US2445028A - Method of dispersing keratin proteins with amides and the composition resulting therefrom - Google Patents
Method of dispersing keratin proteins with amides and the composition resulting therefrom Download PDFInfo
- Publication number
- US2445028A US2445028A US746848A US74684847A US2445028A US 2445028 A US2445028 A US 2445028A US 746848 A US746848 A US 746848A US 74684847 A US74684847 A US 74684847A US 2445028 A US2445028 A US 2445028A
- Authority
- US
- United States
- Prior art keywords
- keratin
- solution
- parts
- dispersing
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F4/00—Monocomponent artificial filaments or the like of proteins; Manufacture thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08H—DERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
- C08H1/00—Macromolecular products derived from proteins
- C08H1/06—Macromolecular products derived from proteins derived from horn, hoofs, hair, skin or leather
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L89/00—Compositions of proteins; Compositions of derivatives thereof
- C08L89/04—Products derived from waste materials, e.g. horn, hoof or hair
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/827—Proteins from mammals or birds
- Y10S530/842—Skin; hair; nails; sebaceous glands; cerumen
Definitions
- keratin materials are dispersed under mild conditions, that is, in
- alkali agents such as monoethylene thioglycol (thicglycol), thioglycolic acid (present as the thinglycolate in neutral solution), and sodium bisul-
- thicglycol thioglycol
- thioglycolic acid present as the thinglycolate in neutral solution
- sodium bisul- sodium bisul-
- protein-denaturing or protein-dispersing' agents such as urea, guanidine hydrochloride, ammonium thiocyanate, formamtically neutral reaction.
- the dispersed keratin may be precipitated either by dilution with several volumes of water, by salting out with M3804, (511102804, etc., by acidification, or by dialysis. If desired, the guanldine may be removed from the dispersion by dialysis and may be recovered from the dialysate by precipitation as the nitrate or by other suitable means.
- the solution be near the .point or neutrality (pH 7.0)
- pH 7.0 the dispersibility or human hair in a solution of thiogiycol and sodium salicylate is increased as the pH of the solution is increased about from 6.9 to 11.4.
- the use of neutral solutions merely minimizes the possibility of hydrolytic degradation of theprotein which may be detrimental in some cases.
- pH is increased above about pH 10, dispersion occurs it only a disulphide-splitting agent is present: however, the presence of a protein-dispersing or protein-denaturins agent, as used in our invention,
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Cosmetics (AREA)
Description
Patented July 1a, 1948 UNITED STATES PATENT orr cs amnion or DISPERSING xaria'rrn Pao- :rsnzs wrrn AMIDES AND 'rnn comosr- HON ansum'ma rnnnnmom Chase B. Jones, Waltham. Mass, and Daie x. Meohsm, Richmond, CaliL, assisnors to the United States oi America as represented by the Secretary of Agriculture No Drawing.
application November I, 1944, Serial No. 562,326. Divided and this appiication May a, 1941. Serial No. new
Claims. (01. 100-155) (Granted under the act of March 3, 1883, amended April 30; 1928; 370 0-6-157i ing keratin proteins obtained from a keratin neutral or practically neutral reaction, and at relatively =1ow temperatures. These conditions produce less degradation of the'original keratin than occurred in the prior art and the dispersed keratin maybe recovered in a form substantially similar'to that of the original keratin in regard to its composition, isoelectric point, solubility, and other properties.
The method'involved in this invention is based partly onthe reduction, of the disulflde bonds within the'keratin molecule by treating it with sulfur-containing, reductive disuliide-splitting material such as feathers. hoofs, horns, wool,
and so forth, and has among its objects the use of such keratins, either in the dispersed or recovered forms. in the preparation of artificial fibers, films, plastics and the'like.
Keratins, like the more solubleproteins, can be readily dispersed by hydrolysis in strong acids or alkalis, but the keratin thus dispersed cannot be recovered except as simple degradation products, such as amino acids or complex degradation products, such as peptides, peptones, and proteoses, the properties of which differ radically from those of the original keratin.
