |
US3360044A (en) * | 1963-03-21 | 1967-12-26 | Deutsche Erdoel Ag | Process and apparatus for the recovery of liquid bitumen from underground deposits |
US3372750A (en) * | 1965-11-19 | 1968-03-12 | Pan American Petroleum Corp | Recovery of heavy oil by steam injection |
US3421583A (en) * | 1967-08-30 | 1969-01-14 | Mobil Oil Corp | Recovering oil by cyclic steam injection combined with hot water drive |
US3599714A (en) * | 1969-09-08 | 1971-08-17 | Roger L Messman | Method of recovering hydrocarbons by in situ combustion |
US3999606A (en) * | 1975-10-06 | 1976-12-28 | Cities Service Company | Oil recovery rate by throttling production wells during combustion drive |
US4068715A (en) * | 1975-10-08 | 1978-01-17 | Texaco Inc. | Method for recovering viscous petroleum |
US4271904A (en) * | 1978-07-17 | 1981-06-09 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
US4323120A (en) * | 1978-07-17 | 1982-04-06 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
US4323121A (en) * | 1978-07-17 | 1982-04-06 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
US4343360A (en) * | 1978-07-17 | 1982-08-10 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
US4343361A (en) * | 1978-07-17 | 1982-08-10 | Standard Oil Company (Indiana) | Method for controlling underground combustion |
US6997255B2 (en) | 2000-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a reducing environment |
US6877554B2 (en) | 2000-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control |
US20020040778A1 (en) * | 2000-04-24 | 2002-04-11 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content |
US20020049360A1 (en) * | 2000-04-24 | 2002-04-25 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a mixture including ammonia |
US20020046883A1 (en) * | 2000-04-24 | 2002-04-25 | Wellington Scott Lee | In situ thermal processing of a coal formation using pressure and/or temperature control |
WO2001081239A3 (en) * | 2000-04-24 | 2002-05-23 | Shell Oil Co | In situ recovery from a hydrocarbon containing formation |
US20020076212A1 (en) * | 2000-04-24 | 2002-06-20 | Etuan Zhang | In situ thermal processing of a hydrocarbon containing formation producing a mixture with oxygenated hydrocarbons |
US20020132862A1 (en) * | 2000-04-24 | 2002-09-19 | Vinegar Harold J. | Production of synthesis gas from a coal formation |
GB2379469A (en) * | 2000-04-24 | 2003-03-12 | Shell Int Research | In situ recovery from a hydrocarbon containing formation |
US20090101346A1 (en) * | 2000-04-24 | 2009-04-23 | Shell Oil Company, Inc. | In situ recovery from a hydrocarbon containing formation |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20110088904A1 (en) * | 2000-04-24 | 2011-04-21 | De Rouffignac Eric Pierre | In situ recovery from a hydrocarbon containing formation |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
WO2001081239A2 (en) * | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US7096941B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer |
US7086468B2 (en) | 2000-04-24 | 2006-08-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US7036583B2 (en) | 2000-04-24 | 2006-05-02 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6591906B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content |
US6591907B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a coal formation with a selected vitrinite reflectance |
US7017661B2 (en) | 2000-04-24 | 2006-03-28 | Shell Oil Company | Production of synthesis gas from a coal formation |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US6994168B2 (en) | 2000-04-24 | 2006-02-07 | Scott Lee Wellington | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
US6994160B2 (en) | 2000-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range |
US6994161B2 (en) | 2000-04-24 | 2006-02-07 | Kevin Albert Maher | In situ thermal processing of a coal formation with a selected moisture content |
US6991031B2 (en) | 2000-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products |
US6973967B2 (en) | 2000-04-24 | 2005-12-13 | Shell Oil Company | Situ thermal processing of a coal formation using pressure and/or temperature control |
US6966372B2 (en) | 2000-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids |
US6959761B2 (en) | 2000-04-24 | 2005-11-01 | Shell Oil Company | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US6953087B2 (en) | 2000-04-24 | 2005-10-11 | Shell Oil Company | Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation |
US6948563B2 (en) | 2000-04-24 | 2005-09-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content |
US6607033B2 (en) | 2000-04-24 | 2003-08-19 | Shell Oil Company | In Situ thermal processing of a coal formation to produce a condensate |
US6923258B2 (en) | 2000-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6609570B2 (en) | 2000-04-24 | 2003-08-26 | Shell Oil Company | In situ thermal processing of a coal formation and ammonia production |
US6913078B2 (en) | 2000-04-24 | 2005-07-05 | Shell Oil Company | In Situ thermal processing of hydrocarbons within a relatively impermeable formation |
US6910536B2 (en) * | 2000-04-24 | 2005-06-28 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US6902004B2 (en) * | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a movable heating element |
