[go: up one dir, main page]

US2600912A - Speed reducing mechanism - Google Patents

Speed reducing mechanism Download PDF

Info

Publication number
US2600912A
US2600912A US729451A US72945147A US2600912A US 2600912 A US2600912 A US 2600912A US 729451 A US729451 A US 729451A US 72945147 A US72945147 A US 72945147A US 2600912 A US2600912 A US 2600912A
Authority
US
United States
Prior art keywords
bearings
shafts
bearing
casing
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US729451A
Inventor
Gordon L Olson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US729451A priority Critical patent/US2600912A/en
Application granted granted Critical
Publication of US2600912A publication Critical patent/US2600912A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/033Series gearboxes, e.g. gearboxes based on the same design being available in different sizes or gearboxes using a combination of several standardised units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19679Spur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2186Gear casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2186Gear casings
    • Y10T74/2189Cooling

Definitions

  • This invention relates to mechanisms of the type much used in industry to reduce the speed of a motor, or other prime mover, to that desired for the particular machine to be driven.
  • the invention aims to devise a mechanism of this character which can be manufactured very economically; will be exceptionally sturdy in construction; capable of giving long, trouble-free service; and which can be quickly changed over to reverse the shafts for either a right or lefthand drive, as may be desired.
  • Figs. 1 and 2 are side and end views, respectively, of a single speed-reduction drive embodying this invention
  • Fig. 3 is a horizontal, sectional View taken through the plane on which the casing is divided and illustrating the lower half of the mechanism shown in Fig. 2
  • Fig. 4 is a view, similar to Fig. 3, showing the shafts and bearings reversed;
  • Figs. 5 and 6 are side and end views, respectively, of a speed reducing mechanism in which a double reduction is accomplished;
  • Fig. 7 is a view, similar to Fig. 3, but showing the double reducing mechanism
  • Fig. 8 is a view similar to Fi 7, but showin the parts laterally reversed;
  • Fig. 9 is a view, similar to Fig. 7, but showing a somewhat modified construction.
  • Fig. 10 is a vertical, sectional view on the line ill-I 0, Fig. 9.
  • the mechanism there shown comprises an input shaft 2 and an output shaft 3. supporting the input shaft are two sets of antifriction bearings 4 and 5 mounted on the shaft at opposite ends or the driving pinion 5.
  • the bearings 4 are mounted in a socket formed to receive them in the inner end of a bearing cap I, while the other bearing 5 is similarly mounted in a cap 8 through which the shaft 2 extends. It is encircled by an oil seal it which is pressed into the cap. Both of these caps are secured to the outer surface of the casing 12 by bolts.
  • the output shaft 3 is similarly supported, eX- cept that its bearings 13 and I4 are mounted directly in bores formed in alignment with each other in the opposite walls of the casing, but caps l5 and [5 similar to those shown at I and 8, re-
  • the bores for the bearing structures supporting the input shaft namely, the bearings and the caps in which they are mounted, are of the same diameter so that both can be drilled simultaneously by the same tool.
  • the bores in which the bearing structures for the output shaft 3 are mounted are mounted.
  • the bores for both shafts are of the same diameter. This is an advantage from a manufacturing standpoint for the reason that when the casing I2 is set up in a jig or fixture which supports it for boring or drilling, the tool which performs this operation can be run completely through both bores so that they can be formed without'changing the position of the easing in the machine. If the machine is of a multiple type the bores for both shafts can be drilled at the same time. If reaming is necessary, that operation also is facilitated by this arrangement, and the manufacturing expense correspondingly reduced.
  • the construction so provided permits the interchange of the two shafts, if that should be necessary or desirable in order to suit the space requirements of some particular location in which the mechanism is to be used.
  • the shafts 2 and 3 can be reversed, end for end, so that if the unit was originally assembled for a righthand drive it can be changed over to a left-rhand drive. Or, if circumstances later require, it can be changed back again.
  • the casing is divided horizontally on a plane passing through the axes of the two shafts and the sections normally are secured together by bolts.
  • This casing is made oil-tight so that the gears and the bearings run continuously in a bath of oil.
  • the input shaft is illustrated at [8, and the output shaft at 20.
  • These two shafts are positioned in axial alignment with each other and are mounted in much the same manner as in the construction above described, except that the adjacent inner ends of the two shafts are supported by a center bearing structure.
  • the outer bearing for the input shaft is illustrated at 2