Keratins can also be dispersed in alkaline solutions of metallic sulfides and such sulfides are commonly used in cosmetic depilatories and in the removal of hair from hides in the tanning industry.
\ which produced drastic degradation of the proteins.
Also, keratins may be dispersed in strong alkaline solutions by treatment with reducing agents,
and the recovered protein is more similar to the original protein in regard to solubility, molecular size, and so forth, than are the peptides; proteoses, etc., referred to previously. However, the I presence of the strong alkali is undesirable because it presents an opportunity for the hydrolysis of the keratin, destruction of the cystine constituent of the keratin (keratins being unique among proteins in that they contain exceptionally large amounts of cystine), and destruction of the hydroxy amino acid residues of the keratin.
According to our invention, keratin materials are dispersed under mild conditions, that is, in
agents such as monoethylene thioglycol (thicglycol), thioglycolic acid (present as the thinglycolate in neutral solution), and sodium bisul- The presence of alkali is obviated by the use of any of a number of protein-denaturing or protein-dispersing' agents, such as urea, guanidine hydrochloride, ammonium thiocyanate, formamtically neutral reaction.
Therefore, under the above conditions of employing disulphide-splitting and protein-dispersing orprotein-denaturing agents to eflect the dispersion in neutral or practically neutral reaction and at relatively low temperatures, the keratin molecule undergoes minimal degradation, the only chemical attack-on the covalent linkages oi the keratin being the cleavage of the disulflde bonds of the cystine moiety.
The following examples are illustrative of our invention:
Example I 1.4 parts of monothioethylene glycol and 27.2 parts of guanidine hydrochloride are dissolved in water. Sodium hydroxide solution and water are then added as required to obtain parts oi solution at about pH 6.9. 2.5 parts oi. cattle hoof filings are treated with this neutralized solution in a water bath at about 40 0. about for 18 hours. The mixture is stirredat convenient intervals. During this period about 74% of the hoof keratin is dispersed in the solution; After removal oi in] for the preparation of artificial fibers.
the undispersed hoof by filtration, the dispersed keratin may be precipitated either by dilution with several volumes of water, by salting out with M3804, (511102804, etc., by acidification, or by dialysis. If desired, the guanldine may be removed from the dispersion by dialysis and may be recovered from the dialysate by precipitation as the nitrate or by other suitable means.
Example I] 1.1 parts of NaI-ISO: and 21 parts of urea are dissolved in water. Sodium hydroxide solution and water are added as required to obtain 35 parts of solution at about pH 7.1. 2.5 parts of wool are treated with this solution in a water bath at about 40 C. about for 18 hours, during which period'the mixture is stirred at frequent intervals. wool is dispersedby this treatment. The dispersed wool may be precipitated and recovered from the solution either by dialysis, by salting out with MgSO4, (N114) 2504, etc., or by careful addition of a suitable amount of acid or alkali.
Example HI pH 6.8. This solution is heated to boiling and 64 parts of chicken feathers are added. The solution is kept boiling gently for about 30 minutes with frequent stirring. During this period considerable dispersion of the feathers occurs and. the undispersed portion becomes very soft and loses its original shape. 200 parts of boiling water are now added and the solution is boiled and stirred for about another 30 minutes. The undispersed residue is removed by suitable filtration and is washed several times in hot water. The washings and filtrate may be combined and evaporated to dryness to obtain '70 parts of a water-soluble product that has been found use- This material contains 8.5% to 8.6% nitrogen on a dry basis.
' Example IV of the solution is about 6.0. The solution is heated 52% of the original weight of the persed by this treatment.
to boiling and 80 parts of chicken feathers are Example I! 1.6 parts of thioglycolic acid and 21 parts of urea are dissolvedin watery Sodium hydroxide solution and water :are added as required to obtain parts of solution at about pH 7.0 (10.2) 2.5 parts of duck feathers are added, and the mixture is heated at about C. for about 18 hours. About 78% of the feather keratin is dis- Example V1 1.4 of monothioethylene glycol and 24 parts of ammonium thiocyanate are dissolved in water. Sodium hydroxide solution and water are added as required to obtain 35 parts of solution having a pH of about 6.9. 2.5 parts of chicken feathers are treated with this solution for about 18 hours at about 40 0. During this period about 82% of the feather keratin is dispersed.