US6902003B2 (en) | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content |
US6896053B2 (en) | 2000-04-24 | 2005-05-24 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources |
US6889769B2 (en) | 2000-04-24 | 2005-05-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected moisture content |
US6880635B2 (en) | 2000-04-24 | 2005-04-19 | Shell Oil Company | In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio |
US20030178191A1 (en) * | 2000-04-24 | 2003-09-25 | Maher Kevin Albert | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US20020027001A1 (en) * | 2000-04-24 | 2002-03-07 | Wellington Scott L. | In situ thermal processing of a coal formation to produce a selected gas mixture |
US6871707B2 (en) | 2000-04-24 | 2005-03-29 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration |
US6866097B2 (en) | 2000-04-24 | 2005-03-15 | Shell Oil Company | In situ thermal processing of a coal formation to increase a permeability/porosity of the formation |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
GB2379469B (en) * | 2000-04-24 | 2004-09-29 | Shell Int Research | In situ recovery from a hydrocarbon containing formation |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6769485B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US6702016B2 (en) | 2000-04-24 | 2004-03-09 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6712137B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715547B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6719047B2 (en) | 2000-04-24 | 2004-04-13 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6722430B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6725928B2 (en) * | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation using a distributed combustor |
US6725921B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6729395B2 (en) * | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US6729396B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6732795B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US6732794B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6745837B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6752210B2 (en) | 2000-04-24 | 2004-06-22 | Shell Oil Company | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US6758268B2 (en) | 2000-04-24 | 2004-07-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US6761216B2 (en) | 2000-04-24 | 2004-07-13 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US20030131993A1 (en) * | 2001-04-24 | 2003-07-17 | Etuan Zhang | In situ thermal processing of an oil shale formation with a selected property |
US20030131996A1 (en) * | 2001-04-24 | 2003-07-17 | Vinegar Harold J. | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US20080314593A1 (en) * | 2001-04-24 | 2008-12-25 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US20030080604A1 (en) * | 2001-04-24 | 2003-05-01 | Vinegar Harold J. | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US20030079877A1 (en) * | 2001-04-24 | 2003-05-01 | Wellington Scott Lee | In situ thermal processing of a relatively impermeable formation in a reducing environment |
US20100270015A1 (en) * | 2001-04-24 | 2010-10-28 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US20030098149A1 (en) * | 2001-04-24 | 2003-05-29 | Wellington Scott Lee | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US20030098605A1 (en) * | 2001-04-24 | 2003-05-29 | Vinegar Harold J. | In situ thermal recovery from a relatively permeable formation |
US7225866B2 (en) | 2001-04-24 | 2007-06-05 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US20040211554A1 (en) * | 2001-04-24 | 2004-10-28 | Vinegar Harold J. | Heat sources with conductive material for in situ thermal processing of an oil shale formation |
US20030100451A1 (en) * | 2001-04-24 | 2003-05-29 | Messier Margaret Ann | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US20040211557A1 (en) * | 2001-04-24 | 2004-10-28 | Cole Anthony Thomas | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US20030102126A1 (en) * | 2001-04-24 | 2003-06-05 | Sumnu-Dindoruk Meliha Deniz | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US20030102125A1 (en) * | 2001-04-24 | 2003-06-05 | Wellington Scott Lee | In situ thermal processing of a relatively permeable formation in a reducing environment |
US20140305640A1 (en) * | 2001-04-24 | 2014-10-16 | Shell Oil Company | In situ thermal processing of an oil shale formation using conductive heating |
US20060213657A1 (en) * | 2001-04-24 | 2006-09-28 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US20030102130A1 (en) * | 2001-04-24 | 2003-06-05 | Vinegar Harold J. | In situ thermal recovery from a relatively permeable formation with quality control |
US6877555B2 (en) | 2001-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of an oil shale formation while inhibiting coking |
US6880633B2 (en) | 2001-04-24 | 2005-04-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a desired product |
US20030102124A1 (en) * | 2001-04-24 | 2003-06-05 | Vinegar Harold J. | In situ thermal processing of a blending agent from a relatively permeable formation |
US7096942B1 (en) | 2001-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a relatively permeable formation while controlling pressure |