  • This shaft is supported by another antifriction bearing 23 mounted in a bearing holder 24 which fits into a socket formed in the bearing block 25 that is cast integral with the bottom section of the casing 35. It is rigid with the latter and the entire center section of the casing is strengthened and stiffened by the rib 26.
  • Two keys 21-21 lock the holder 24 in its operative position. They can be lifted out but are supported against lateral movement by pins (not shown) which extend upwardly from the bottom of the easing into small holes shown in the keys.
  • the output shaft is supported in an outer bearing 28 and an inner bearing 30, the former being associated with a cap 3
  • This double reduction mechanism also includes a countershaft 32, the ends of which are supported in antifriction bearings backed up by the caps 33 and 34, both of which are bolted to the outer surfaces of the casing 35.
  • This shaft carries a gear 36 driven by the pinion 3'! on the input shaft, and its pinion 38 drives a gear 49 on the output shaft, speed reductions being produced by each pair of intermeshing gears.
  • is shrunk on the countershaft 32 where it cooperates with the hubs of the gearing members 36 and 38 at opposite ends of it to stiffen this countershaft.
  • the positions of the countershaft and the input and output shafts can be interchanged in the same manner that the shafts 2 and 3 can each be made to take the place of the other.
  • the bearings and shafts can be laterally reversed to produce either a right or left-hand drive and to change from one to the other, as desired.
  • a reversal is illustrated in Fig. 8.
  • the center bearings for the input and output shafts I8 and 20, respectively must be reversed, as well as the outside bearings, but this can readily be done by lifting out the keys 2'l21 after the shafts and their bearings have been removed, and then replacing the holder 24 in a laterally reversed relation to that shown in Fig. '7.
  • the shafts and their bearings can then be replaced in a laterally opposite relationship to that illustrated in said figure.
  • Figs. 9 and 10 show a construction essentially like that illustrated in Fig. '7 and the parts, corresponding to those shown in the latter figure, are indicated by the same, but primed, numerals. This construction differs from that of Fig. 7 in two particulars:
  • and 23' for the input shaft I8 are mounted directly in the bores formed for them in the wall of the casing and in the center bearing block 25', instead of being mounted, one in the cap 22 and the other in the holder 24, as in Fig. '7, and the inner races of these bearings are mounted on bushings 62-42 which are pressed or shrunk on the shaft I8.
  • this invention provides an exceptionally simple, sturdy and reliable form of speed-reducing mechanism which, because of the interchangeability of the parts, can readily be adapted to suit a variety of conditions which it has never been possible to meet in a single speed reduction mechanism heretofore, so far as applicant has been able to learn.
  • the expense of manufacture has been substantially reduced for the reasons above described.
  • a speed reducing mechanism comprising a casing, input and output shafts, said shafts being in axial alignment with each other, a countershaft in said casing parallel with and spaced laterally from said input and output shafts, cooperating gears of different diameters supported on said shafts for transmitting motion from said input to said output shaft through said countershaft and bearings in the walls of said casing supporting said shaft, all of said bearings having the same outside dimensions whereby they, to-
  • said casing at points included between the bearings having extended body portions to provide spaces in which gears of relatively larger diameter are free to rotate when in an interchanged position, in which the gears 1 are located on the shafts in positions of fixed abutment with their respective bearings and may, together with said bearings and shafts, be shifted end for end from a right-hand to a left-hand drive, and vice versa, including antifriction bearings supporting the adjacent inner ends of said input and output shafts, a bearing block rigid with said casing and having a socket in which the latter bearings are removably supported, and a removable spacer in said socket separating the bearings supported in it.
  • a gearing assembly including a housing, said housing being formed with a plurality of aligned bores of uniform diameter for the arrangement of parallel interchangeable and reversible shafts supporting gearing, bearings for the ends of said shafts, the gears on said shafts being so positioned that lateral relative positioning of the shafts is required to permit proper intermeshing of the gears and the positioning of the gears from the inner sidewalls of the housing when said shafts are interchanged or reversed, interchangeable plugs for the aligned bores, said plugs including flanges abutting the outer faces of the housing and inwardly projecting annular abutments of different length, said abutments being of varied length and adapted to extend into said bores for supporting and positioning the inner face of the shaft bearings, whereby said shaft bearings may with their shafts be fixed in variable positions laterally with respect to the sidewalls of the housing by an interchange of the plugs with projecting annular abutments of predetermined lengths, and means for securing the plugs in fixed