Example VII 1.4 parts of-monothioethylene glycol and 20.7 parts of acetamide are dissolved in water. Sodium hydroxide solution and water are added to "give 35 parts of solution having a pH of about 1.4 parts .of monothioethylene glycol and 27.2 parts of guanidine hydrochloride are dissolved in water. Sodium hydroxide solution and water are added as required to obtain 35 parts of solution having a pH of about 7.0. 2.5 parts of hog hair are added and the mixture is heated at about 40 C. for about 18 hours. About 56% of the hair is dispersed during this period.
In addition to the foregoing examples, many other experiments were performed, the results of which are shown in the following tables:
Tum: I
Dlspersibilities of keratin: in dfflerent dispersing agents upon reduction by 0.5 M thioglycol [2.5 g. of keratin was treated for 18 hours atabout 40 C. with 35 ml. of solution at pH 7] Guanilorm- Aeet- Synthetic l Kerstin dine n01 gaig amide amide Detergent (8.1 M) (10.0 M) (10.0 M) (10%) Per cent Per cent Per cm! Per cent Per cent Per cm! 1 Chicken feather... 84 82 66 59 10 70, 80 Duck mama.-." 83 so 41 36 6 51, 53 Tortoise scutes 64 52 10, 8 Snake skin 55 44 26, 30 Cattle hooi 74 56 7 6 5 58, 64 Wooli 61 36 4 6 4 44, Cattle horn.-- 36 27 3 5 4 14, 12 Hog hair 56 26 2 2 2 4, 3 Human hair-. 50 11 0 0 2 2, 1 Ovokeratin 8 6 4 3 15 2, l
1 Composed of sodium alkyl suliates.
First values calculated from dry weights of residues after acetone extraction; second v lue mlml w rom i ws mlrm v I'll-III Dispersibilities of keratin: in M urea upon reduction by difierent disulfide-spiittino agents [2.5 g. of keratin was treated ior 18 hours at about 40 C. with 36 mloi solution at pH 7] NIHBOI Th Thioglyoolic Kerstin Percent eaSBBSSBtiS ass-ass es Many changes and variations in the conditions for dispersion shown in the foregoing examples and tables may be made. As a rule, the
higher the concentration of protein-dispersing or protein-denaturing agent, the greater is the percentage of keratin dispersed, the solubility of the dispersing or denaturing agent being a limiting factor. A greater degree of dispersion may also be obtained in some cases by increasing the concentration of the disulphide-splitting agent, as for example, for monoethylene thioglycol and thioglycolic acid. An increase in the concentration oi NaHSOs, however, often results in a decrease in the extent of dispersion of the keratin. presumably due to a salting-out eflect.
Also, it is not necessary in every case that the solution be near the .point or neutrality (pH 7.0) For example, the dispersibility or human hair in a solution of thiogiycol and sodium salicylate is increased as the pH of the solution is increased about from 6.9 to 11.4. The use of neutral solutions merely minimizes the possibility of hydrolytic degradation of theprotein which may be detrimental in some cases. It the pH is increased above about pH 10, dispersion occurs it only a disulphide-splitting agent is present: however, the presence of a protein-dispersing or protein-denaturins agent, as used in our invention,
permits dispersion below pH 10.
The temperature at which dispersion, according to our invention, is obtained may range up to about 100 C., and the higher the temperature within this range, the shorter the time required for dispersion, and in some cases. a higher degree of dispersion is obtained. Therefore, it is recommended that the invention be conducted at a temperature range of up to about 100 C.
Having thus described our invention, we claim:
1. The process comprising heating a keratin material in an essentially neutral aqueous solution containing a sulfur-containing, reductive disulphide splitting agent and a member of the group consisting of urea, thiourea, iormamide, acetamide, and urethane at a temperature up to about 100 C. to disperse said keratin material in said solution.