US20030111223A1 (en) * | 2001-04-24 | 2003-06-19 | Rouffignac Eric Pierre De | In situ thermal processing of an oil shale formation using horizontal heat sources |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US20030173078A1 (en) * | 2001-04-24 | 2003-09-18 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce a condensate |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US20030173080A1 (en) * | 2001-04-24 | 2003-09-18 | Berchenko Ilya Emil | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US20030164239A1 (en) * | 2001-04-24 | 2003-09-04 | Wellington Scott Lee | In situ thermal processing of an oil shale formation in a reducing environment |
US6915850B2 (en) | 2001-04-24 | 2005-07-12 | Shell Oil Company | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US6918443B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range |
US6918442B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation in a reducing environment |
US6923257B2 (en) | 2001-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a condensate |
US20030155111A1 (en) * | 2001-04-24 | 2003-08-21 | Shell Oil Co | In situ thermal processing of a tar sands formation |
US6929067B2 (en) | 2001-04-24 | 2005-08-16 | Shell Oil Company | Heat sources with conductive material for in situ thermal processing of an oil shale formation |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
US20030148894A1 (en) * | 2001-04-24 | 2003-08-07 | Vinegar Harold J. | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US6948562B2 (en) | 2001-04-24 | 2005-09-27 | Shell Oil Company | Production of a blending agent using an in situ thermal process in a relatively permeable formation |
US6951247B2 (en) | 2001-04-24 | 2005-10-04 | Shell Oil Company | In situ thermal processing of an oil shale formation using horizontal heat sources |
US20030146002A1 (en) * | 2001-04-24 | 2003-08-07 | Vinegar Harold J. | Removable heat sources for in situ thermal processing of an oil shale formation |
US20030141066A1 (en) * | 2001-04-24 | 2003-07-31 | Karanikas John Michael | In situ thermal processing of an oil shale formation while inhibiting coking |
US6964300B2 (en) | 2001-04-24 | 2005-11-15 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US20030142964A1 (en) * | 2001-04-24 | 2003-07-31 | Wellington Scott Lee | In situ thermal processing of an oil shale formation using a controlled heating rate |
US6966374B2 (en) | 2001-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US7051807B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with quality control |
US7040399B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of an oil shale formation using a controlled heating rate |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US7040398B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively permeable formation in a reducing environment |
US20030116315A1 (en) * | 2001-04-24 | 2003-06-26 | Wellington Scott Lee | In situ thermal processing of a relatively permeable formation |
US7032660B2 (en) * | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20030131995A1 (en) * | 2001-04-24 | 2003-07-17 | De Rouffignac Eric Pierre | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US7013972B2 (en) | 2001-04-24 | 2006-03-21 | Shell Oil Company | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US7004251B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | In situ thermal processing and remediation of an oil shale formation |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US6994169B2 (en) | 2001-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of an oil shale formation with a selected property |
US20030141067A1 (en) * | 2001-04-24 | 2003-07-31 | Rouffignac Eric Pierre De | In situ thermal processing of an oil shale formation to increase permeability of the formation |
US6981548B2 (en) | 2001-04-24 | 2006-01-03 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation |
US20030137181A1 (en) * | 2001-04-24 | 2003-07-24 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range |
US6991036B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | Thermal processing of a relatively permeable formation |
US6991032B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US20030136559A1 (en) * | 2001-04-24 | 2003-07-24 | Wellington Scott Lee | In situ thermal processing while controlling pressure in an oil shale formation |
US20030141068A1 (en) * | 2001-04-24 | 2003-07-31 | Pierre De Rouffignac Eric | In situ thermal processing through an open wellbore in an oil shale formation |
US6991033B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing while controlling pressure in an oil shale formation |
US20030136558A1 (en) * | 2001-04-24 | 2003-07-24 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce a desired product |
US6991045B2 (en) | 2001-10-24 | 2006-01-31 | Shell Oil Company | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US7461691B2 (en) | 2001-10-24 | 2008-12-09 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20070209799A1 (en) * | 2001-10-24 | 2007-09-13 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20040040715A1 (en) * | 2001-10-24 | 2004-03-04 | Wellington Scott Lee | In situ production of a blending agent from a hydrocarbon containing formation |