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)

Description

June 17, 1952 Filed Feb. 19, 1947 G. L. OLSON SPEED REDUCING MECHANISM 5 Sheets-Sheet l June 17, 1952 e. OLSON SPEED REDUCING MECHANISM 5 Sheets-Sheet 5 Filed Feb. 19, 1947 June 17, 1952 2,600,912
G. L. OLSON SPEED REDUCING MECHANISM Filed Feb. 19, 1947 5 SheetsSheet 4 l l l I I I June 17, 1952 G. OLSON SPEED REDUCING MECHANISM 5 Sheets-Sheet 5 Filed Feb. 19, 1947 Patented June 17, 1952 UNITED STATES PATENT OFFICE SPEED REDUCING MECHANISM Gordon L. Olson, Arlington, Mass.
Application February 19, 1947, Serial No. 729,451
4 Claims.
This invention relates to mechanisms of the type much used in industry to reduce the speed of a motor, or other prime mover, to that desired for the particular machine to be driven. The invention aims to devise a mechanism of this character which can be manufactured very economically; will be exceptionally sturdy in construction; capable of giving long, trouble-free service; and which can be quickly changed over to reverse the shafts for either a right or lefthand drive, as may be desired.
The nature of the invention will be readily understood from the following description when read in connection with the accompanying drawings, and the novel features will be particularly pointed out in the appended claims.
In the drawings,
Figs. 1 and 2 are side and end views, respectively, of a single speed-reduction drive embodying this invention;
Fig. 3 is a horizontal, sectional View taken through the plane on which the casing is divided and illustrating the lower half of the mechanism shown in Fig. 2
Fig. 4 is a view, similar to Fig. 3, showing the shafts and bearings reversed;
Figs. 5 and 6 are side and end views, respectively, of a speed reducing mechanism in which a double reduction is accomplished;
Fig. 7 is a view, similar to Fig. 3, but showing the double reducing mechanism;
Fig. 8 is a view similar to Fi 7, but showin the parts laterally reversed;
Fig. 9 is a view, similar to Fig. 7, but showing a somewhat modified construction; and
Fig. 10 is a vertical, sectional view on the line ill-I 0, Fig. 9.
Referring first to Figs. 1 to 4, inclusive, the mechanism there shown comprises an input shaft 2 and an output shaft 3. supporting the input shaft are two sets of antifriction bearings 4 and 5 mounted on the shaft at opposite ends or the driving pinion 5. The bearings 4 are mounted in a socket formed to receive them in the inner end of a bearing cap I, while the other bearing 5 is similarly mounted in a cap 8 through which the shaft 2 extends. It is encircled by an oil seal it which is pressed into the cap. Both of these caps are secured to the outer surface of the casing 12 by bolts.
The output shaft 3 is similarly supported, eX- cept that its bearings 13 and I4 are mounted directly in bores formed in alignment with each other in the opposite walls of the casing, but caps l5 and [5 similar to those shown at I and 8, re-
spectively, are associated with this shaft to hold the hearings in their operative positions in the casing. Power is transmitted from the input to the output shaft by the pinion 6 and the gear I! keyed to, or pressed on, the respective shafts, these two gears meshing with each other.
It should be observed that the bores for the bearing structures supporting the input shaft, namely, the bearings and the caps in which they are mounted, are of the same diameter so that both can be drilled simultaneously by the same tool. This also is true of the bores in which the bearing structures for the output shaft 3 are mounted. In addition, the bores for both shafts are of the same diameter. This is an advantage from a manufacturing standpoint for the reason that when the casing I2 is set up in a jig or fixture which supports it for boring or drilling, the tool which performs this operation can be run completely through both bores so that they can be formed without'changing the position of the easing in the machine. If the machine is of a multiple type the bores for both shafts can be drilled at the same time. If reaming is necessary, that operation also is facilitated by this arrangement, and the manufacturing expense correspondingly reduced.
In addition to this advantage, the construction so provided permits the interchange of the two shafts, if that should be necessary or desirable in order to suit the space requirements of some particular location in which the mechanism is to be used. This is illustrated in Fig. 4 in which the bearings for the two shafts Z and 3 have been interchanged in the casing 12 so that each shaft and its bearings occupy the space in the casing formerly occupied by the other shaft.
Similarly, because the outside diameters of all four bearing structures are equal, the shafts 2 and 3 can be reversed, end for end, so that if the unit was originally assembled for a righthand drive it can be changed over to a left-rhand drive. Or, if circumstances later require, it can be changed back again.
This flexibili y of he unit is an exceedin ly imp n practical advanta e. It has been cu tomary to make these drives either right-hand or left-hand, If a concern ordered one type and later discovered that it should have ordered the oth r. and the conditions under which it must be used are such that it cannot be turned around, the matter of securing the desired drive and the service which it is to perform, must be delayed until a u it of the desired hand is obtaine This ften involves much annoyance, delay and expense, all of which can be obviated with applicants construction.