2. The process comprising heating a keratin material in an essentially neutral aqueous solution containing sodium bisulphite and urea at a temperature up to about100 C. to disperse said keratin material in said solution.
3. The process comprising heating a keratin material in an essentially neutral aqueous solution containing thioglycolic acid and urea at a temperature up to about 100 C. to disperse said keratin material in said solution.
4. The process comprising heating a keratin material in an essentially neutral aqueous solution containing monoethylene thioglycol and acetamide at a temperature up to about 100 C. to disperse said keratin material in said solution.
5. A, composition of matter consisting essentially or a dispersion of a keratin material in an essentially neutral aqueous solution containing a sulfur-containing. reductive disulphide-splitting agent and a member or the group consisting of urea, thiourea, .formamide, acetamide. and urethane.
6. A composition of matter consistingessentially or a dispersion or a keratin material in an essentially neutral aqueous solution containing sodium bisuliite and urea.
CHASE B. JONES. DALE K. MECHAM.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US562326A US2447860A (en) | 1944-11-07 | 1944-11-07 | Method of dispersing keratin proteins and the composition resulting therefrom |
US746848A US2445028A (en) | 1944-11-07 | 1947-05-08 | Method of dispersing keratin proteins with amides and the composition resulting therefrom |
US746850A US2445029A (en) | 1944-11-07 | 1947-05-08 | Method of dispersing keratin protein with ammonium thiocyanate and the composition resulting therefrom |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US562326A US2447860A (en) | 1944-11-07 | 1944-11-07 | Method of dispersing keratin proteins and the composition resulting therefrom |
US746848A US2445028A (en) | 1944-11-07 | 1947-05-08 | Method of dispersing keratin proteins with amides and the composition resulting therefrom |
US746850A US2445029A (en) | 1944-11-07 | 1947-05-08 | Method of dispersing keratin protein with ammonium thiocyanate and the composition resulting therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
US2445028A true US2445028A (en) | 1948-07-13 |
Family
ID=27415885
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US562326A Expired - Lifetime US2447860A (en) | 1944-11-07 | 1944-11-07 | Method of dispersing keratin proteins and the composition resulting therefrom |
US746848A Expired - Lifetime US2445028A (en) | 1944-11-07 | 1947-05-08 | Method of dispersing keratin proteins with amides and the composition resulting therefrom |
US746850A Expired - Lifetime US2445029A (en) | 1944-11-07 | 1947-05-08 | Method of dispersing keratin protein with ammonium thiocyanate and the composition resulting therefrom |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US562326A Expired - Lifetime US2447860A (en) | 1944-11-07 | 1944-11-07 | Method of dispersing keratin proteins and the composition resulting therefrom |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US746850A Expired - Lifetime US2445029A (en) | 1944-11-07 | 1947-05-08 | Method of dispersing keratin protein with ammonium thiocyanate and the composition resulting therefrom |
Country Status (1)
Country | Link |
---|---|
US (3) | US2447860A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2622036A (en) * | 1952-12-16 | Process for the treatment of | ||
DE920388C (en) * | 1950-06-30 | 1954-11-22 | Warner Hudnut | Hair treatment preparations |
US2814851A (en) * | 1953-12-11 | 1957-12-03 | Rubberset Company | Keratin treating process and products thereof |