US20030205378A1 (en) * | 2001-10-24 | 2003-11-06 | Wellington Scott Lee | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US20030201098A1 (en) * | 2001-10-24 | 2003-10-30 | Karanikas John Michael | In situ recovery from a hydrocarbon containing formation using one or more simulations |
US20030196801A1 (en) * | 2001-10-24 | 2003-10-23 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US20040211569A1 (en) * | 2001-10-24 | 2004-10-28 | Vinegar Harold J. | Installation and use of removable heaters in a hydrocarbon containing formation |
US20030196810A1 (en) * | 2001-10-24 | 2003-10-23 | Vinegar Harold J. | Treatment of a hydrocarbon containing formation after heating |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20140190691A1 (en) * | 2001-10-24 | 2014-07-10 | Harold J. Vinegar | Method of selecting a production well location in a hydrocarbon subsurface formation |
US20030196789A1 (en) * | 2001-10-24 | 2003-10-23 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation and upgrading of produced fluids prior to further treatment |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US7156176B2 (en) | 2001-10-24 | 2007-01-02 | Shell Oil Company | Installation and use of removable heaters in a hydrocarbon containing formation |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7051808B1 (en) | 2001-10-24 | 2006-05-30 | Shell Oil Company | Seismic monitoring of in situ conversion in a hydrocarbon containing formation |
US6932155B2 (en) | 2001-10-24 | 2005-08-23 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US20030173085A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Upgrading and mining of coal |
US7063145B2 (en) | 2001-10-24 | 2006-06-20 | Shell Oil Company | Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations |
US7066257B2 (en) | 2001-10-24 | 2006-06-27 | Shell Oil Company | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US20030173072A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US7128153B2 (en) | 2001-10-24 | 2006-10-31 | Shell Oil Company | Treatment of a hydrocarbon containing formation after heating |
US7077198B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using barriers |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7086465B2 (en) | 2001-10-24 | 2006-08-08 | Shell Oil Company | In situ production of a blending agent from a hydrocarbon containing formation |
US20030173081A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | In situ thermal processing of an oil reservoir formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US20050092483A1 (en) * | 2001-10-24 | 2005-05-05 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US20030173082A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | In situ thermal processing of a heavy oil diatomite formation |
US20030192693A1 (en) * | 2001-10-24 | 2003-10-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7100994B2 (en) | 2001-10-24 | 2006-09-05 | Shell Oil Company | Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US20030192691A1 (en) * | 2001-10-24 | 2003-10-16 | Vinegar Harold J. | In situ recovery from a hydrocarbon containing formation using barriers |
US7114566B2 (en) | 2001-10-24 | 2006-10-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US7121341B2 (en) | 2002-10-24 | 2006-10-17 | Shell Oil Company | Conductor-in-conduit temperature limited heaters |
US7219734B2 (en) | 2002-10-24 | 2007-05-22 | Shell Oil Company | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US20040146288A1 (en) * | 2002-10-24 | 2004-07-29 | Vinegar Harold J. | Temperature limited heaters for heating subsurface formations or wellbores |
US20040145969A1 (en) * | 2002-10-24 | 2004-07-29 | Taixu Bai | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US20040144540A1 (en) * | 2002-10-24 | 2004-07-29 | Sandberg Chester Ledlie | High voltage temperature limited heaters |
US20040140095A1 (en) * | 2002-10-24 | 2004-07-22 | Vinegar Harold J. | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US20050006097A1 (en) * | 2002-10-24 | 2005-01-13 | Sandberg Chester Ledlie | Variable frequency temperature limited heaters |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US20040144541A1 (en) * | 2002-10-24 | 2004-07-29 | Picha Mark Gregory | Forming wellbores using acoustic methods |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7360588B2 (en) | 2003-04-24 | 2008-04-22 | Shell Oil Company | Thermal processes for subsurface formations |
US7640980B2 (en) | 2003-04-24 | 2010-01-05 | Shell Oil Company | Thermal processes for subsurface formations |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US20050269094A1 (en) * | 2004-04-23 | 2005-12-08 | Harris Christopher K | Triaxial temperature limited heater |
US7510000B2 (en) | 2004-04-23 | 2009-03-31 | Shell Oil Company | Reducing viscosity of oil for production from a hydrocarbon containing formation |
US20050269088A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Inhibiting effects of sloughing in wellbores |
US20050269091A1 (en) * | 2004-04-23 | 2005-12-08 | Guillermo Pastor-Sanz | Reducing viscosity of oil for production from a hydrocarbon containing formation |
US20050269092A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Vacuum pumping of conductor-in-conduit heaters |