As best shown in Figs. 1 and 2, the casing is divided horizontally on a plane passing through the axes of the two shafts and the sections normally are secured together by bolts. This casing is made oil-tight so that the gears and the bearings run continuously in a bath of oil.
The construction above described provides only a single reduction in speed, but the invention is equally applicable to a construction in which a double reduction is accomplished, and such an arrangment is illustrated in Figs. 5 to '7. Referring more particularly to Fig. '1, the input shaft is illustrated at [8, and the output shaft at 20. These two shafts are positioned in axial alignment with each other and are mounted in much the same manner as in the construction above described, except that the adjacent inner ends of the two shafts are supported by a center bearing structure. As shown, the outer bearing for the input shaft is illustrated at 2| and is supported in a cap 22 in essentially the same manner that the input shaft 2 is supported by the cap 8 and its cooperating bearing. The opposite end of this shaft is supported by another antifriction bearing 23 mounted in a bearing holder 24 which fits into a socket formed in the bearing block 25 that is cast integral with the bottom section of the casing 35. It is rigid with the latter and the entire center section of the casing is strengthened and stiffened by the rib 26. Two keys 21-21 lock the holder 24 in its operative position. They can be lifted out but are supported against lateral movement by pins (not shown) which extend upwardly from the bottom of the easing into small holes shown in the keys.
The output shaft is supported in an outer bearing 28 and an inner bearing 30, the former being associated with a cap 3| in the same manner that the output shaft 3 is supported by the bearing 14 and cap I6 in Fig. 3, but the outer cone of the inner bearing 30 fits into the socket formed in the bearing block 25 and is locked in place by the same keys which hold the bearing 24. The latter bears against the outer race of the inner bearing 30.
In assemblin this input and output shaft combination, the inner bearings are properly placed in the socket in the block 25; the outer bearings are brought into proper position; and as the lower bolts of the caps 22 and 3| are tightened up, one or both caps are shimmed more or less, as may be found necessary in order to adjust the antifriction bearings properly.
This double reduction mechanism also includes a countershaft 32, the ends of which are supported in antifriction bearings backed up by the caps 33 and 34, both of which are bolted to the outer surfaces of the casing 35. This shaft carries a gear 36 driven by the pinion 3'! on the input shaft, and its pinion 38 drives a gear 49 on the output shaft, speed reductions being produced by each pair of intermeshing gears.
Preferably a ring 4| is shrunk on the countershaft 32 where it cooperates with the hubs of the gearing members 36 and 38 at opposite ends of it to stiffen this countershaft.
It will be observed that in this construction, as in that above described, the bores in which the bearing structures are mounted can be produced in the same manner as above explained in connection with Figs. 2 and 4. It should also be noted that the outside diameter of all the bearing members are the same. Consequently,
the positions of the countershaft and the input and output shafts can be interchanged in the same manner that the shafts 2 and 3 can each be made to take the place of the other. Likewise, the bearings and shafts can be laterally reversed to produce either a right or left-hand drive and to change from one to the other, as desired.
Such a reversal is illustrated in Fig. 8. In making this reversal, the center bearings for the input and output shafts I8 and 20, respectively, must be reversed, as well as the outside bearings, but this can readily be done by lifting out the keys 2'l21 after the shafts and their bearings have been removed, and then replacing the holder 24 in a laterally reversed relation to that shown in Fig. '7. The shafts and their bearings can then be replaced in a laterally opposite relationship to that illustrated in said figure.
Figs. 9 and 10 show a construction essentially like that illustrated in Fig. '7 and the parts, corresponding to those shown in the latter figure, are indicated by the same, but primed, numerals. This construction differs from that of Fig. 7 in two particulars:
First: The bearings 2| and 23' for the input shaft I8 are mounted directly in the bores formed for them in the wall of the casing and in the center bearing block 25', instead of being mounted, one in the cap 22 and the other in the holder 24, as in Fig. '7, and the inner races of these bearings are mounted on bushings 62-42 which are pressed or shrunk on the shaft I8.
