US2541792A - Circuit breaker - Google Patents
Circuit breaker Download PDFInfo
- Publication number
- US2541792A US2541792A US642478A US64247846A US2541792A US 2541792 A US2541792 A US 2541792A US 642478 A US642478 A US 642478A US 64247846 A US64247846 A US 64247846A US 2541792 A US2541792 A US 2541792A
- Authority
- US
- United States
- Prior art keywords
- circuit breaker
- spark gap
- contact
- gas
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 description 28
- 238000007664 blowing Methods 0.000 description 12
- 230000008033 biological extinction Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/04—Means for extinguishing or preventing arc between current-carrying parts
- H01H33/16—Impedances connected with contacts
- H01H33/164—Impedances connected with contacts the impedance being inserted in the circuit by blowing the arc onto an auxiliary electrode
Definitions
- Circuit breakers constructed in this manner possess a most desirable arc extinction characteristic and may have very high power ratings in comparison to their size.
- resistance has been connected in parallel with the switch contacts. The method has been disclosed of connecting the resistance in circuit with a spark gap, the electrodes of the gap being located one behind the other in the blowing chamber which adjoins the switch contacts.
- Such an arrangement makes it possible to combine one electrode of the gap with the hollow switch contact with the result that a spark gap can be placed so near to the switch contacts that it is located in the range of a most favorable blowing action by the gas as it emerges from the mouth of the hollow contact. Furthermore, the distance between the electrodes of the arc gap is small and consequently the ignition and extinction characteristics for the spark gap are satisfactory.
- the spark gap in the compressed gas circuit breaker acts at the same time as an excess voltage leak, when for instance an inductive circuit is to be broken, where excess voltages can make their appearance.
- the spark gap In order to be able to effect an extinction of the arc in the spark gap even during phase opposition, the spark gap must have a good insulation characteristic, this affecting its protective effect in ordinary circuit-breaking.
- This invention relates to a compressed gas circuit breaker with at least one hollow switch contact and with spaced electrodes forming a spark gap located in the blowing chamber adjoining the contact.
- This spark gap when bridged by an arc connects a protective resistance in parallel with the switch contacts, means being provided according to the invention by which the actuating or striking voltage of the spark gap is changed automatically during an opening op- 2 eration of the circuit breaker so that at the beginning of a circuit-breaking operation, the voltage required to bridge the arc gap is small but increases during the operation and is finally brought back to its original value upon completion of the operation.
- Figs. 1 and 2 are vertical sections of two dilierent constructional examples of circuit breakers embodying the invention.
- the circuit breaker shown includes a pair of tubular insulating casings I and 2 which are separated by, and joined to, a hollow contact element 3.
- the hollow contact element of the circuit breaker consists of an assembly which includes a member 4, a pair of telescoped conductive sleeves 5 and 6, an annular plate 8 secured to the bottom of sleeve 6 and a spring Ii] positioned between the underside of fixed member 4 and the upper side of plate 8. Telescoped sleeves 5 and 6 fit snugly for good electrical contact, and these sleeves are integral with or secured to the contact member 6 and contact plate 8. respectively.
- the fixed contact member 4 contains a central opening II therethrough which is tapered outwardly from the bottom to the top in nozzle form.
- the openings through sleeves 5 and E, the opening II through contact member 4 and the opening I2 through plate 8 are all aligned so as to permit gas flow therethrough when the contacts of the circuit breaker separate.
- casing I constitutes a blowing chamber Ia for the circuit breaker, part of this chamber also serving as a spark gap X defined by a pair of electrodes I3 and I4.
- Electrode I3 is annular in form and is constituted by the mouth piece of an electrically conductive sleeve I5 which includes an upper cylindrical portion I6 and a lower tapered portion H.
- a muiller I8 is disposed within the top of the cylindrical portion I6.
- the outer diameter of the cylindrical portion I6 of sleeve I5 is substantially the same as the interior diameter of easing I and the sleeve I5 is joined to casing I at the junction line between the upper and lower sleeve portions I6, II.
- Gas pressure in the space between the inside wall surface of casing I and the outside wall of the tapered portion ll of the sleeve I5 increases under the action of the gas blast and serves a function which will be explained in detail hereinafter.