US2836543A (en) * | 1954-05-27 | 1958-05-27 | Little Inc A | Sulfite hair waving composition comprising a nitrogen-containing compound and a substituted aromatic compound as additive, and method of use |
US2836185A (en) * | 1954-05-27 | 1958-05-27 | Little Inc A | Process of permanently setting hair with a hair-swelling solution of a bisulfite and a nitrogen-containing component |
US3642498A (en) * | 1969-09-18 | 1972-02-15 | Gen Mills Inc | Method of preparing keratin-containing films and coatings |
US3970614A (en) * | 1973-09-17 | 1976-07-20 | The Athlon Corporation | Nutrient protein from keratinaceous material solubilized with N,N,-dimethylformamide |
US4141888A (en) * | 1977-03-07 | 1979-02-27 | Sekisui Kagaku Kogyo Kabushiki Kaisha | Process for producing reduced keratinous substances using urea or thiourea |
US4260644A (en) * | 1972-09-08 | 1981-04-07 | Svenska Institutet For Konserveringsforskning | Preparation of food functional proteins |
US20010047082A1 (en) * | 1999-06-11 | 2001-11-29 | Van Dyke Mark E. | Soluble keratin peptide |
US20030228353A1 (en) * | 2002-01-28 | 2003-12-11 | Keraplast Technologies, Ltd. | Bioactive keratin peptides |
US20040076599A1 (en) * | 1999-09-13 | 2004-04-22 | Southwest Research Institute | Keratin-based powders and hydrogel for pharmaceutical applications |
US20040082717A1 (en) * | 2002-06-24 | 2004-04-29 | Southwest Research Institute | Keratin-silicone copolymers and interpenetrating networks (IPN's), methods of production and methods of use thereof |
US6783546B2 (en) | 1999-09-13 | 2004-08-31 | Keraplast Technologies, Ltd. | Implantable prosthetic or tissue expanding device |
US6849092B2 (en) | 1999-09-13 | 2005-02-01 | Keraplast Technologies, Ltd. | Implantable prosthetic or tissue expanding device |
US20070166348A1 (en) * | 2005-10-21 | 2007-07-19 | Van Dyke Mark E | Keratin bioceramic compositions |
US20080274165A1 (en) * | 2006-02-17 | 2008-11-06 | Wake Forest University Health Sciences | Wound healing compositions containing keratin biomaterials |
US20090004242A1 (en) * | 2006-02-17 | 2009-01-01 | Van Dyke Mark E | Coatings and Biomedical Implants Formed From Keratin Biomaterials |
US20090047260A1 (en) * | 2007-08-17 | 2009-02-19 | Wake Forest University Health Sciences | Keratin biomaterials for cell culture and methods of use |
US20110137329A1 (en) * | 2006-02-10 | 2011-06-09 | Dyke Mark E Van | Nerve regeneration employing keratin biomaterials |
US20110217356A1 (en) * | 2010-03-05 | 2011-09-08 | Van Dyke Mark E | Controlled delivery system |
US20110217285A1 (en) * | 2010-03-08 | 2011-09-08 | Van Dyke Mark E | Keratin biomaterials for treatment of ischemia |
US8637231B2 (en) | 2004-08-17 | 2014-01-28 | Wake Forest University Health Sciences | Method for increasing the volume of a blood substitute with an expander comprising basic alpha keratose |
US9068162B2 (en) | 2007-08-17 | 2015-06-30 | Wake Forest University Health Sciences | Keratin biomaterials for cell culture and methods of use |
US9220754B2 (en) | 2010-11-17 | 2015-12-29 | Wake Forest University Health Sciences | Keratin compositions for treatment of bone deficiency or injury |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2602778A (en) * | 1949-03-10 | 1952-07-08 | Ernest F Snyder | Method and composition for treating wells |
US2706143A (en) * | 1952-05-17 | 1955-04-12 | Alexander Smith Inc | Process for treating feathers |
US2857237A (en) * | 1953-03-20 | 1958-10-21 | Edward R Frederick | Method of enhancing filling power, etc., of landfowl feathers with hydrosulfide compounds and products produced thereby |
US3039934A (en) * | 1956-12-10 | 1962-06-19 | Rayette Inc | Hair waving composition |
US3787337A (en) * | 1971-10-22 | 1974-01-22 | Athlon Corp | Whole protein shampoo composition |