Second: The change just described does away with the holder 24 and with the keys 2l21 so that both of the inner bearings for the coaxial shafts l8 and 20' rest directly in sockets formed in the block 25'. Also a spacing ring 43 is inserted between these inner bearings to hold them apart. This ring has a hole to receive a centering pin fixed in the bottom of the casing and another in the cap. The ring can be lifted out, if that should be desired.
The changes above mentioned make it possible to use antifriction bearings of the same size throughout the entire mechanism and thi simplifies manufacturing and assembling operations, as well as changing from one hand to the other, or making any of the other changes above described. In this connection, however, it may be pointed out that most of the antifriction bearings used in the construction shown in Fig. 7 are of the same dimensions, the exception being the two bearings 2| and 23 which support the input shaft l8. These are smaller than the other antifriction bearings.
As will be evident from the foregoing, this invention provides an exceptionally simple, sturdy and reliable form of speed-reducing mechanism which, because of the interchangeability of the parts, can readily be adapted to suit a variety of conditions which it has never been possible to meet in a single speed reduction mechanism heretofore, so far as applicant has been able to learn. In addition, the expense of manufacture has been substantially reduced for the reasons above described.
While I have herein shown and described preferred embodiments of my invention, it is contemplated that the invention may be embodied in other forms without departing from the spirit or scope thereof.
Having thus'described my invention, what I desire to claim as new is:
1. A speed reducing mechanism comprising a casing, input and output shafts, said shafts being in axial alignment with each other, a countershaft in said casing parallel with and spaced laterally from said input and output shafts, cooperating gears of different diameters supported on said shafts for transmitting motion from said input to said output shaft through said countershaft and bearings in the walls of said casing supporting said shaft, all of said bearings having the same outside dimensions whereby they, to-
gether with their respective shafts and gears, may
be interchanged, and said casing at points included between the bearings having extended body portions to provide spaces in which gears of relatively larger diameter are free to rotate when in an interchanged position, in which the gears 1 are located on the shafts in positions of fixed abutment with their respective bearings and may, together with said bearings and shafts, be shifted end for end from a right-hand to a left-hand drive, and vice versa, including antifriction bearings supporting the adjacent inner ends of said input and output shafts, a bearing block rigid with said casing and having a socket in which the latter bearings are removably supported, and a removable spacer in said socket separating the bearings supported in it.
2. In a gearing assembly including a housing, said housing being formed with a plurality of aligned bores of uniform diameter for the arrangement of parallel interchangeable and reversible shafts supporting gearing, bearings for the ends of said shafts, the gears on said shafts being so positioned that lateral relative positioning of the shafts is required to permit proper intermeshing of the gears and the positioning of the gears from the inner sidewalls of the housing when said shafts are interchanged or reversed, interchangeable plugs for the aligned bores, said plugs including flanges abutting the outer faces of the housing and inwardly projecting annular abutments of different length, said abutments being of varied length and adapted to extend into said bores for supporting and positioning the inner face of the shaft bearings, whereby said shaft bearings may with their shafts be fixed in variable positions laterally with respect to the sidewalls of the housing by an interchange of the plugs with projecting annular abutments of predetermined lengths, and means for securing the plugs in fixed position.
3. The structure of claim 2 characterized in that certain of the inwardly projecting annular abutments carried by the plugs are recessed at their inner extremities to receive portions of a bearing assembly.
4. The structure of claim 2 characterized in that central bearings are provided for at least one of the shafts, the central bearings being laterally shiftable.
GORDON L. OLSON.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 664,386 Davidson 1 Dec. 25, 1900 909,984 Brown Jan. 19, 1909 1,488,985 Hoge Apr. 1, 1924 1,521,104 Jones Dec. 30, 1924 1,615,543 I-linger Jan. 25, 1927 1,862,807 Shimer June 14, 1932 1,894,927 Schmitter Jan. 17, 1933 1,902,934 Acker Mar. 28, 1933 1,903,914 Parret Apr. 18, 1933 1,971,968 Schmitter Aug. 28, 1934 2,019,073 Cooper et a1. Oct. 29, 1935 2,059,754 Shaler Nov. 3, 1936 2,170,548 Christian Aug. 22, 1939 2,293,200 Foote Aug. 18, 1942 2,302,853 Gordon Nov. 24, 194
2,342,941 Johnson et a1. Feb. 29, 1944
US729451A 1947-02-19 1947-02-19 Speed reducing mechanism Expired - Lifetime US2600912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US729451A US2600912A (en) 1947-02-19 1947-02-19 Speed reducing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US729451A US2600912A (en) 1947-02-19 1947-02-19 Speed reducing mechanism

