US2494120A - Expansion refrigeration system and method - Google Patents
Expansion refrigeration system and method Download PDFInfo
- Publication number
- US2494120A US2494120A US775708A US77570847A US2494120A US 2494120 A US2494120 A US 2494120A US 775708 A US775708 A US 775708A US 77570847 A US77570847 A US 77570847A US 2494120 A US2494120 A US 2494120A
- Authority
- US
- United States
- Prior art keywords
- gas
- line
- heat exchange
- vapors
- compressed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B11/00—Compression machines, plants or systems, using turbines, e.g. gas turbines
- F25B11/02—Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
Definitions
- This invention is for a refrigerating system and method by which refrigeration is produced by isentropically expanding the refrigerant to bring about the liquefication of a considerable portion thereof.
- the broad object of this invention is to provide a method and apparatus by means of which the isentropic (reversible adiabatic) expansion of the refrigerant is employed.
- a more specific object of t u invention is to em-- ploy this principle with hydrocarbon refrigerants, and particularly one-component refrigerants such as propane, methane, or the like.
- Another object of the invention is to provide a refrigeration process employing a relatively pure hydrocarbon refrigerant vapor by expansion under conditions to effect liquefication of a considerable portion thereof and the use of the liquefied portion as the refrigerant.
- a still further object of the invention is to provide an apparatus and method operating in a closed refrigeration cycle wherein the refrigerant such as methane is compressed, cooled with previously expanded methane vapors, expanded isentropically to a very low temperature to produce a substantial quantity of liquid methane.
- the resulting liquid is then separated from the vapor to be utilized in the refrigeration efifect and the separated vapors are utilized in the previously mentioned step to cool the compressed methane prior to its expansion and the vapors are then compressed to be used over again.
- This invention resides substantially in the combination, construction, arrangement and relative location of parts, steps and series of steps, all as will be described in detail below.
- the compressed hydrocarbon vapors are delivered through the line I to the heat exchanger 2 and from there through the line 3 to an expander such as an expansion turbine 4. From this turbine the expanded vapors including an appreciable percentage of liquefied hydrocarbon (condensate) is delivered by the line 5 to the scrubber 6 where the vapor and liquid phases are separated.
- the liquid phase comprising the further cooled liquefied hydrocarbon is passed by the line I to a flooded type evaporator 8 comprising the desired refrigeration effect.
- the fluid to be cooled is delivered to the evaporator 8 through the line 9 and removed therefrom through the line ID.
- vapors resulting from the evaporation of the liquid in the evaporator 8 are returned, from the vapor space of the evaporator 8, through the line I I to the heat exchanger 2.
- the vapors separated in the scrubber 6 are also delivered by line I2 to the heat exchanger 2 through the line I I.
- the vapors in the heat exchanger 2 are passed by the line l3 to the first stage compressor M driven by the turbine 4.
- Compressed vapors pass by the line I5 to the second stage compressor I6 after passing through the water cooled cooler IT.
- the compressed vapors from the compressor l6 are dellvered by the line I8 to a water cooled cooler I9 and from there pass into the line I.
- the heat exchanger 2 can be of any suitable and well known type available in the art and may, for example, consist of a casing forming one chamber and a plurality of tubes forming the second chamber.
- the compressed Vapors from line I pass through the tubes to line 3.
- the vapors delivered by line II to heat exchanger 2 fill the chamber surrounding the tubes thereof.
- the heat exchanger 8 is a flooded type evaporator wherein the liquid refrigerant to be evaporated is admitted to the shell in such a manner as to submerge the tube bundle through which the material to be refrigerated or cooled is flowing.
- the tube bundle in such an evaporator is usually positioned so as to be eccentric to the shell axis, thus allowing a. certain amount of free vapor space above the tube bundle and thus-above the level of liquid refrigerant which submerges the bundle.
- the vapors delivered by line II to heat exchanger 2 are withdrawn from the free vapor space of the evaporator 8.
- the scrubber 8 may be any device suitable to the purpose of separating the two phaserefrigerant into its component vapor and liquid content. There are many devices suitable for this purpose known to the art.
- the turbine 4 may be any suitable and available type of centrifugal or reciprocating expander of which the Kapitza turbine is an example of the former.
- the expander must be of the type capable of handling fluids containing an appreciable liquid content. Suitable forms of Kapitza turbines are disclosed in U. S. Patent No. 2,280,585, granted April 21, 1942.
- the compressed refrigerant delivered by line 3 to the expander 4 is in its vapor or partially liquefled state at a given pressure and at or close to the corresponding saturation temperature.
- the expander In order to insure the presence of a substantial amount of condensate in the exhaust from the expander l, the expander must perform work.
- the compressor ll may be driven by some other means it is preferable to drive it by the expander 4 in order that the total heat content of the vapor stream 3 be lowered by an amount suflicient to produce an appreciable amount of condensate in the exhaust of the expander.
- the operation of the expander is in accordance with the second law of thermodynamics.
- This two phase stream is then divided into its vapor and liquid phases in the scrubber 6 and the liquid portion thereof is expanded in the heat exhanger 8 so as to cool the material reaching it through the line 9 so that on leaving it through the line II! it will be at the desired low temperature.
