US2657306A - Radio receiving circuit arrangement - Google Patents
Radio receiving circuit arrangement Download PDFInfo
- Publication number
- US2657306A US2657306A US692084A US69208446A US2657306A US 2657306 A US2657306 A US 2657306A US 692084 A US692084 A US 692084A US 69208446 A US69208446 A US 69208446A US 2657306 A US2657306 A US 2657306A
- Authority
- US
- United States
- Prior art keywords
- circuit
- valve
- grid
- output
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B43/00—Forming, feeding, opening or setting-up containers or receptacles in association with packaging
- B65B43/12—Feeding flexible bags or carton blanks in flat or collapsed state; Feeding flat bags connected to form a series or chain
- B65B43/14—Feeding individual bags or carton blanks from piles or magazines
- B65B43/22—Feeding individual bags or carton blanks from piles or magazines by rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D1/00—Couplings for rigidly connecting two coaxial shafts or other movable machine elements
- F16D1/06—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/74—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
- G01S13/76—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
- G01S13/767—Responders; Transponders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/74—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
- G01S13/76—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
- G01S13/78—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/87—Combinations of radar systems, e.g. primary radar and secondary radar
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D11/00—Super-regenerative demodulator circuits
- H03D11/02—Super-regenerative demodulator circuits for amplitude-modulated oscillations
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/52—Circuit arrangements for protecting such amplifiers
- H03F1/54—Circuit arrangements for protecting such amplifiers with tubes only
- H03F1/542—Replacing by standby devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B—MAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B2105/00—Rigid or semi-rigid containers made by assembling separate sheets, blanks or webs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B—MAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B2120/00—Construction of rigid or semi-rigid containers
- B31B2120/40—Construction of rigid or semi-rigid containers lined or internally reinforced
- B31B2120/408—Construction of rigid or semi-rigid containers lined or internally reinforced by folding a sheet or blank around an inner tubular liner
Definitions
- the se' ivity normally v" ies from' time td'tinie with change of' irequency, ⁇ aer1al aging,
- a circuit arrangement including a Valve 'arranged to operateregeneratively thegain'is stabilised in the absence of' anv input signal, bymeans of a direct current Voltage.: Which is btained'by rectification of current representing noi'se in the: circuit, the direct current 'Voltage 'being fed"t0 th ej Valli@ in such a manner that any tendency towards alteration' of the generaljlevel nois'eoscillationeY in the output ⁇ circuit of the valve is resisted; Ldr elimi-v Inl a particular circuit arrangement embodying the invention, thevalve'iscperated super-'regeneratively and the directfcurrent voltage is derived fromaucircuit tuned to the; quenching.4 frequency employed; the Yrectiied'voltage loeingfed'as abiasing potential to the control grid of said'jvalve.
- the tuned circuit employed may be: constituted by' a coupling 'transformer thev output fromwhich i's rectified'hefore 'application 'tof thels'upereregenerative valve. 'i i i "In 'orderthat the invention may be more clear- 1y mderstood'iand readily carried into?
- the output voltages, in the form of positive-going voltage pulses appearing at the cathode end of the resistance Ri are fed back to the control-grid or" the oscillator valve V3 Where they act to reduce the negative bias potential and so permit the valve to burst into oscillation.
- the resonant circuit L6, C9 will still be tuned to the frequency or the received signal which initiated the triggering action, the iinal result is the generation and radiation through coupling coil Ll' and the aerial socket PS o a counter part or response signal pulse for each of the received signals appearing at the output valve V6.
- the high-frequency oscillations persist for a period of time which is determined principally by the constants of the coupling circuit between the valve V and V6, and more particularly by the values of the condensers C25, C59, the latter of which is controlled by a signal coding switch i A.
- the degree of build-up applied during each quenching cycle will, in general, be variable.
- a part of the output from the rectifier Vil is fed through a condenser CSG, to the control grid oi a valve V9, which includes in its anode circuit an iron-cored transformer Lid, L! i tuned to the quenching frequency.
- the voltage across the winding Lid is rectified by a diode VS, and is applied from the load resistance R22 to the grid of a valve V'i, where it appears in amplied form across the cathode resistance Riii. From here it is fed through a resistance Ril and choke L3 to the grid of the super-regenerative valve V2, and, by reducing the gain of that valve, automatically checks any increase in the general level of the noise oscillations in the tuned circuit L6, C9.