- Electrode I4 is a pin that is mounted for movement along the vertical axis of the circuit breaker.
- Pin I4 is slidable within a guide I9 of conductive material, the outside surface of pin [4 being in good electrical contact with the inside surface of guide l9.
- Pin I4 moves downwardly against the action of a spring 20, which is carried within guide l9, as gas pressure in the blowing chamber la increases.
- the lower portion of guide [9 terminates in an L-shaped tube 2
- a resistance 22 is connected to a terminal 23 on sleeve l and hence is in good electrical contact with electrode is since sleeve I5 is made of electrically conductive material.
- the other end of resistance 22 is connected via terminal 25, a conductive casing 25 and conductive bracket 26 to a fixed contact 21 of the circuit breaker which normally is engaged with the spring loaded contact plate 8.
- the spark gap X acts as a leak inside of the circuit breaker.
- the circuit breaker contacts 8 and 2'! will close, and electrode pin it will be moved back to its original position by the restoring force of compressed spring 20 as the gas pressure in chamber la decreases.
- the actuating or striking voltage of the spark gap X is accordingly adjusted by changing the distance between the two electrodes i3 and i l as a function of the accumulated gas pressure in the blowing chamber ia so that such voltage will be comparatively small at the beginning of an opening operation of the circuit breaker, the voltage increasing however, during circuit breaker operation and finally at the end of the operation of the circuit breaker being brought back to its original value. In this way, a certain protective action of the spark gap is assured for circuit-breaking and as an excess voltage leak.
- containing a small opening 32 is placed transversely within the sleeve IS.
- a throttle valve head 33 is normally held away from opening 32 by a spring 34 but during an opening operation of the circuit breaker, the initial increase of gas pressure in chamber Ia causes valve head 33 to move upwardly and increase the resistance to fiow of pressure gas through the opening 32, thus further increasing the gas pressure in chamber la and likewise simultaneously increasing the striking voltage of the spark gap X.
- the invention can be used in compressed gas circuit breakers provided with multiple or compound circuit-breaking, in which a plurality of sets of switch contacts are aligned one above the other to form a series of separate arcs as the circuit is broken.
- the resistance element paralleled with the contacts of the circuit breaker could be placed concentric with the blowing chamber instead of as a separate structural part beside the blowing chamber.
- a semi-conducting coating could moveover be employed as a resistance, or the blowing chamber wall itself could consist of semi-conducting resistance material.
- a pair of switch contact elements one of which is hollow, an arc blowingchamber adjoining said hollow contact, means supporting said contact elements for movement relative to each other under action of pressure gas to break connecticn therebetween, first, and second spaced elec trodes disposed in said chamber to define a spark gap, said first electrode being carried by said hollow contact and located in the path of the stream of pressure gas flowing therethrough, said second electrode being an annulus formed by the smaller end of a tapered sleeve set into and in contact with the wall of said chamber to form a pressure accumulating space between the exterior wall surface of tapered sleeve and the interior wall surface of said chamber, a resistance connected in parallel with said switch contact elements through said are gap, and means acting in response to a change in pressure of the gas in said chamber producing a corresponding change in the striking voltage of :said spark gap.
- the following references are of record in the eration and decreasing to said value upon comfile of this patent, pletion of the opening operation.