- the resulting refrigerant vapors passing through the lines II and I2 still quite cool are passed in heat exchange relation with the compressed refrigerant vapors reaching the heat exchanger 2 through the line I, so as to chill them at the operating pressure used, to or close to their dew point.
- the relatively warm vapors are then passed by line I3 to compressor H where they are compressed to initial higher pressure, precooled in the cooler l1, further compressed to a final higher pressure in the compressor l8 and precooled in cooler H for delivery to the heat exchanger 2.
- methane is to be used as the refrigerant. Methane is delivered at a pressure of 200 pounds per square inch at a temperature of 95 F. by line i to the heat exchanger 2 from which it issues at the same pressure but at a temperature of -1'I5 R, which are conditions for substantial saturation. This stream is then expanded in the turbine l and the exhaust is at a pressure of about 20 pounds per square inch and a temperature of -230 F. The exhaust stream contains about 24% of liquid methane.
- the exhaust stream is then separated into its vapor and liquid phases in the scrubber 6 and the liquid at the same pressure and temperature is delivered to the heat exchanger 8 where evaporation occurs.
- the resulting vapor at a pressure of 20 pounds per square inch and a temperature of -230 F. joins the vapor at the same pressure and temperature coming from the scrubber 6 through the line I! and the whole is delivered to the heat exchanger 2.
- the material to be refrigerated is cooled by heat exchange through the walls of the tubes of the heat exchanger 8.
- the vapors delivered through the line H are at saturation temperatureand are used to sub-cool the precooled stream" delivered by line I into the heat exchanger 2 from a" temperature of 95 F. to a temperature of -175 F. as previously stated.
- compressor H can be driven from some other power source.
- centrifugal expander is employed to drive the centrifugal compressor in order to take advantage of the energy produced by the isentropic expansion of the saturated vapor stream in the turbine 4.
- a method of refrigeration comprising compressing a gas to superatmospheric pressure, cooling the gas to about saturation temperature at that pressure, isentropically expanding said gas to liquefy a portion thereof, separating the liquid portion from the unliquefied gas, and passing the liquid portion in heat exchange relation with a warmer substance to be cooled.
- said gas comprising a single gas such as methane.
- a refrigeration method comprising isentropically expanding a saturated stream of compressed gas to liquefy a portion thereof. separating the liquid portion from the unliquefied portion, evaporating the liquid portion in heat exchange relation with a substance to be cooled, and returning the gas formed from said separation and evaporation steps in heat exchange relation with compressed gas to cool it to saturation temperature. said saturated gas supplying the gas for isentropic expansion.
- the combination comprising a source of compressed and saturated gas, an expander for liquefying a portion of said gas, means for separating the liquid portion from the unliquefied portion, and means for evaporating the liquefied portion in heat exchange relation with a substance to be cooled.
- means for passing the gas from said separating and evaporating means in heat exchange relation with compressed gas to cool it to saturation temperature means driven by said centrifugal expander for compressing the gas after passing through said heat exchange means and means for delivering the compressed gas to said heat exchange means.
- means for passing the gas from said separating and evaporating means in heat exchange relation with compressed gas to cool it to saturation temperature means driven by said centrifugal expander for compressing the gas after passing through said heat exchange means, and means including cooling means for delivering the compressed gas to said heat exchange means 13.
- said expander being a centrifugal expander.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
Jam m, EQSG a. J. FERRO, JR 2949mm EXPANSION REFRIGERATION SYSTEM AND METHOD 1 Filed Sept. 23, 1947 Comprzssor INVENTOR. Be r'nardo 3. Fe YYO, Fr
Patented Jan. 10, 1950 EXPANSION REFRIGERATION SYSTEM AND METHOD Bernardo J. Ferro, J r.,
Bartlesville, kla., assignor to Phillips Petroleum Company, a corporation of Delaware Application September 23, 1947, Serial No. 775,708
13 Claims.
This invention is for a refrigerating system and method by which refrigeration is produced by isentropically expanding the refrigerant to bring about the liquefication of a considerable portion thereof.
The broad object of this invention is to provide a method and apparatus by means of which the isentropic (reversible adiabatic) expansion of the refrigerant is employed.
A more specific object of t u invention is to em-- ploy this principle with hydrocarbon refrigerants, and particularly one-component refrigerants such as propane, methane, or the like.
Another object of the invention is to provide a refrigeration process employing a relatively pure hydrocarbon refrigerant vapor by expansion under conditions to effect liquefication of a considerable portion thereof and the use of the liquefied portion as the refrigerant.
A still further object of the invention is to provide an apparatus and method operating in a closed refrigeration cycle wherein the refrigerant such as methane is compressed, cooled with previously expanded methane vapors, expanded isentropically to a very low temperature to produce a substantial quantity of liquid methane. The resulting liquid is then separated from the vapor to be utilized in the refrigeration efifect and the separated vapors are utilized in the previously mentioned step to cool the compressed methane prior to its expansion and the vapors are then compressed to be used over again.
Other and more detailed objects of the invention will be apparent from the following description of the embodiment thereof illustrated in the accompanying drawings.
This invention resides substantially in the combination, construction, arrangement and relative location of parts, steps and series of steps, all as will be described in detail below.
In the accompanying drawing, the single figure is a diagrammatic and schematic illustration of an apparatus in accordance with this invention.