- a suppressing voltage synchronized with the other transmitter, is applied through a socket Pl to a diode Vi i, and through a resistance to the grid of a valve Vie.
- the resulting negative impulses are applied by the valve Vi@ through a condenser C38 and resistance R25 to the grid of the valve V2, and through a condenser C33 and resistance R29 to the grid ci the quenching valve Vi, and throw both these valves out of action.
- a positive voltage is fed from the cathode resistance RBi of the valve VIE through a condenser C3@ to the cathode of the rectifier Vd to render that valve non-conductive.
- the responder is temporarily rendered insensitive to all signals, including those from the local transmitter.
- the aerial tuning condenser C53 is driven from a motor-generator through a cam-shaft which simultaneously controls the coding devices.
- One cam-operated contact not shown periodically interrupts the high-tension supply to the valves V2, V3.
- Another cam energises a relay, not
- a switch 3 connects a condenser Cid across the cathode resistance R5 of the oscillator V3 in order to condition that circuit to the wide pulse, whilst a switch 2 serves to override the previously mentioned cam-operated H. T. control switch for the valves V2, V3 so as to provide an uninterrupted H. T. supply to the latter.
- a selector switch allows the operator to control the coding as required.
- a super-regenerative receiver valve, V has in its anode circuit a tuned circuit, C?, coupled to the aerial, not shown, by a coil, LA..
- Bias potential is applied to the cathode of the valve from a tapping in a potentiometer comprising resistances R4 and R5.
- the quench voltage is supplied by an oscillator valve, Vi, operating at a frequency of 300 kilo-cycles per second.
- the voltage from the anode of this Valve is supplied through the attenuating network, C3, to the grid of the valve V2.
- the output from the tuned circuit L3, C'i is rectified by the diode, V 3, and is then passed to signal amplifying and output stages as required, connected to a terminal T.
- the output from the rectiiier V3, is also fed through condenser, C9, to the grid of an amplifying valve, V4, which constitutes the rst ampli- Iier in the automatic gain stabilising circuit.
- the anode circuit of the valve, V6, contains a tuned output circuit, L5, C15, LS, Cl' tuned tc the quench frequency.
- the resulting voltage across secondary winding L6 which represents a narrow band of the noise spectrum centered about the quench frequency is rectified by a diode V5, and after smoothing by a resistance/capacity combination RIZ, CM, is applied to the grid of the direct current amplifying valve, rlhe voltage developed across the cathode load .resistance Rit is applied as a bias potential to the grid of the regenerative receiver value V2, through a resistance, R5, and has the eiiect of stabilising the operation of this valve.
- any variations in tuning, supply voltages, components or other disturbing factors can only cause a slight change in the receiver noise.
- the magnitude of this change is only a very small fraction of that which would occur in the absence of the automatic gain stabilising circuit, and depends upon the gain of that circuit. If this gain were iniinite the change in noise amplitude and, therefore, in the receiver sensitivity due to any external iniuence would be theoretically ZEI'O.
- the sensitivity to which the circuit adjusts the receiver, and thus the working gain of the receiver may be set to .the desired value by controlling the magnitude if the direct current bias potential applied to the receiving valve, V2, in any known manner, for example, by adjustment of the resistance, RIS.
- the system may, therefore, be adjusted to maintain the receiver at its most sensitive state, in spite of external disturbing variations.
- a super-regenerative radio receiver circuit comprising a space discharge tube including a cathode, at least one control grid and an anode, positive feed-back means including a tuned circuit coupled between said anode and a contro-l grid for providing regeneration, signal input and output circuits coupled to said tuned circuit, a source of quenching oscillations, means for applying said quenching oscillations between the cone trol grid and cathode of said tube, a selective amplifier circuitl tuned to the frequency of said .quenching oscillations, connecting means between said signal output circuit and the input circuit of said amplifier, a rectifying device connected to the output circuit of said amplifier for converting the amplified quench frequency signal output of said amplifier into a direct-current voltage and further connection means for applying said direct-current voltage between a control grid andthe cathode of said space discharge tube to control the sensitivity thereof.