Publications (1)

Publication Number Publication Date
US2600912A true US2600912A (en) 1952-06-17

Family

ID=24931087

Family Applications (1)

Application Number Title Priority Date Filing Date
US729451A Expired - Lifetime US2600912A (en) 1947-02-19 1947-02-19 Speed reducing mechanism

Country Status (1)

Country Link
US (1) US2600912A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731855A (en) * 1956-01-24 schmal
US2811865A (en) * 1954-06-15 1957-11-05 Gen Motors Corp Transmission control
US2873615A (en) * 1957-08-07 1959-02-17 Falk Corp Divided power transmissions
US2960880A (en) * 1957-07-03 1960-11-22 Dana Corp Power take off
US3029661A (en) * 1959-07-09 1962-04-17 Falk Corp All purpose speed reducer
US3095712A (en) * 1957-09-23 1963-07-02 Thompson Ramo Wooldridge Inc Drive coupling
DE1284804B (en) * 1964-04-18 1968-12-05 Wuelfel Eisenwerk Two-part gear housing
US4297906A (en) * 1977-09-29 1981-11-03 Kenneth Costello Gear box
US4524638A (en) * 1982-06-07 1985-06-25 Atlas Copco Aktiebolag Gear box for a compressor plant
US4686868A (en) * 1985-06-07 1987-08-18 Heidrich Guenther Soundproofed gear box
US5501117A (en) * 1993-03-24 1996-03-26 Sew-Eurodrive Gmbh & Co. Motor assembly with gear housing containing pinion gear support bearing
US5680793A (en) * 1992-07-06 1997-10-28 Hansen Transmission International Nv Series of gear units
US5857389A (en) * 1996-05-29 1999-01-12 Sumitomo Machinery Corp. Of America Universal mount housing construction for parallel offset gearboxes and gearmotors
WO2002073070A1 (en) * 2001-03-12 2002-09-19 Hansen Transmissions International Nv Support for gear bearing elements
ES2184570A1 (en) * 2000-08-10 2003-04-01 Domenech Const Mec Universal box-casing for speed reducers
US20040012282A1 (en) * 2002-03-22 2004-01-22 Takashi Haga Reduction gear for geared motor, geared motor, and product group thereof
US20050241436A1 (en) * 2001-12-12 2005-11-03 Dirk-Olaf Leimann Cover for housing
US20060000301A1 (en) * 2004-06-22 2006-01-05 A. Friedr. Flender Aktiengesselschaft Spur-gear mechanism
US20130186223A1 (en) * 2010-10-13 2013-07-25 Autoinvent Transip Ab Stationary gear unit