The compressed hydrocarbon vapors are delivered through the line I to the heat exchanger 2 and from there through the line 3 to an expander such as an expansion turbine 4. From this turbine the expanded vapors including an appreciable percentage of liquefied hydrocarbon (condensate) is delivered by the line 5 to the scrubber 6 where the vapor and liquid phases are separated. The liquid phase comprising the further cooled liquefied hydrocarbon is passed by the line I to a flooded type evaporator 8 comprising the desired refrigeration effect. The fluid to be cooled is delivered to the evaporator 8 through the line 9 and removed therefrom through the line ID. The
vapors resulting from the evaporation of the liquid in the evaporator 8 are returned, from the vapor space of the evaporator 8, through the line I I to the heat exchanger 2. The vapors separated in the scrubber 6 are also delivered by line I2 to the heat exchanger 2 through the line I I. The vapors in the heat exchanger 2 are passed by the line l3 to the first stage compressor M driven by the turbine 4. Compressed vapors pass by the line I5 to the second stage compressor I6 after passing through the water cooled cooler IT. The compressed vapors from the compressor l6 are dellvered by the line I8 to a water cooled cooler I9 and from there pass into the line I.
The heat exchanger 2 can be of any suitable and well known type available in the art and may, for example, consist of a casing forming one chamber and a plurality of tubes forming the second chamber. The compressed Vapors from line I pass through the tubes to line 3. The vapors delivered by line II to heat exchanger 2 fill the chamber surrounding the tubes thereof. The heat exchanger 8 is a flooded type evaporator wherein the liquid refrigerant to be evaporated is admitted to the shell in such a manner as to submerge the tube bundle through which the material to be refrigerated or cooled is flowing. As is well understood and as is diagrammatically illustrated in the drawing, the tube bundle in such an evaporator is usually positioned so as to be eccentric to the shell axis, thus allowing a. certain amount of free vapor space above the tube bundle and thus-above the level of liquid refrigerant which submerges the bundle. Thus, the vapors delivered by line II to heat exchanger 2 are withdrawn from the free vapor space of the evaporator 8.
The scrubber 8 may be any device suitable to the purpose of separating the two phaserefrigerant into its component vapor and liquid content. There are many devices suitable for this purpose known to the art.
The turbine 4 may be any suitable and available type of centrifugal or reciprocating expander of which the Kapitza turbine is an example of the former. The expander must be of the type capable of handling fluids containing an appreciable liquid content. Suitable forms of Kapitza turbines are disclosed in U. S. Patent No. 2,280,585, granted April 21, 1942.
The compressed refrigerant delivered by line 3 to the expander 4 is in its vapor or partially liquefled state at a given pressure and at or close to the corresponding saturation temperature. In order to insure the presence of a substantial amount of condensate in the exhaust from the expander l, the expander must perform work. Thus. although the compressor ll may be driven by some other means it is preferable to drive it by the expander 4 in order that the total heat content of the vapor stream 3 be lowered by an amount suflicient to produce an appreciable amount of condensate in the exhaust of the expander. Those skilled in the art will understand that by this operation the operation of the expander is in accordance with the second law of thermodynamics. By this method of operating considerably more heat energy is available because of the release of latent heat resulting from the relatively large percentage of condensate formed by what may be termed isentropic expansion.
This two phase stream is then divided into its vapor and liquid phases in the scrubber 6 and the liquid portion thereof is expanded in the heat exhanger 8 so as to cool the material reaching it through the line 9 so that on leaving it through the line II! it will be at the desired low temperature. The resulting refrigerant vapors passing through the lines II and I2 still quite cool are passed in heat exchange relation with the compressed refrigerant vapors reaching the heat exchanger 2 through the line I, so as to chill them at the operating pressure used, to or close to their dew point. The relatively warm vapors are then passed by line I3 to compressor H where they are compressed to initial higher pressure, precooled in the cooler l1, further compressed to a final higher pressure in the compressor l8 and precooled in cooler H for delivery to the heat exchanger 2.
It will be seen that a system of this type eliminates stepwise or cascade refrigeration cycles commonly used today. It will also be apparent that this system and method may be used for the self condensation of any one gas or vapor stream.
A set of suitable operating conditions may be helpful in fully understanding the invention. It will be assumed that methane is to be used as the refrigerant. Methane is delivered at a pressure of 200 pounds per square inch at a temperature of 95 F. by line i to the heat exchanger 2 from which it issues at the same pressure but at a temperature of -1'I5 R, which are conditions for substantial saturation. This stream is then expanded in the turbine l and the exhaust is at a pressure of about 20 pounds per square inch and a temperature of -230 F. The exhaust stream contains about 24% of liquid methane.
' The exhaust stream is then separated into its vapor and liquid phases in the scrubber 6 and the liquid at the same pressure and temperature is delivered to the heat exchanger 8 where evaporation occurs. The resulting vapor at a pressure of 20 pounds per square inch and a temperature of -230 F. joins the vapor at the same pressure and temperature coming from the scrubber 6 through the line I! and the whole is delivered to the heat exchanger 2. Of course, the material to be refrigerated is cooled by heat exchange through the walls of the tubes of the heat exchanger 8. The vapors delivered through the line H are at saturation temperatureand are used to sub-cool the precooled stream" delivered by line I into the heat exchanger 2 from a" temperature of 95 F. to a temperature of -175 F. as previously stated. These vapors are then delivered by line I3 at a pressure of 20 pounds per square inch and a temperature of F. to the compressor it from which they issue at a pressure of 40 pounds per square inch and a temperature of 185 F. They are delivered to and issue from the cooler H at the same pressure at a temperature of F. The compressor It raises their pressure to 200 pounds per square inch and a temperature of 325 F. The compressed stream is then cooled in the cooler l9 to a temperature of 95 F. By calculation it will be found that the overall thermal efficiency of the system under these conditions is about 28%.