US7370704B2 (en) | 2004-04-23 | 2008-05-13 | Shell Oil Company | Triaxial temperature limited heater |
US20050269090A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
US20050269095A1 (en) * | 2004-04-23 | 2005-12-08 | Fairbanks Michael D | Inhibiting reflux in a heated well of an in situ conversion system |
US20050269313A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Temperature limited heaters with high power factors |
US20050269093A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Variable frequency temperature limited heaters |
US20050269089A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Temperature limited heaters using modulated DC power |
US20050269077A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Start-up of temperature limited heaters using direct current (DC) |
US7320364B2 (en) | 2004-04-23 | 2008-01-22 | Shell Oil Company | Inhibiting reflux in a heated well of an in situ conversion system |
US7490665B2 (en) | 2004-04-23 | 2009-02-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7481274B2 (en) | 2004-04-23 | 2009-01-27 | Shell Oil Company | Temperature limited heaters with relatively constant current |
US20060289536A1 (en) * | 2004-04-23 | 2006-12-28 | Vinegar Harold J | Subsurface electrical heaters using nitride insulation |
US20060005968A1 (en) * | 2004-04-23 | 2006-01-12 | Vinegar Harold J | Temperature limited heaters with relatively constant current |
US7431076B2 (en) | 2004-04-23 | 2008-10-07 | Shell Oil Company | Temperature limited heaters using modulated DC power |
US7424915B2 (en) | 2004-04-23 | 2008-09-16 | Shell Oil Company | Vacuum pumping of conductor-in-conduit heaters |
US7353872B2 (en) | 2004-04-23 | 2008-04-08 | Shell Oil Company | Start-up of temperature limited heaters using direct current (DC) |
US7357180B2 (en) | 2004-04-23 | 2008-04-15 | Shell Oil Company | Inhibiting effects of sloughing in wellbores |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7383877B2 (en) | 2004-04-23 | 2008-06-10 | Shell Oil Company | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
US20070108200A1 (en) * | 2005-04-22 | 2007-05-17 | Mckinzie Billy J Ii | Low temperature barrier wellbores formed using water flushing |
US20070045267A1 (en) * | 2005-04-22 | 2007-03-01 | Vinegar Harold J | Subsurface connection methods for subsurface heaters |
US7546873B2 (en) | 2005-04-22 | 2009-06-16 | Shell Oil Company | Low temperature barriers for use with in situ processes |
US20070133959A1 (en) * | 2005-04-22 | 2007-06-14 | Vinegar Harold J | Grouped exposed metal heaters |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7527094B2 (en) | 2005-04-22 | 2009-05-05 | Shell Oil Company | Double barrier system for an in situ conversion process |
US20070144732A1 (en) * | 2005-04-22 | 2007-06-28 | Kim Dong S | Low temperature barriers for use with in situ processes |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US20070137856A1 (en) * | 2005-04-22 | 2007-06-21 | Mckinzie Billy J | Double barrier system for an in situ conversion process |
US20070133960A1 (en) * | 2005-04-22 | 2007-06-14 | Vinegar Harold J | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US20070119098A1 (en) * | 2005-04-22 | 2007-05-31 | Zaida Diaz | Treatment of gas from an in situ conversion process |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US7831133B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US20070133961A1 (en) * | 2005-04-22 | 2007-06-14 | Fairbanks Michael D | Methods and systems for producing fluid from an in situ conversion process |
US20080217321A1 (en) * | 2005-04-22 | 2008-09-11 | Vinegar Harold J | Temperature limited heater utilizing non-ferromagnetic conductor |
US20070108201A1 (en) * | 2005-04-22 | 2007-05-17 | Vinegar Harold J | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration |
US7500528B2 (en) | 2005-04-22 | 2009-03-10 | Shell Oil Company | Low temperature barrier wellbores formed using water flushing |
US7435037B2 (en) | 2005-04-22 | 2008-10-14 | Shell Oil Company | Low temperature barriers with heat interceptor wells for in situ processes |
US7575052B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | In situ conversion process utilizing a closed loop heating system |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US7575053B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | Low temperature monitoring system for subsurface barriers |
US20070045265A1 (en) * | 2005-04-22 | 2007-03-01 | Mckinzie Billy J Ii | Low temperature barriers with heat interceptor wells for in situ processes |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US20070045266A1 (en) * | 2005-04-22 | 2007-03-01 | Sandberg Chester L | In situ conversion process utilizing a closed loop heating system |
US20070045268A1 (en) * | 2005-04-22 | 2007-03-01 | Vinegar Harold J | Varying properties along lengths of temperature limited heaters |
US20070095536A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7559367B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Temperature limited heater with a conduit substantially electrically isolated from the formation |
US7559368B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Solution mining systems and methods for treating hydrocarbon containing formations |