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US664386A (en) * 1900-07-21 1900-12-25 Samuel Cleland Davidson Speed-reducing or speed-multiplying gear.
US909984A (en) * 1907-04-13 1909-01-19 Alexander T Brown Gearing.
US1488985A (en) * 1923-01-18 1924-04-01 W A Jones Foundry & Machine Co Change-speed device and the like
US1521104A (en) * 1922-10-23 1924-12-30 W A Jones Foundry & Machine Co Speed changer and the like
US1615543A (en) * 1925-02-09 1927-01-25 White Company Winch
US1862807A (en) * 1929-05-02 1932-06-14 Wilson Snyder Mfg Company Driving mechanism
US1894927A (en) * 1929-09-14 1933-01-17 Falk Corp Gear set
US1902934A (en) * 1931-08-27 1933-03-28 Cleveland Worm And Gear Compan Gear casing
US1903914A (en) * 1930-10-30 1933-04-18 Joseph Gossner And Mathias Leu Variable speed transmission
US1971968A (en) * 1933-05-25 1934-08-28 Falk Corp Geared motor
US2019073A (en) * 1931-12-30 1935-10-29 White Motor Co Clutch mechanism
US2059754A (en) * 1935-10-05 1936-11-03 William T Shaler Vibrator
US2170548A (en) * 1938-06-13 1939-08-22 Joseph D Christian Speed reduction unit
US2293200A (en) * 1940-01-15 1942-08-18 Foote Bradford Speed reducer
US2302853A (en) * 1940-04-09 1942-11-24 Joseph S Davis Speed change gear unit
US2342941A (en) * 1941-04-09 1944-02-29 Sterling Electric Motors Inc Enclosed variable-speed transmission

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US664386A (en) * 1900-07-21 1900-12-25 Samuel Cleland Davidson Speed-reducing or speed-multiplying gear.
US909984A (en) * 1907-04-13 1909-01-19 Alexander T Brown Gearing.
US1521104A (en) * 1922-10-23 1924-12-30 W A Jones Foundry & Machine Co Speed changer and the like
US1488985A (en) * 1923-01-18 1924-04-01 W A Jones Foundry & Machine Co Change-speed device and the like
US1615543A (en) * 1925-02-09 1927-01-25 White Company Winch
US1862807A (en) * 1929-05-02 1932-06-14 Wilson Snyder Mfg Company Driving mechanism
US1894927A (en) * 1929-09-14 1933-01-17 Falk Corp Gear set
US1903914A (en) * 1930-10-30 1933-04-18 Joseph Gossner And Mathias Leu Variable speed transmission
US1902934A (en) * 1931-08-27 1933-03-28 Cleveland Worm And Gear Compan Gear casing
US2019073A (en) * 1931-12-30 1935-10-29 White Motor Co Clutch mechanism
US1971968A (en) * 1933-05-25 1934-08-28 Falk Corp Geared motor
US2059754A (en) * 1935-10-05 1936-11-03 William T Shaler Vibrator
US2170548A (en) * 1938-06-13 1939-08-22 Joseph D Christian Speed reduction unit
US2293200A (en) * 1940-01-15 1942-08-18 Foote Bradford Speed reducer
US2302853A (en) * 1940-04-09 1942-11-24 Joseph S Davis Speed change gear unit
US2342941A (en) * 1941-04-09 1944-02-29 Sterling Electric Motors Inc Enclosed variable-speed transmission