Althoughthe system is illustrated as driving the compressor II from the turbine 4, it will be understood that compressor H can be driven from some other power source. However, in the system as disclosed the centrifugal expander is employed to drive the centrifugal compressor in order to take advantage of the energy produced by the isentropic expansion of the saturated vapor stream in the turbine 4.
From the above description it will be apparent that the apparatus and method herein disclosed employs certain novel features of assembly and operation whereby a saturated or sub-cooled and even possibly partially condensed vapor is isentropically expanded to produce a substantial amount of liquid and the condensate so produced is utilized by revaporization as the refrigerant.
It will be understood by those skilled in the art that this apparatus and method may be varied without departure from these principles, and I do not, therefore, desire to be limited in the scope of protection except as required by the claims granted me.
What is claimed is:
1. A method of refrigeration comprising compressing a gas to superatmospheric pressure, cooling the gas to about saturation temperature at that pressure, isentropically expanding said gas to liquefy a portion thereof, separating the liquid portion from the unliquefied gas, and passing the liquid portion in heat exchange relation with a warmer substance to be cooled.
2. In the method of claim 1, the step of evaporating the liquid portion while in heat exchange relation with the substance to be cooled.
3. In the method of claim 1, said gas comprising a single gas such as methane.
4. In the method of claim 1, the additional steps of evaporating the liquid portion during heat exchange with said substance, returning the gas formed by evaporation in heat exchange relation with said gas at superatmospheric pressure to effect said cooling thereof to saturation temperature.
5. In the method of claim 1, the additional steps of evaporating the liquid portion during heat exchange with said substance, returning the gas formed by evaporation in heat exchange relation with said gas at superatmospheric pressure to effect said cooling thereof to saturation, and compressing and cooling said gas, formed by evaporation in several stages to provide said superatmospheric gas at saturation temperature.
6. In the combination of claim 1, evaporating said liquid portion while in heat exchange relation with said substance, compressing the gas formed by said expansion step and said evaporation step, by the energy generated in said expansion step. 1
7. A refrigeration method comprising isentropically expanding a saturated stream of compressed gas to liquefy a portion thereof. separating the liquid portion from the unliquefied portion, evaporating the liquid portion in heat exchange relation with a substance to be cooled, and returning the gas formed from said separation and evaporation steps in heat exchange relation with compressed gas to cool it to saturation temperature. said saturated gas supplying the gas for isentropic expansion.
8. In an apparatus of the type described, the combination comprising a source of compressed and saturated gas, an expander for liquefying a portion of said gas, means for separating the liquid portion from the unliquefied portion, and means for evaporating the liquefied portion in heat exchange relation with a substance to be cooled.
9. In the combination of claim 8, means for passing the gas from said separating and evaporating means in heat exchange relation with compressed gas to cool it to saturation temperature.
10. In the combination of claim 8, means for I passing the gas from said separating and evaporating means in heat exchange relation with compressed gas to cool it to saturation temperature, and means driven by said centrifugal expander for compressing the gas after passing through said heat exchange means.
11. In the combination of claim 8, means for passing the gas from said separating and evaporating means in heat exchange relation with compressed gas to cool it to saturation temperature. means driven by said centrifugal expander for compressing the gas after passing through said heat exchange means and means for delivering the compressed gas to said heat exchange means.
12. In the combination of claim 8, means for passing the gas from said separating and evaporating means in heat exchange relation with compressed gas to cool it to saturation temperature, means driven by said centrifugal expander for compressing the gas after passing through said heat exchange means, and means including cooling means for delivering the compressed gas to said heat exchange means 13. In the combination of claim 8, said expander being a centrifugal expander.