US7584789B2 (en) | 2005-10-24 | 2009-09-08 | Shell Oil Company | Methods of cracking a crude product to produce additional crude products |
US20070221377A1 (en) * | 2005-10-24 | 2007-09-27 | Vinegar Harold J | Solution mining systems and methods for treating hydrocarbon containing formations |
US7591310B2 (en) | 2005-10-24 | 2009-09-22 | Shell Oil Company | Methods of hydrotreating a liquid stream to remove clogging compounds |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US20070131427A1 (en) * | 2005-10-24 | 2007-06-14 | Ruijian Li | Systems and methods for producing hydrocarbons from tar sands formations |
US20110168394A1 (en) * | 2005-10-24 | 2011-07-14 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US20070131419A1 (en) * | 2005-10-24 | 2007-06-14 | Maria Roes Augustinus W | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US7581589B2 (en) | 2005-10-24 | 2009-09-01 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US20070095537A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US7635025B2 (en) | 2005-10-24 | 2009-12-22 | Shell Oil Company | Cogeneration systems and processes for treating hydrocarbon containing formations |
US20070127897A1 (en) * | 2005-10-24 | 2007-06-07 | John Randy C | Subsurface heaters with low sulfidation rates |
US7562706B2 (en) | 2005-10-24 | 2009-07-21 | Shell Oil Company | Systems and methods for producing hydrocarbons from tar sands formations |
US20070125533A1 (en) * | 2005-10-24 | 2007-06-07 | Minderhoud Johannes K | Methods of hydrotreating a liquid stream to remove clogging compounds |
US20070131420A1 (en) * | 2005-10-24 | 2007-06-14 | Weijian Mo | Methods of cracking a crude product to produce additional crude products |
US20080107577A1 (en) * | 2005-10-24 | 2008-05-08 | Vinegar Harold J | Varying heating in dawsonite zones in hydrocarbon containing formations |
US7549470B2 (en) | 2005-10-24 | 2009-06-23 | Shell Oil Company | Solution mining and heating by oxidation for treating hydrocarbon containing formations |
US7556096B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Varying heating in dawsonite zones in hydrocarbon containing formations |
US7556095B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US20090301724A1 (en) * | 2005-10-24 | 2009-12-10 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US20080035347A1 (en) * | 2006-04-21 | 2008-02-14 | Brady Michael P | Adjusting alloy compositions for selected properties in temperature limited heaters |
US7533719B2 (en) | 2006-04-21 | 2009-05-19 | Shell Oil Company | Wellhead with non-ferromagnetic materials |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US20080017380A1 (en) * | 2006-04-21 | 2008-01-24 | Vinegar Harold J | Non-ferromagnetic overburden casing |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US20080035705A1 (en) * | 2006-04-21 | 2008-02-14 | Menotti James L | Welding shield for coupling heaters |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US20080038144A1 (en) * | 2006-04-21 | 2008-02-14 | Maziasz Phillip J | High strength alloys |
US20080035346A1 (en) * | 2006-04-21 | 2008-02-14 | Vijay Nair | Methods of producing transportation fuel |
US20100272595A1 (en) * | 2006-04-21 | 2010-10-28 | Shell Oil Company | High strength alloys |
US20080035348A1 (en) * | 2006-04-21 | 2008-02-14 | Vitek John M | Temperature limited heaters using phase transformation of ferromagnetic material |
US7631689B2 (en) | 2006-04-21 | 2009-12-15 | Shell Oil Company | Sulfur barrier for use with in situ processes for treating formations |
US20080173449A1 (en) * | 2006-04-21 | 2008-07-24 | Thomas David Fowler | Sour gas injection for use with in situ heat treatment |
US7597147B2 (en) | 2006-04-21 | 2009-10-06 | Shell Oil Company | Temperature limited heaters using phase transformation of ferromagnetic material |
US7604052B2 (en) | 2006-04-21 | 2009-10-20 | Shell Oil Company | Compositions produced using an in situ heat treatment process |
US20080174115A1 (en) * | 2006-04-21 | 2008-07-24 | Gene Richard Lambirth | Power systems utilizing the heat of produced formation fluid |
US20080173444A1 (en) * | 2006-04-21 | 2008-07-24 | Francis Marion Stone | Alternate energy source usage for in situ heat treatment processes |
US7610962B2 (en) | 2006-04-21 | 2009-11-03 | Shell Oil Company | Sour gas injection for use with in situ heat treatment |
US20080173450A1 (en) * | 2006-04-21 | 2008-07-24 | Bernard Goldberg | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US20080173442A1 (en) * | 2006-04-21 | 2008-07-24 | Vinegar Harold J | Sulfur barrier for use with in situ processes for treating formations |
US7635023B2 (en) | 2006-04-21 | 2009-12-22 | Shell Oil Company | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7562707B2 (en) | 2006-10-20 | 2009-07-21 | Shell Oil Company | Heating hydrocarbon containing formations in a line drive staged process |
US20080135244A1 (en) * | 2006-10-20 | 2008-06-12 | David Scott Miller | Heating hydrocarbon containing formations in a line drive staged process |
US7635024B2 (en) | 2006-10-20 | 2009-12-22 | Shell Oil Company | Heating tar sands formations to visbreaking temperatures |