US4369037A (en) * | 1980-11-19 | 1983-01-18 | Kao Soap Co., Ltd. | Hair treatment cosmetics containing cationic keratin derivatives |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB443359A (en) * | 1934-06-20 | 1936-02-20 | Ici Ltd | Compositions for setting animal fibres such as wool or hair |
NL46320C (en) * | 1934-09-15 | |||
US2351718A (en) * | 1935-12-09 | 1944-06-20 | Speakman John Bamber | Treatment of fibers or fibrous materials containing keratin |
GB545421A (en) * | 1940-10-19 | 1942-05-26 | Pilkington Brothers Ltd | Improvements in or relating to the manufacture of plastic materials |
-
1944
- 1944-11-07 US US562326A patent/US2447860A/en not_active Expired - Lifetime
-
1947
- 1947-05-08 US US746848A patent/US2445028A/en not_active Expired - Lifetime
- 1947-05-08 US US746850A patent/US2445029A/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2622036A (en) * | 1952-12-16 | Process for the treatment of | ||
DE920388C (en) * | 1950-06-30 | 1954-11-22 | Warner Hudnut | Hair treatment preparations |
US2814851A (en) * | 1953-12-11 | 1957-12-03 | Rubberset Company | Keratin treating process and products thereof |
US2836543A (en) * | 1954-05-27 | 1958-05-27 | Little Inc A | Sulfite hair waving composition comprising a nitrogen-containing compound and a substituted aromatic compound as additive, and method of use |
US2836185A (en) * | 1954-05-27 | 1958-05-27 | Little Inc A | Process of permanently setting hair with a hair-swelling solution of a bisulfite and a nitrogen-containing component |
US3642498A (en) * | 1969-09-18 | 1972-02-15 | Gen Mills Inc | Method of preparing keratin-containing films and coatings |
US4260644A (en) * | 1972-09-08 | 1981-04-07 | Svenska Institutet For Konserveringsforskning | Preparation of food functional proteins |
US3970614A (en) * | 1973-09-17 | 1976-07-20 | The Athlon Corporation | Nutrient protein from keratinaceous material solubilized with N,N,-dimethylformamide |
US4141888A (en) * | 1977-03-07 | 1979-02-27 | Sekisui Kagaku Kogyo Kabushiki Kaisha | Process for producing reduced keratinous substances using urea or thiourea |
US20010047082A1 (en) * | 1999-06-11 | 2001-11-29 | Van Dyke Mark E. | Soluble keratin peptide |
US20050169963A1 (en) * | 1999-09-13 | 2005-08-04 | Southwest Ressearch Institute | Implantable prosthetic or tissue expanding device |
US20040076599A1 (en) * | 1999-09-13 | 2004-04-22 | Southwest Research Institute | Keratin-based powders and hydrogel for pharmaceutical applications |
US20080089930A1 (en) * | 1999-09-13 | 2008-04-17 | Keraplast Technologies, Ltd. | Keratin-Based Powders and Hydrogel for Pharmaceutical Applications |
US6783546B2 (en) | 1999-09-13 | 2004-08-31 | Keraplast Technologies, Ltd. | Implantable prosthetic or tissue expanding device |
US6849092B2 (en) | 1999-09-13 | 2005-02-01 | Keraplast Technologies, Ltd. | Implantable prosthetic or tissue expanding device |
US8324346B2 (en) | 2002-01-28 | 2012-12-04 | Keraplast Technologies, Ltd. | Bioactive keratin peptides |
US20030228353A1 (en) * | 2002-01-28 | 2003-12-11 | Keraplast Technologies, Ltd. | Bioactive keratin peptides |
US7501485B2 (en) | 2002-01-28 | 2009-03-10 | Keraplast Technologies, Ltd. | Bioactive keratin peptides |
US20110070276A1 (en) * | 2002-01-28 | 2011-03-24 | Keraplast Technologies, Ltd. | Bioactive keratin peptides |
US20040082717A1 (en) * | 2002-06-24 | 2004-04-29 | Southwest Research Institute | Keratin-silicone copolymers and interpenetrating networks (IPN's), methods of production and methods of use thereof |
US8637231B2 (en) | 2004-08-17 | 2014-01-28 | Wake Forest University Health Sciences | Method for increasing the volume of a blood substitute with an expander comprising basic alpha keratose |