BERNARDO J. FERRO, JR.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 515,585 Hill Feb. 27, 1894 2,077,315 Erving et al Apr. 13, 1937 2,242,299 Harrington et a1. May 20, 1941
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US775708A US2494120A (en) | 1947-09-23 | 1947-09-23 | Expansion refrigeration system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US775708A US2494120A (en) | 1947-09-23 | 1947-09-23 | Expansion refrigeration system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US2494120A true US2494120A (en) | 1950-01-10 |
Family
ID=25105239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US775708A Expired - Lifetime US2494120A (en) | 1947-09-23 | 1947-09-23 | Expansion refrigeration system and method |
Country Status (1)
Country | Link |
---|---|
US (1) | US2494120A (en) |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2737031A (en) * | 1952-02-12 | 1956-03-06 | William A Wulle | Heat energy-converting system and process |
US3002362A (en) * | 1959-09-24 | 1961-10-03 | Liquifreeze Company Inc | Natural gas expansion refrigeration system |
US3077087A (en) * | 1963-02-12 | Outdoor heat | ||
US3118751A (en) * | 1959-07-29 | 1964-01-21 | Linde Eismasch Ag | Process and installation for the production of refrigeration thru high-pressure gas |
US3144316A (en) * | 1960-05-31 | 1964-08-11 | Union Carbide Corp | Process and apparatus for liquefying low-boiling gases |
US3200613A (en) * | 1963-01-02 | 1965-08-17 | Martin Marietta Corp | Cryogenic refrigerating method and apparatus |
US3250079A (en) * | 1965-03-15 | 1966-05-10 | Little Inc A | Cryogenic liquefying-refrigerating method and apparatus |
US3277658A (en) * | 1965-07-19 | 1966-10-11 | Carrier Corp | Refrigeration apparatus |
US3292380A (en) * | 1964-04-28 | 1966-12-20 | Coastal States Gas Producing C | Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery |
US3303872A (en) * | 1964-06-23 | 1967-02-14 | Carrier Corp | Steam operated refrigeration system |
US3367125A (en) * | 1966-09-02 | 1968-02-06 | Carrier Corp | Refrigeration system |
US3400555A (en) * | 1966-05-02 | 1968-09-10 | American Gas Ass | Refrigeration system employing heat actuated compressor |
US3473344A (en) * | 1967-12-01 | 1969-10-21 | Clarence W Brandon | Method and apparatus for cooling and heating |
US3932159A (en) * | 1973-12-07 | 1976-01-13 | Enserch Corporation | Refrigerant expander compressor |
US3934424A (en) * | 1973-12-07 | 1976-01-27 | Enserch Corporation | Refrigerant expander compressor |
US4144723A (en) * | 1976-03-15 | 1979-03-20 | General Atomic Company | Power plant secondary coolant circuit |
USRE30630E (en) * | 1976-03-15 | 1981-06-02 | General Atomic Company | Power plant secondary coolant circuit |
US4389858A (en) * | 1981-12-03 | 1983-06-28 | Jepsen Henry E | Heat engine |
US4461154A (en) * | 1981-06-18 | 1984-07-24 | Air Products And Chemicals, Inc. | Method and apparatus for compressing gas |
WO1984003139A1 (en) * | 1983-02-14 | 1984-08-16 | Gen Pneumatics Corp | Closed cycle cryogenic cooling apparatus |
US4480444A (en) * | 1983-05-23 | 1984-11-06 | Alsthom-Atlantique | Deep mine cooling system |
WO1984004580A1 (en) * | 1983-05-18 | 1984-11-22 | Henry E Jepsen | Heat engine |
EP0149413A2 (en) * | 1984-01-12 | 1985-07-24 | Dori Hershgal | Method and apparatus for refrigeration |
US4566291A (en) * | 1983-02-14 | 1986-01-28 | General Pneumatics Corporation | Closed cycle cryogenic cooling apparatus |
EP0239680A2 (en) * | 1986-03-25 | 1987-10-07 | Mitsui Engineering and Shipbuilding Co, Ltd. | Heat pump |
US4923492A (en) * | 1989-05-22 | 1990-05-08 | Hewitt J Paul | Closed system refrigeration using a turboexpander |
US5006138A (en) * | 1990-05-09 | 1991-04-09 | Hewitt J Paul | Vapor recovery system |
US5076822A (en) * | 1990-05-07 | 1991-12-31 | Hewitt J Paul | Vapor recovery system |
WO1992006338A1 (en) * | 1990-04-06 | 1992-04-16 | Alsenz Richard H | Refrigeration method and apparatus utilizing an expansion engine |
US5428966A (en) * | 1988-01-21 | 1995-07-04 | Alsenz; Richard H. | Refrigeration system utilizing an expansion device in the evaporator |
US5515694A (en) * | 1995-01-30 | 1996-05-14 | Carrier Corporation | Subcooler level control for a turbine expansion refrigeration cycle |
US6105390A (en) * | 1997-12-16 | 2000-08-22 | Bechtel Bwxt Idaho, Llc | Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity |
EP1046869A1 (en) * | 1999-04-20 | 2000-10-25 | Sanden Corporation | Refrigeration/air conditioning system |
US6321564B1 (en) * | 1999-03-15 | 2001-11-27 | Denso Corporation | Refrigerant cycle system with expansion energy recovery |
EP1359379A1 (en) * | 2002-04-15 | 2003-11-05 | Sanden Corporation | Refrigerating system using carbon dioxide as refrigerant |
US20030215371A1 (en) * | 2002-05-18 | 2003-11-20 | Gines Sanchez Gomez | Chemical-physical reactions displaced by pressure |
AT411796B (en) * | 2001-05-21 | 2004-05-25 | Walter Dolzer | Heat pump or refrigerator has compressor for liquefying thermal medium expanded into an evaporator via choke element in form of expansion turbine driven by expanding thermal medium |