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731855A (en) * 1956-01-24 schmal
US2811865A (en) * 1954-06-15 1957-11-05 Gen Motors Corp Transmission control
US2960880A (en) * 1957-07-03 1960-11-22 Dana Corp Power take off
US2873615A (en) * 1957-08-07 1959-02-17 Falk Corp Divided power transmissions
US3095712A (en) * 1957-09-23 1963-07-02 Thompson Ramo Wooldridge Inc Drive coupling
US3029661A (en) * 1959-07-09 1962-04-17 Falk Corp All purpose speed reducer
DE1284804B (en) * 1964-04-18 1968-12-05 Wuelfel Eisenwerk Two-part gear housing
US4297906A (en) * 1977-09-29 1981-11-03 Kenneth Costello Gear box
US4524638A (en) * 1982-06-07 1985-06-25 Atlas Copco Aktiebolag Gear box for a compressor plant
US4686868A (en) * 1985-06-07 1987-08-18 Heidrich Guenther Soundproofed gear box
US5680793A (en) * 1992-07-06 1997-10-28 Hansen Transmission International Nv Series of gear units
US5501117A (en) * 1993-03-24 1996-03-26 Sew-Eurodrive Gmbh & Co. Motor assembly with gear housing containing pinion gear support bearing
US5857389A (en) * 1996-05-29 1999-01-12 Sumitomo Machinery Corp. Of America Universal mount housing construction for parallel offset gearboxes and gearmotors
ES2184570A1 (en) * 2000-08-10 2003-04-01 Domenech Const Mec Universal box-casing for speed reducers
WO2002073070A1 (en) * 2001-03-12 2002-09-19 Hansen Transmissions International Nv Support for gear bearing elements
US20040159181A1 (en) * 2001-03-12 2004-08-19 Dirk-Olaf Leimann Support for gear bearing elements
US7210374B2 (en) * 2001-03-12 2007-05-01 Hansen Transmissions International Nv Support for gear bearing elements
US20050241436A1 (en) * 2001-12-12 2005-11-03 Dirk-Olaf Leimann Cover for housing
US20040012282A1 (en) * 2002-03-22 2004-01-22 Takashi Haga Reduction gear for geared motor, geared motor, and product group thereof
US7370549B2 (en) * 2002-03-22 2008-05-13 Sumitomo Heavy Industries, Ltd. Reduction gear for geared motor, geared motor, and product group thereof
US20060000301A1 (en) * 2004-06-22 2006-01-05 A. Friedr. Flender Aktiengesselschaft Spur-gear mechanism
US8555747B2 (en) * 2004-06-22 2013-10-15 Siemens Aktiengesellschaft Air cooled gear housing
US20130186223A1 (en) * 2010-10-13 2013-07-25 Autoinvent Transip Ab Stationary gear unit
US9512899B2 (en) * 2010-10-13 2016-12-06 Autoinvent Transip Ab Stationary gear unit

Similar Documents

Publication Publication Date Title
US2600912A (en) Speed reducing mechanism
US2170951A (en) Continuous power eccentric dual gear speed reducer
US3188888A (en) Epicyclic transmission
US3783710A (en) Power transmitting drive apparatus
CN204592162U (en) A kind of industrial robot high rigidity large speed ratio cycloidal reducer
US1217427A (en) Gearing.
SE448397B (en) LENKKOPPLING
US2439521A (en) Reducing gear mechanism
JP2006505748A (en) Bevel gear transmission, especially hypoid transmission
US1834754A (en) Gear pump
EP2495388B1 (en) Drilling head for drilling machines
TWM546631U (en) All-in-one coupling device for motor
US3364772A (en) Gearmotor unit
CN111336220B (en) Planetary gear type combined driving machine
US1167887A (en) Drill-press.
US1223259A (en) Planetary speed-reducing mechanism.
US2504066A (en) Reduction gear
TW202314141A (en) Cycloid speed reducer
CN212672334U (en) Planetary gear type combined transmission machine
US1836225A (en) Speed reducing pulley
US1745075A (en) Three-speed transmission
US1143617A (en) Transmission-gearing.
KR100823941B1 (en) reducer
CN218813998U (en) Rotary speed reducer of excavator
US2167748A (en) Variable speed gear transmission