Landscapes
- Circuit Breakers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH607037X | 1945-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2541792A true US2541792A (en) | 1951-02-13 |
Family
ID=4523143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US642478A Expired - Lifetime US2541792A (en) | 1945-01-27 | 1946-01-21 | Circuit breaker |
Country Status (6)
Country | Link |
---|---|
US (1) | US2541792A (de) |
BE (1) | BE462653A (de) |
CH (1) | CH243918A (de) |
DE (1) | DE834710C (de) |
FR (1) | FR920611A (de) |
GB (1) | GB607037A (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE955618C (de) * | 1952-03-14 | 1957-01-03 | Licentia Gmbh | Druckgaschalter, insbesondere zum Abschalten hoher Spannungen |
DE1118899B (de) * | 1960-09-12 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE597533C (de) * | 1931-07-12 | 1934-05-26 | Aeg | Einrichtung zur Umformung hoher Spannungen mittels einer druckgasbeblasenen Funkenstrecke |
DE633945C (de) * | 1933-07-28 | 1936-08-13 | Voigt & Haeffner Akt Ges | Druckgasschalter |
GB538672A (en) * | 1939-03-30 | 1941-08-12 | Asea Ab | Compressed air circuit breaker having a resistance bridging the contacts |
US2290004A (en) * | 1936-07-30 | 1942-07-14 | Bbc Brown Boveri & Cie | Electric circuit breaker |
US2367934A (en) * | 1942-07-30 | 1945-01-23 | Vickers Electrical Co Ltd | Fluid blast circuit breaker |
US2391826A (en) * | 1942-07-30 | 1945-12-25 | Vickers Electrical Co Ltd | Fluid blast circuit breaker |
-
0
- BE BE462653D patent/BE462653A/xx unknown
-
1945
- 1945-01-27 CH CH243918D patent/CH243918A/de unknown
-
1946
- 1946-01-21 US US642478A patent/US2541792A/en not_active Expired - Lifetime
- 1946-01-23 GB GB2274/46A patent/GB607037A/en not_active Expired
- 1946-01-23 FR FR920611D patent/FR920611A/fr not_active Expired
-
1948
- 1948-12-24 DE DEP26692A patent/DE834710C/de not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE597533C (de) * | 1931-07-12 | 1934-05-26 | Aeg | Einrichtung zur Umformung hoher Spannungen mittels einer druckgasbeblasenen Funkenstrecke |
DE633945C (de) * | 1933-07-28 | 1936-08-13 | Voigt & Haeffner Akt Ges | Druckgasschalter |
US2290004A (en) * | 1936-07-30 | 1942-07-14 | Bbc Brown Boveri & Cie | Electric circuit breaker |
GB538672A (en) * | 1939-03-30 | 1941-08-12 | Asea Ab | Compressed air circuit breaker having a resistance bridging the contacts |
US2367934A (en) * | 1942-07-30 | 1945-01-23 | Vickers Electrical Co Ltd | Fluid blast circuit breaker |
US2391826A (en) * | 1942-07-30 | 1945-12-25 | Vickers Electrical Co Ltd | Fluid blast circuit breaker |
Also Published As
Publication number | Publication date |
---|---|
FR920611A (fr) | 1947-04-14 |
DE834710C (de) | 1952-03-24 |
BE462653A (de) | |
CH243918A (de) | 1946-08-15 |
GB607037A (en) | 1948-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3639712A (en) | Gas blast circuit interrupter having conducting orifice means | |
US5373130A (en) | Self-extinguishing expansion switch or circuit breaker | |
US4467158A (en) | Puffer type gas circuit | |
US2158846A (en) | Electric circuit breaker | |
US3989341A (en) | Electric connector apparatus and method | |
US2111416A (en) | Electric circuit breaker | |
US4329551A (en) | Alternating current interrupter with magnetic arc extinguishing means | |
GB375308A (en) | Improvements relating to electric switches and circuit breakers | |
US5391930A (en) | Circuit breaker with parallel resistor | |
US2367934A (en) | Fluid blast circuit breaker | |
US2459612A (en) | Compressed gas circuit interrupter | |
US4132876A (en) | Puffer type gas circuit breaker | |
US4754109A (en) | Compressed dielectric gas high-tension circuit breaker | |
US2287039A (en) | Electric circuit breaker | |
US2541792A (en) | Circuit breaker | |
US2306240A (en) | Gas blast circuit breaker | |
US2794886A (en) | Electric circuit breakers of the air or gas-blast type | |
JPS5887719A (ja) | 電力用遮断器 | |
US2275872A (en) | Gas blast electric circuit breaker | |
US2365132A (en) | Electric circuit breaker of the gas-blast type | |
US2470628A (en) | Circuit interrupter | |
US2467760A (en) | Circuit interrupter | |
US2222719A (en) | Air blast circuit breaker | |
US3287531A (en) | Terminal bushing having impedance means associated therewith | |
US2306242A (en) | Gas blast electric circuit breaker |