US6886362B2 (en) | 2001-05-04 | 2005-05-03 | Bechtel Bwxt Idaho Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US6931889B1 (en) | 2002-04-19 | 2005-08-23 | Abb Lummus Global, Randall Gas Technologies | Cryogenic process for increased recovery of hydrogen |
US20060213223A1 (en) * | 2001-05-04 | 2006-09-28 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20060218939A1 (en) * | 2001-05-04 | 2006-10-05 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20070107465A1 (en) * | 2001-05-04 | 2007-05-17 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of gas and methods relating to same |
US7219512B1 (en) | 2001-05-04 | 2007-05-22 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20070137246A1 (en) * | 2001-05-04 | 2007-06-21 | Battelle Energy Alliance, Llc | Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium |
US20090071634A1 (en) * | 2007-09-13 | 2009-03-19 | Battelle Energy Alliance, Llc | Heat exchanger and associated methods |
US20090145167A1 (en) * | 2007-12-06 | 2009-06-11 | Battelle Energy Alliance, Llc | Methods, apparatuses and systems for processing fluid streams having multiple constituents |
US7637122B2 (en) | 2001-05-04 | 2009-12-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
US20100218528A1 (en) * | 2007-10-09 | 2010-09-02 | Panasonic Corporation | Refrigeration cycle apparatus |
US20110094263A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US20110094262A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
US20110094261A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Natural gas liquefaction core modules, plants including same and related methods |
US20110167864A1 (en) * | 2008-03-04 | 2011-07-14 | Thermalfrost Inc. | Ammonia refrigeration system |
US20140196497A1 (en) * | 2010-09-29 | 2014-07-17 | Regal Beloit America, Inc. | Energy Recovery Apparatus for a Refrigeration System |
US9217603B2 (en) | 2007-09-13 | 2015-12-22 | Battelle Energy Alliance, Llc | Heat exchanger and related methods |
US9254448B2 (en) | 2007-09-13 | 2016-02-09 | Battelle Energy Alliance, Llc | Sublimation systems and associated methods |
US9562705B2 (en) | 2014-02-13 | 2017-02-07 | Regal Beloit America, Inc. | Energy recovery apparatus for use in a refrigeration system |
US9574713B2 (en) | 2007-09-13 | 2017-02-21 | Battelle Energy Alliance, Llc | Vaporization chambers and associated methods |
IT201700098472A1 (en) * | 2017-09-01 | 2019-03-01 | Angelantoni Test Tech S R L In Breve Att S R L | Refrigeration device. |
US10655911B2 (en) | 2012-06-20 | 2020-05-19 | Battelle Energy Alliance, Llc | Natural gas liquefaction employing independent refrigerant path |
US20220333830A1 (en) * | 2017-10-09 | 2022-10-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Refrigeration device and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US515585A (en) * | 1894-02-27 | Apparatus for dynamic refrigeration | ||
US2077315A (en) * | 1933-08-29 | 1937-04-13 | Ewing Sydney Edward Thacker | De-vaporizing compressed air |
US2242299A (en) * | 1940-05-15 | 1941-05-20 | Standard Oil Dev Co | Vapor recovery system |
-
1947
- 1947-09-23 US US775708A patent/US2494120A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US515585A (en) * | 1894-02-27 | Apparatus for dynamic refrigeration | ||
US2077315A (en) * | 1933-08-29 | 1937-04-13 | Ewing Sydney Edward Thacker | De-vaporizing compressed air |
US2242299A (en) * | 1940-05-15 | 1941-05-20 | Standard Oil Dev Co | Vapor recovery system |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3077087A (en) * | 1963-02-12 | Outdoor heat | ||
US2737031A (en) * | 1952-02-12 | 1956-03-06 | William A Wulle | Heat energy-converting system and process |
US3118751A (en) * | 1959-07-29 | 1964-01-21 | Linde Eismasch Ag | Process and installation for the production of refrigeration thru high-pressure gas |
US3002362A (en) * | 1959-09-24 | 1961-10-03 | Liquifreeze Company Inc | Natural gas expansion refrigeration system |
US3144316A (en) * | 1960-05-31 | 1964-08-11 | Union Carbide Corp | Process and apparatus for liquefying low-boiling gases |
US3200613A (en) * | 1963-01-02 | 1965-08-17 | Martin Marietta Corp | Cryogenic refrigerating method and apparatus |
US3292380A (en) * | 1964-04-28 | 1966-12-20 | Coastal States Gas Producing C | Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery |
US3303872A (en) * | 1964-06-23 | 1967-02-14 | Carrier Corp | Steam operated refrigeration system |
US3250079A (en) * | 1965-03-15 | 1966-05-10 | Little Inc A | Cryogenic liquefying-refrigerating method and apparatus |
US3277658A (en) * | 1965-07-19 | 1966-10-11 | Carrier Corp | Refrigeration apparatus |
US3400555A (en) * | 1966-05-02 | 1968-09-10 | American Gas Ass | Refrigeration system employing heat actuated compressor |
US3367125A (en) * | 1966-09-02 | 1968-02-06 | Carrier Corp | Refrigeration system |
US3473344A (en) * | 1967-12-01 | 1969-10-21 | Clarence W Brandon | Method and apparatus for cooling and heating |
US3932159A (en) * | 1973-12-07 | 1976-01-13 | Enserch Corporation | Refrigerant expander compressor |