- a super-regenerative radio receiver circuit comprising a space discharge tube including a cathode, at least one control grid and an anode, positive feed-back means including a tuned circuit coupled between said anode and a control grid for providing regeneration, signal input and output circuits coupled to said tuned circuit, a source of quenching oscillations, means for applying said quenching oscillations between the 6 control grid and cathode of said tube, a selective amplifier circuit tuned to the frequency of said quenching oscillations, connecting means between said signal output circuit and the input circuit of said amplifier, a rectifying device connected to the output circuit of said amplifier for converting the amplified quench frequency signal output of said amplier With a direct-current voltage and a direct-current thermionic amplifier circuit including a space discharge tube having an output load resistance in its cathode circuit, connection means for feeding said direct-current voltage to the input circuit of said direct-current amplifier and further connecting means between said output load resistance and the cathode and a control grid of said rst space discharge
- a super-regenerative radio receiver circuit comprising a space discharge tube including a cathode, a control grid and an anode, positive feed-back means including a tuned circuit coupled between said anode and a control grid for providing regeneration, signal input and output circuits coupled to said tuned circuit, a source of quenching oscillations, means for applying said quenching oscillations between the control grid and cathode of said tube, a selective amplifier circuit tuned to the frequency of said quenching oscillations, connecting means between said signal output circuit and the input circuit of said amplifier, a rectifying device connected to the output circuit of said amplifier for converting the amplied quench frequency signal output of said ainplier with a direct-current voltage and a direct-current thermionic amplifier circuit including a space discharge tube having an output load resistance in its cathode circuit, connection means for feeding said direct-current voltage to the input circuit of said direct-current amplifier and means connecting said output load resistance and the cathode and control-grid of said first space discharge tube for increasing the negative potential
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Radar Systems Or Details Thereof (AREA)
- Circuits Of Receivers In General (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Toys (AREA)
- Traffic Control Systems (AREA)
- Amplifiers (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Superheterodyne Receivers (AREA)
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB267424X | 1943-03-13 | ||
GB2617020X | 1945-03-15 | ||
GB12809/45A GB591802A (en) | 1943-03-13 | 1945-05-22 | Improvements relating to switching means either for allowing a plurality of cyclically-operative thermionic systems to operate singly in a pre-determined order or for allowing the interrupted operation of only a specific one of them |
GB2524491X | 1945-11-05 | ||
GB2524492X | 1945-11-05 | ||
GB32486/45A GB604717A (en) | 1943-03-13 | 1945-11-30 | Improvements relating to super-regenerative receivers |
GB35039/45A GB605523A (en) | 1943-03-13 | 1945-12-28 | Improvements relating to super-regenerative radio receivers of the type associated with transmitting means |
GB4787/46A GB608103A (en) | 1943-03-13 | 1946-02-15 | Improvements relating to super-regenerative radio receivers of the type associated with transmitting means |
GB8251/46A GB609576A (en) | 1943-03-13 | 1946-03-16 | Improvements relating to super-regenerative radio receivers |
Publications (1)
Publication Number | Publication Date |
---|---|
US2657306A true US2657306A (en) | 1953-10-27 |
Family
ID=32303919