US20080135254A1 (en) * | 2006-10-20 | 2008-06-12 | Vinegar Harold J | In situ heat treatment process utilizing a closed loop heating system |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US20080135253A1 (en) * | 2006-10-20 | 2008-06-12 | Vinegar Harold J | Treating tar sands formations with karsted zones |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US20080142217A1 (en) * | 2006-10-20 | 2008-06-19 | Roelof Pieterson | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US20080142216A1 (en) * | 2006-10-20 | 2008-06-19 | Vinegar Harold J | Treating tar sands formations with dolomite |
US20080128134A1 (en) * | 2006-10-20 | 2008-06-05 | Ramesh Raju Mudunuri | Producing drive fluid in situ in tar sands formations |
US7631690B2 (en) | 2006-10-20 | 2009-12-15 | Shell Oil Company | Heating hydrocarbon containing formations in a spiral startup staged sequence |
US20080185147A1 (en) * | 2006-10-20 | 2008-08-07 | Vinegar Harold J | Wax barrier for use with in situ processes for treating formations |
US20090014180A1 (en) * | 2006-10-20 | 2009-01-15 | George Leo Stegemeier | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US20080217004A1 (en) * | 2006-10-20 | 2008-09-11 | De Rouffignac Eric Pierre | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US20080217016A1 (en) * | 2006-10-20 | 2008-09-11 | George Leo Stegemeier | Creating fluid injectivity in tar sands formations |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US20080217003A1 (en) * | 2006-10-20 | 2008-09-11 | Myron Ira Kuhlman | Gas injection to inhibit migration during an in situ heat treatment process |
US20100276141A1 (en) * | 2006-10-20 | 2010-11-04 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US20080217015A1 (en) * | 2006-10-20 | 2008-09-11 | Vinegar Harold J | Heating hydrocarbon containing formations in a spiral startup staged sequence |
US20080277113A1 (en) * | 2006-10-20 | 2008-11-13 | George Leo Stegemeier | Heating tar sands formations while controlling pressure |
US20080283246A1 (en) * | 2006-10-20 | 2008-11-20 | John Michael Karanikas | Heating tar sands formations to visbreaking temperatures |
US20090014181A1 (en) * | 2006-10-20 | 2009-01-15 | Vinegar Harold J | Creating and maintaining a gas cap in tar sands formations |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US20090095478A1 (en) * | 2007-04-20 | 2009-04-16 | John Michael Karanikas | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US20090071652A1 (en) * | 2007-04-20 | 2009-03-19 | Vinegar Harold J | In situ heat treatment from multiple layers of a tar sands formation |
US20090078461A1 (en) * | 2007-04-20 | 2009-03-26 | Arthur James Mansure | Drilling subsurface wellbores with cutting structures |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US20090084547A1 (en) * | 2007-04-20 | 2009-04-02 | Walter Farman Farmayan | Downhole burner systems and methods for heating subsurface formations |
US20090090509A1 (en) * | 2007-04-20 | 2009-04-09 | Vinegar Harold J | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US20090095480A1 (en) * | 2007-04-20 | 2009-04-16 | Vinegar Harold J | In situ heat treatment of a tar sands formation after drive process treatment |
US20090095477A1 (en) * | 2007-04-20 | 2009-04-16 | Scott Vinh Nguyen | Heating systems for heating subsurface formations |
US20090095479A1 (en) * | 2007-04-20 | 2009-04-16 | John Michael Karanikas | Production from multiple zones of a tar sands formation |
US20090095476A1 (en) * | 2007-04-20 | 2009-04-16 | Scott Vinh Nguyen | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US20090120646A1 (en) * | 2007-04-20 | 2009-05-14 | Dong Sub Kim | Electrically isolating insulated conductor heater |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US20090126929A1 (en) * | 2007-04-20 | 2009-05-21 | Vinegar Harold J | Treating nahcolite containing formations and saline zones |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US20090321075A1 (en) * | 2007-04-20 | 2009-12-31 | Christopher Kelvin Harris | Parallel heater system for subsurface formations |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US20120037363A1 (en) * | 2007-05-10 | 2012-02-16 | Shell Oil Company | Systems and methods for producing oil and/or gas |
US20090194333A1 (en) * | 2007-10-19 | 2009-08-06 | Macdonald Duncan | Ranging methods for developing wellbores in subsurface formations |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US20090189617A1 (en) * | 2007-10-19 | 2009-07-30 | David Burns | Continuous subsurface heater temperature measurement |
US20090194282A1 (en) * | 2007-10-19 | 2009-08-06 | Gary Lee Beer | In situ oxidation of subsurface formations |
US20090194269A1 (en) * | 2007-10-19 | 2009-08-06 | Vinegar Harold J | Three-phase heaters with common overburden sections for heating subsurface formations |
US20090194329A1 (en) * | 2007-10-19 | 2009-08-06 | Rosalvina Ramona Guimerans | Methods for forming wellbores in heated formations |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US20090194524A1 (en) * | 2007-10-19 | 2009-08-06 | Dong Sub Kim | Methods for forming long subsurface heaters |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US20090200854A1 (en) * | 2007-10-19 | 2009-08-13 | Vinegar Harold J | Solution mining and in situ treatment of nahcolite beds |