US3934424A (en) * | 1973-12-07 | 1976-01-27 | Enserch Corporation | Refrigerant expander compressor |
US4144723A (en) * | 1976-03-15 | 1979-03-20 | General Atomic Company | Power plant secondary coolant circuit |
USRE30630E (en) * | 1976-03-15 | 1981-06-02 | General Atomic Company | Power plant secondary coolant circuit |
US4461154A (en) * | 1981-06-18 | 1984-07-24 | Air Products And Chemicals, Inc. | Method and apparatus for compressing gas |
US4389858A (en) * | 1981-12-03 | 1983-06-28 | Jepsen Henry E | Heat engine |
WO1984003139A1 (en) * | 1983-02-14 | 1984-08-16 | Gen Pneumatics Corp | Closed cycle cryogenic cooling apparatus |
US4566291A (en) * | 1983-02-14 | 1986-01-28 | General Pneumatics Corporation | Closed cycle cryogenic cooling apparatus |
WO1984004580A1 (en) * | 1983-05-18 | 1984-11-22 | Henry E Jepsen | Heat engine |
US4480444A (en) * | 1983-05-23 | 1984-11-06 | Alsthom-Atlantique | Deep mine cooling system |
EP0149413A2 (en) * | 1984-01-12 | 1985-07-24 | Dori Hershgal | Method and apparatus for refrigeration |
EP0149413A3 (en) * | 1984-01-12 | 1986-02-19 | Dori Hershgal | Method and apparatus for refrigeration |
EP0239680A2 (en) * | 1986-03-25 | 1987-10-07 | Mitsui Engineering and Shipbuilding Co, Ltd. | Heat pump |
EP0239680A3 (en) * | 1986-03-25 | 1987-11-11 | Mitsui Engineering & Shipbuilding Co., Ltd | Heat pump, energy recovery method and method of curtailing power for driving compressor in the heat pump |
US4896515A (en) * | 1986-03-25 | 1990-01-30 | Mitsui Engineering & Shipbuilding Co. | Heat pump, energy recovery method and method of curtailing power for driving compressor in the heat pump |
US5428966A (en) * | 1988-01-21 | 1995-07-04 | Alsenz; Richard H. | Refrigeration system utilizing an expansion device in the evaporator |
EP0399675A3 (en) * | 1989-05-22 | 1991-01-23 | J. Paul Hewitt | closed system refrigeration using a turboexpander |
US4923492A (en) * | 1989-05-22 | 1990-05-08 | Hewitt J Paul | Closed system refrigeration using a turboexpander |
EP0399675A2 (en) * | 1989-05-22 | 1990-11-28 | J. Paul Hewitt | Closed system refrigeration using a turboexpander |
US5157931A (en) * | 1990-04-06 | 1992-10-27 | Alsenz Richard H | Refrigeration method and apparatus utilizing an expansion engine |
WO1992006338A1 (en) * | 1990-04-06 | 1992-04-16 | Alsenz Richard H | Refrigeration method and apparatus utilizing an expansion engine |
US5076822A (en) * | 1990-05-07 | 1991-12-31 | Hewitt J Paul | Vapor recovery system |
US5006138A (en) * | 1990-05-09 | 1991-04-09 | Hewitt J Paul | Vapor recovery system |
US6425263B1 (en) | 1992-12-16 | 2002-07-30 | The United States Of America As Represented By The Department Of Energy | Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity |
US5515694A (en) * | 1995-01-30 | 1996-05-14 | Carrier Corporation | Subcooler level control for a turbine expansion refrigeration cycle |
AU694595B2 (en) * | 1995-01-30 | 1998-07-23 | Carrier Corporation | Subcooler level control for a turbine expansion refrigeration cycle |
US6105390A (en) * | 1997-12-16 | 2000-08-22 | Bechtel Bwxt Idaho, Llc | Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity |
EP1062466A4 (en) * | 1997-12-16 | 2002-11-20 | Lockheed Martin Idaho Tech Co | Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity |
EP1062466A2 (en) * | 1997-12-16 | 2000-12-27 | Lockheed Martin Idaho Technologies Company | Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity |
US6321564B1 (en) * | 1999-03-15 | 2001-11-27 | Denso Corporation | Refrigerant cycle system with expansion energy recovery |
US6543238B2 (en) | 1999-03-15 | 2003-04-08 | Denso Corporation | Refrigerant cycle system with expansion energy recovery |
EP1046869A1 (en) * | 1999-04-20 | 2000-10-25 | Sanden Corporation | Refrigeration/air conditioning system |
US7219512B1 (en) | 2001-05-04 | 2007-05-22 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20070137246A1 (en) * | 2001-05-04 | 2007-06-21 | Battelle Energy Alliance, Llc | Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium |
US20100186446A1 (en) * | 2001-05-04 | 2010-07-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
US7637122B2 (en) | 2001-05-04 | 2009-12-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
US6886362B2 (en) | 2001-05-04 | 2005-05-03 | Bechtel Bwxt Idaho Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US7594414B2 (en) | 2001-05-04 | 2009-09-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US6962061B2 (en) | 2001-05-04 | 2005-11-08 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20060213223A1 (en) * | 2001-05-04 | 2006-09-28 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20060218939A1 (en) * | 2001-05-04 | 2006-10-05 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US7591150B2 (en) | 2001-05-04 | 2009-09-22 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20070107465A1 (en) * | 2001-05-04 | 2007-05-17 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of gas and methods relating to same |
AT411796B (en) * | 2001-05-21 | 2004-05-25 | Walter Dolzer | Heat pump or refrigerator has compressor for liquefying thermal medium expanded into an evaporator via choke element in form of expansion turbine driven by expanding thermal medium |