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US692084A Expired - Lifetime US2657306A (en) | 1943-03-13 | 1946-08-21 | Radio receiving circuit arrangement |
US760563A Expired - Lifetime US2524491A (en) | 1943-03-13 | 1947-07-12 | Wave-signal responder system |
US760960A Expired - Lifetime US2524495A (en) | 1943-03-13 | 1947-07-15 | Wave-signal responder system |
US762736A Expired - Lifetime US2552914A (en) | 1943-03-13 | 1947-07-22 | Superregenerative wave-signal receiver |
US762730A Expired - Lifetime US2617020A (en) | 1943-03-13 | 1947-07-22 | Superregenerative type of wavesignal translating system |
US762733A Expired - Lifetime US2524493A (en) | 1943-03-13 | 1947-07-22 | Wave-signal responder system |
US762732A Expired - Lifetime US2576495A (en) | 1943-03-13 | 1947-07-22 | Wave-signal responder system |
US762731A Expired - Lifetime US2524492A (en) | 1943-03-13 | 1947-07-22 | Wave-signal responder system |
US762734A Expired - Lifetime US2524494A (en) | 1943-03-13 | 1947-07-22 | Wave-signal responder system |
US766392A Expired - Lifetime US2541558A (en) | 1943-03-13 | 1947-08-05 | Control arrangement for thermionic valve systems |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US760563A Expired - Lifetime US2524491A (en) | 1943-03-13 | 1947-07-12 | Wave-signal responder system |
US760960A Expired - Lifetime US2524495A (en) | 1943-03-13 | 1947-07-15 | Wave-signal responder system |
US762736A Expired - Lifetime US2552914A (en) | 1943-03-13 | 1947-07-22 | Superregenerative wave-signal receiver |
US762730A Expired - Lifetime US2617020A (en) | 1943-03-13 | 1947-07-22 | Superregenerative type of wavesignal translating system |
US762733A Expired - Lifetime US2524493A (en) | 1943-03-13 | 1947-07-22 | Wave-signal responder system |
US762732A Expired - Lifetime US2576495A (en) | 1943-03-13 | 1947-07-22 | Wave-signal responder system |
US762731A Expired - Lifetime US2524492A (en) | 1943-03-13 | 1947-07-22 | Wave-signal responder system |
US762734A Expired - Lifetime US2524494A (en) | 1943-03-13 | 1947-07-22 | Wave-signal responder system |
US766392A Expired - Lifetime US2541558A (en) | 1943-03-13 | 1947-08-05 | Control arrangement for thermionic valve systems |
Country Status (6)
Country | Link |
---|---|
US (10) | US2657306A (de) |
BE (4) | BE468321A (de) |
CH (3) | CH271003A (de) |
FR (3) | FR932678A (de) |
GB (9) | GB585353A (de) |
NL (2) | NL71621C (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3015728A (en) * | 1959-10-22 | 1962-01-02 | Hazeltine Research Inc | Noise suppressor system for a superregenerative receiver |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2588444A (en) * | 1946-02-27 | 1952-03-11 | Ferranti Ltd | Wave signal responder system |
US2962711A (en) * | 1948-12-16 | 1960-11-29 | Jr Francis H Shepard | Superregenerative radio range finder |
US3732564A (en) * | 1951-04-10 | 1973-05-08 | Us Navy | Pulse doppler fuze |
US2786996A (en) * | 1952-01-04 | 1957-03-26 | Todd William | Wave measuring system |
US2746028A (en) * | 1952-08-05 | 1956-05-15 | Bell Telephone Labor Inc | Air raid warning system |
US2950473A (en) * | 1953-02-04 | 1960-08-23 | Csf | Radioelectric distance measuring systems |
US2971188A (en) * | 1953-07-01 | 1961-02-07 | Aircraft Armaments Inc | Radar navigation beacon |
US2931956A (en) * | 1956-02-06 | 1960-04-05 | Elliott & Evans Inc | Regenerative radio receiver for remotely controlled relay |
FR1226561A (fr) * | 1959-02-20 | 1960-07-13 | Csf | Perfectionnements aux faisceaux hertziens |
US3295135A (en) * | 1964-10-19 | 1966-12-27 | Keeler | Vehicle speed monitoring system |
EA006841B1 (ru) * | 2000-03-01 | 2006-04-28 | Гейр Монсен Вавик | Транспондер и система транспондеров |
CA2472968A1 (en) * | 2002-01-09 | 2003-07-17 | Geir Monsen Vavik | Analogue regenerative transponders, including regenerative transponder systems |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB243407A (en) * | 1924-07-22 | 1925-11-23 | Sydney Brydon | Improvements in and relating to the employment of thermionic valve circuits |