US20090200031A1 (en) * | 2007-10-19 | 2009-08-13 | David Scott Miller | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US20090200025A1 (en) * | 2007-10-19 | 2009-08-13 | Jose Luis Bravo | High temperature methods for forming oxidizer fuel |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US20100071904A1 (en) * | 2008-04-18 | 2010-03-25 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US20090260824A1 (en) * | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20090260823A1 (en) * | 2008-04-18 | 2009-10-22 | Robert George Prince-Wright | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20090272535A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Using tunnels for treating subsurface hydrocarbon containing formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US20090272533A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US20090272578A1 (en) * | 2008-04-18 | 2009-11-05 | Macdonald Duncan Charles | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US20100071903A1 (en) * | 2008-04-18 | 2010-03-25 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US20100108379A1 (en) * | 2008-10-13 | 2010-05-06 | David Alston Edbury | Systems and methods of forming subsurface wellbores |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US20100089586A1 (en) * | 2008-10-13 | 2010-04-15 | John Andrew Stanecki | Movable heaters for treating subsurface hydrocarbon containing formations |
US20100155070A1 (en) * | 2008-10-13 | 2010-06-24 | Augustinus Wilhelmus Maria Roes | Organonitrogen compounds used in treating hydrocarbon containing formations |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US20100147522A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Systems and methods for treating a subsurface formation with electrical conductors |
US20100089584A1 (en) * | 2008-10-13 | 2010-04-15 | David Booth Burns | Double insulated heaters for treating subsurface formations |
US20100096137A1 (en) * | 2008-10-13 | 2010-04-22 | Scott Vinh Nguyen | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US20100101783A1 (en) * | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Using self-regulating nuclear reactors in treating a subsurface formation |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US20100101784A1 (en) * | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US20100108310A1 (en) * | 2008-10-13 | 2010-05-06 | Thomas David Fowler | Offset barrier wells in subsurface formations |
US20100224368A1 (en) * | 2008-10-13 | 2010-09-09 | Stanley Leroy Mason | Deployment of insulated conductors for treating subsurface formations |
US20100206570A1 (en) * | 2008-10-13 | 2010-08-19 | Ernesto Rafael Fonseca Ocampos | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US20100258290A1 (en) * | 2009-04-10 | 2010-10-14 | Ronald Marshall Bass | Non-conducting heater casings |
US20100258265A1 (en) * | 2009-04-10 | 2010-10-14 | John Michael Karanikas | Recovering energy from a subsurface formation |
US20110042084A1 (en) * | 2009-04-10 | 2011-02-24 | Robert Bos | Irregular pattern treatment of a subsurface formation |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US20100258309A1 (en) * | 2009-04-10 | 2010-10-14 | Oluropo Rufus Ayodele | Heater assisted fluid treatment of a subsurface formation |
US20100258291A1 (en) * | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8875788B2 (en) | 2010-04-09 | 2014-11-04 | Shell Oil Company | Low temperature inductive heating of subsurface formations |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2734579A (en) | Production from bituminous sands | |
US4099566A (en) | Vicous oil recovery method | |
US6328104B1 (en) | Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking | |
US2390770A (en) | Method of producing petroleum | |
US3110345A (en) | Low temperature reverse combustion process | |
US3948323A (en) | Thermal injection process for recovery of heavy viscous petroleum | |
US4006778A (en) | Thermal recovery of hydrocarbon from tar sands | |
US4127172A (en) | Viscous oil recovery method | |
US3542131A (en) | Method of recovering hydrocarbons from oil shale | |
US4019577A (en) | Thermal energy production by in situ combustion of coal | |
US4625800A (en) | Method of recovering medium or high gravity crude oil | |
US3327782A (en) | Underground hydrogenation of oil | |
US3964546A (en) | Thermal recovery of viscous oil | |
CA1257537A (en) | Insitu wet combustion process for recovery of heavy oils | |
US2917112A (en) | Inverse air injection technique | |
US3993135A (en) | Thermal process for recovering viscous petroleum | |
US3375870A (en) | Recovery of petroleum by thermal methods | |
US3024841A (en) | Method of oil recovery by in situ combustion | |
US3285336A (en) | Method of thermal stimulation of oil fields | |
US3411575A (en) | Thermal recovery method for heavy hydrocarbons employing a heated permeable channel and forward in situ combustion in subterranean formations | |
US2771951A (en) | Method of oil recovery by in situ combustion | |
WO1995006093A1 (en) | Enhanced hydrocarbon recovery method | |
US3174544A (en) | Recovery of petroleum by combination reverse-direct in situ combustion | |
US3044546A (en) | Production of unconsolidated sands by in situ combustion | |
US3499490A (en) | Method for producing oxygenated products from oil shale |