US20040003622A1 (en) * | 2002-04-15 | 2004-01-08 | Masami Negishi | Refrigerating cycle system using carbon dioxide as refrigerant |
EP1359379A1 (en) * | 2002-04-15 | 2003-11-05 | Sanden Corporation | Refrigerating system using carbon dioxide as refrigerant |
US6931889B1 (en) | 2002-04-19 | 2005-08-23 | Abb Lummus Global, Randall Gas Technologies | Cryogenic process for increased recovery of hydrogen |
US20030215371A1 (en) * | 2002-05-18 | 2003-11-20 | Gines Sanchez Gomez | Chemical-physical reactions displaced by pressure |
US8061413B2 (en) | 2007-09-13 | 2011-11-22 | Battelle Energy Alliance, Llc | Heat exchangers comprising at least one porous member positioned within a casing |
US9574713B2 (en) | 2007-09-13 | 2017-02-21 | Battelle Energy Alliance, Llc | Vaporization chambers and associated methods |
US20090071634A1 (en) * | 2007-09-13 | 2009-03-19 | Battelle Energy Alliance, Llc | Heat exchanger and associated methods |
US9254448B2 (en) | 2007-09-13 | 2016-02-09 | Battelle Energy Alliance, Llc | Sublimation systems and associated methods |
US9217603B2 (en) | 2007-09-13 | 2015-12-22 | Battelle Energy Alliance, Llc | Heat exchanger and related methods |
US8544295B2 (en) | 2007-09-13 | 2013-10-01 | Battelle Energy Alliance, Llc | Methods of conveying fluids and methods of sublimating solid particles |
US20100218528A1 (en) * | 2007-10-09 | 2010-09-02 | Panasonic Corporation | Refrigeration cycle apparatus |
US8590326B2 (en) * | 2007-10-09 | 2013-11-26 | Panasonic Corporation | Refrigeration cycle apparatus |
US20090145167A1 (en) * | 2007-12-06 | 2009-06-11 | Battelle Energy Alliance, Llc | Methods, apparatuses and systems for processing fluid streams having multiple constituents |
US20110167864A1 (en) * | 2008-03-04 | 2011-07-14 | Thermalfrost Inc. | Ammonia refrigeration system |
US20110094263A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US20110094261A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Natural gas liquefaction core modules, plants including same and related methods |
US8555672B2 (en) | 2009-10-22 | 2013-10-15 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
US8899074B2 (en) | 2009-10-22 | 2014-12-02 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US20110094262A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
US9134049B2 (en) * | 2010-09-29 | 2015-09-15 | Regal Beloit America, Inc. | Energy recovery apparatus for a refrigeration system |
US20140196497A1 (en) * | 2010-09-29 | 2014-07-17 | Regal Beloit America, Inc. | Energy Recovery Apparatus for a Refrigeration System |
US10655911B2 (en) | 2012-06-20 | 2020-05-19 | Battelle Energy Alliance, Llc | Natural gas liquefaction employing independent refrigerant path |
US9562705B2 (en) | 2014-02-13 | 2017-02-07 | Regal Beloit America, Inc. | Energy recovery apparatus for use in a refrigeration system |
IT201700098472A1 (en) * | 2017-09-01 | 2019-03-01 | Angelantoni Test Tech S R L In Breve Att S R L | Refrigeration device. |
WO2019043595A1 (en) * | 2017-09-01 | 2019-03-07 | Angelantoni Test Technologies S.R.L. - In Breve Att S.R.L. | Refrigeration device |
US20220333830A1 (en) * | 2017-10-09 | 2022-10-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Refrigeration device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2494120A (en) | Expansion refrigeration system and method | |
SU476766A3 (en) | Method of liquefying natural gas | |
US4169361A (en) | Method of and apparatus for the generation of cold | |
US3092976A (en) | Refrigeration of one fluid by heat exchange with another | |
TWI388788B (en) | Liquefaction method and system | |
RU2226660C2 (en) | Process of liquefaction of gas flow (variants) | |
US6062041A (en) | Method for liquefying natural gas | |
US3323315A (en) | Gas liquefaction employing an evaporating and gas expansion refrigerant cycles | |
US3548606A (en) | Serial incremental refrigerant expansion for gas liquefaction | |
US3690114A (en) | Refrigeration process for use in liquefication of gases | |
GB1515326A (en) | Method and plant for liquefying a gas with low boiling temperature | |
GB1016049A (en) | A process for the liquefaction of a gas | |
GB852844A (en) | Method for liquefaction of natural gas | |
US3018634A (en) | Method and apparatus for vaporizing liquefied gases and obtaining power | |
JP3965444B2 (en) | Methods and equipment for natural gas liquefaction | |
RU2001120001A (en) | TWO MULTI-COMPONENT REFRIGERATING CYCLES FOR LIVING A NATURAL GAS | |
US3300991A (en) | Thermal reset liquid level control system for the liquefaction of low boiling gases | |
KR880010302A (en) | Precooled Gas Raw Material Dryer | |
GB1106736A (en) | Gas liquefaction process | |
US2492725A (en) | Mixed refrigerant system | |
GB1373385A (en) | Method of cooling a gaseous mixture and installation therefor | |
US3735601A (en) | Low temperature refrigeration system | |
GB1054489A (en) | ||
US4055961A (en) | Device for liquefying gases | |
US3224207A (en) | Liquefaction of gases |