GB307177A (en) * | 1928-02-07 | 1929-03-07 | Arthur Reginald Jones | Improvements in or relating to wireless receiving systems |
US2006803A (en) * | 1931-06-12 | 1935-07-02 | Rca Corp | Short wave receiver |
US2045700A (en) * | 1935-02-05 | 1936-06-30 | Radio Patents Corp | Radio receiving system |
US2147595A (en) * | 1937-12-09 | 1939-02-14 | Rca Corp | Ultra high frequency transceiver |
US2414992A (en) * | 1944-02-11 | 1947-01-28 | Hazeltine Research Inc | Superregenerative receiver |
US2429513A (en) * | 1944-02-11 | 1947-10-21 | Hazeltine Research Inc | Gain-control arrangement |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1772165A (en) * | 1926-08-17 | 1930-08-05 | American Telephone & Telegraph | Multiplex broadcast system |
US1842222A (en) * | 1928-08-31 | 1932-01-19 | Nachod & United States Signal | Railway and traffic signal control |
US2129740A (en) * | 1936-09-16 | 1938-09-13 | Hazeltine Corp | Wave signaling system |
US2159647A (en) * | 1937-02-17 | 1939-05-23 | Mackay Radio & Telegraph Co | Diversity transmission |
US2375421A (en) * | 1939-08-25 | 1945-05-08 | Lear Inc | Direction radio transmitting system |
US2397088A (en) * | 1942-02-04 | 1946-03-26 | Murray G Clay | Method of and apparatus for controlling directional changes in bombs |
US2421016A (en) * | 1942-05-25 | 1947-05-27 | Standard Telephones Cables Ltd | Radar testing apparatus |
US2421106A (en) * | 1943-01-21 | 1947-05-27 | Gen Railway Signal Co | Airway traffic control system |
BE479411A (de) * | 1943-07-01 | |||
US2415667A (en) * | 1944-02-11 | 1947-02-11 | Hazeltine Research Inc | Receiver-transmitting arrangement |
US2398214A (en) * | 1944-02-14 | 1946-04-09 | Bendix Aviat Corp | Superregenerative receiver |
US2425316A (en) * | 1944-04-07 | 1947-08-12 | Rca Corp | Pulse repeater system |
US2460202A (en) * | 1944-04-19 | 1949-01-25 | Hazeltine Research Inc | Radio receiver gain-control arrangement |
US2412710A (en) * | 1944-07-15 | 1946-12-17 | Philco Corp | Superregenerative receiver quenching circuit |
US2432033A (en) * | 1944-10-04 | 1947-12-02 | Colonial Radio Corp | Compensation for battery voltage changes in radio receivers |
US2501186A (en) * | 1944-10-13 | 1950-03-21 | Hazeltine Research Inc | Wave-signal receiver |
US2449304A (en) * | 1946-05-16 | 1948-09-14 | Weston Electrical Instr Corp | Supervisory electrical alarm system |
-
0
- NL NL79489D patent/NL79489C/xx active
- NL NL71621D patent/NL71621C/xx active
- BE BE468956D patent/BE468956A/xx unknown
-
1943
- 1943-03-13 GB GB15239/43A patent/GB585353A/en not_active Expired
- 1943-03-13 GB GB4156/43A patent/GB585347A/en not_active Expired
-
1945
- 1945-03-15 GB GB6604/45A patent/GB591965A/en not_active Expired
- 1945-11-05 GB GB29286/45A patent/GB598399A/en not_active Expired
- 1945-11-05 GB GB29289/45A patent/GB598401A/en not_active Expired
- 1945-11-05 GB GB29285/45A patent/GB598398A/en not_active Expired
- 1945-11-05 GB GB29287/45A patent/GB604239A/en not_active Expired
- 1945-11-05 GB GB29288/45A patent/GB598400A/en not_active Expired
- 1945-11-05 GB GB29284/45A patent/GB603901A/en not_active Expired
-
1946
- 1946-05-21 CH CH271003D patent/CH271003A/de unknown
- 1946-05-21 CH CH267424D patent/CH267424A/de unknown
- 1946-05-22 CH CH270289D patent/CH270289A/de unknown
- 1946-08-21 US US692084A patent/US2657306A/en not_active Expired - Lifetime
- 1946-08-23 FR FR932678D patent/FR932678A/fr not_active Expired
- 1946-08-23 FR FR942850D patent/FR942850A/fr not_active Expired
- 1946-08-23 FR FR941719D patent/FR941719A/fr not_active Expired
- 1946-10-05 BE BE468321A patent/BE468321A/fr unknown
- 1946-10-05 BE BE468320A patent/BE468320A/fr unknown
- 1946-10-29 BE BE468837A patent/BE468837A/fr unknown
-
1947
- 1947-07-12 US US760563A patent/US2524491A/en not_active Expired - Lifetime
- 1947-07-15 US US760960A patent/US2524495A/en not_active Expired - Lifetime
- 1947-07-22 US US762736A patent/US2552914A/en not_active Expired - Lifetime
- 1947-07-22 US US762730A patent/US2617020A/en not_active Expired - Lifetime
- 1947-07-22 US US762733A patent/US2524493A/en not_active Expired - Lifetime
- 1947-07-22 US US762732A patent/US2576495A/en not_active Expired - Lifetime
- 1947-07-22 US US762731A patent/US2524492A/en not_active Expired - Lifetime
- 1947-07-22 US US762734A patent/US2524494A/en not_active Expired - Lifetime
- 1947-08-05 US US766392A patent/US2541558A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB243407A (en) * | 1924-07-22 | 1925-11-23 | Sydney Brydon | Improvements in and relating to the employment of thermionic valve circuits |
GB307177A (en) * | 1928-02-07 | 1929-03-07 | Arthur Reginald Jones | Improvements in or relating to wireless receiving systems |
US2006803A (en) * | 1931-06-12 | 1935-07-02 | Rca Corp | Short wave receiver |
US2045700A (en) * | 1935-02-05 | 1936-06-30 | Radio Patents Corp | Radio receiving system |
US2147595A (en) * | 1937-12-09 | 1939-02-14 | Rca Corp | Ultra high frequency transceiver |
US2414992A (en) * | 1944-02-11 | 1947-01-28 | Hazeltine Research Inc | Superregenerative receiver |
US2429513A (en) * | 1944-02-11 | 1947-10-21 | Hazeltine Research Inc | Gain-control arrangement |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3015728A (en) * | 1959-10-22 | 1962-01-02 | Hazeltine Research Inc | Noise suppressor system for a superregenerative receiver |
Also Published As
Publication number | Publication date |
---|---|
US2524492A (en) | 1950-10-03 |
US2524491A (en) | 1950-10-03 |
CH270289A (de) | 1950-08-31 |
NL79489C (de) | |
BE468320A (de) | 1946-11-30 |
GB585347A (en) | 1947-02-05 |
CH271003A (de) | 1950-09-30 |
GB598398A (en) | 1948-02-17 |
GB603901A (en) | 1948-06-24 |
US2576495A (en) | 1951-11-27 |
BE468837A (de) | 1948-05-15 |
US2617020A (en) | 1952-11-04 |
BE468956A (de) | 1900-01-01 |
GB598401A (en) | 1948-02-17 |
US2541558A (en) | 1951-02-13 |
FR932678A (fr) | 1948-03-30 |
GB585353A (en) | 1947-02-05 |
GB598399A (en) | 1948-02-17 |
FR941719A (fr) | 1949-01-19 |
FR942850A (fr) | 1949-02-18 |
CH267424A (de) | 1950-03-31 |
US2524493A (en) | 1950-10-03 |
NL71621C (de) | |
GB591965A (en) | 1947-09-03 |
US2552914A (en) | 1951-05-15 |
BE468321A (de) | 1946-11-30 |
GB604239A (en) | 1948-06-30 |
US2524494A (en) | 1950-10-03 |
GB598400A (en) | 1948-02-17 |
US2524495A (en) | 1950-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2657306A (en) | Radio receiving circuit arrangement | |
US2408826A (en) | Combined frequency modulation radio transmitter and receiver | |
US2414992A (en) | Superregenerative receiver | |
US2460202A (en) | Radio receiver gain-control arrangement | |
US2429513A (en) | Gain-control arrangement | |
US2513786A (en) | Receiver system | |
US2357975A (en) | Frequency modulation system | |
US2489273A (en) | Radio-frequency converting circuits | |
US2459798A (en) | Signal translator blocking circuit | |
US2376034A (en) | Facsimile apparatus | |
US2531433A (en) | Time sharing duplex communication system | |
US2420249A (en) | Amplitude modulation reducing circuit | |
US2454396A (en) | Wave-signal receiver-transmitter system | |
US2390503A (en) | Limiter circuit for frequency modulation receivers | |
US2584132A (en) | Radio receiving system | |
US2287065A (en) | Modulation and relay | |
US2428300A (en) | Ultra high frequency receiving system | |
US2412935A (en) | System for control of receiver reception by an associated transmitter | |
US2414440A (en) | Voice frequency ringer | |
US2548814A (en) | Frequency shift signaling | |
GB628348A (en) | Improvements in or relating to control circuits for signal transmission systems | |
US2520136A (en) | Superregenerative receiver for electromagnetic waves | |
US2698876A (en) | Transmitting device for frequencyshift telegraphy | |
US1876163A (en) | Wave signaling system | |
US1578490A (en) | Apparatus for preventing interference in radiosignaling |