US11173233B2 (en) | 2005-10-21 | 2021-11-16 | Wake Forest University Health Sciences | Keratin bioceramic compositions |
US20070166348A1 (en) * | 2005-10-21 | 2007-07-19 | Van Dyke Mark E | Keratin bioceramic compositions |
US8920827B2 (en) | 2005-10-21 | 2014-12-30 | Wake Forest University Health Sciences | Keratin bioceramic compositions |
US8968764B2 (en) | 2006-02-10 | 2015-03-03 | Wake Forest University Health Sciences | Nerve regeneration employing keratin biomaterials |
US20110137329A1 (en) * | 2006-02-10 | 2011-06-09 | Dyke Mark E Van | Nerve regeneration employing keratin biomaterials |
US9968706B2 (en) | 2006-02-10 | 2018-05-15 | Wake Forest University Health Sciences | Nerve regeneration employing keratin biomaterials |
US9149566B2 (en) | 2006-02-17 | 2015-10-06 | Wake Forest University Health Sciences | Coatings and biomedical implants formed from keratin biomaterials |
US20080274165A1 (en) * | 2006-02-17 | 2008-11-06 | Wake Forest University Health Sciences | Wound healing compositions containing keratin biomaterials |
US8258093B2 (en) | 2006-02-17 | 2012-09-04 | Wake Forest University Health Sciences | Wound healing compositions containing keratin biomaterials |
US8273702B2 (en) | 2006-02-17 | 2012-09-25 | Wake Forest University Health Sciences | Wound healing compositions containing keratin biomaterials |
US8299013B2 (en) | 2006-02-17 | 2012-10-30 | Wake Forest University Health Sciences | Clotting and healing compositions containing keratin biomaterials |
US20110142910A1 (en) * | 2006-02-17 | 2011-06-16 | Van Dyke Mark E | Clotting and Healing Compositions Containing Keratin Biomaterials |
US10821211B2 (en) | 2006-02-17 | 2020-11-03 | Wake Forest University Health Sciences | Coatings and biomedical implants formed from keratin biomaterials |
US20090004242A1 (en) * | 2006-02-17 | 2009-01-01 | Van Dyke Mark E | Coatings and Biomedical Implants Formed From Keratin Biomaterials |
US20090047260A1 (en) * | 2007-08-17 | 2009-02-19 | Wake Forest University Health Sciences | Keratin biomaterials for cell culture and methods of use |
US9068162B2 (en) | 2007-08-17 | 2015-06-30 | Wake Forest University Health Sciences | Keratin biomaterials for cell culture and methods of use |
US20110217356A1 (en) * | 2010-03-05 | 2011-09-08 | Van Dyke Mark E | Controlled delivery system |
US10434213B2 (en) | 2010-03-05 | 2019-10-08 | Wake Forest University Health Sciences | Controlled delivery system |
US8545893B2 (en) | 2010-03-08 | 2013-10-01 | Wake Forest University Health Sciences | Keratin biomaterials for treatment of ischemia |
US20110217285A1 (en) * | 2010-03-08 | 2011-09-08 | Van Dyke Mark E | Keratin biomaterials for treatment of ischemia |
US9220754B2 (en) | 2010-11-17 | 2015-12-29 | Wake Forest University Health Sciences | Keratin compositions for treatment of bone deficiency or injury |
Also Published As
Publication number | Publication date |
---|---|
US2447860A (en) | 1948-08-24 |
US2445029A (en) | 1948-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2445028A (en) | Method of dispersing keratin proteins with amides and the composition resulting therefrom | |
US2517572A (en) | Process of utilizing detergents to solubilize keratin materials | |
US4295894A (en) | Method of preparing soluble collagen fibers | |
CA1219807A (en) | Hair treating composition | |
US3637642A (en) | Process for dissolving insoluble collagen employing a mixture of an alkali metal hydroxide an alkali metal sulfate and an amine | |
US3073702A (en) | Water dispersible collagen | |
JP2527120B2 (en) | Method for producing hard keratin substance powder | |
JPH06116300A (en) | Keratin fragment and its production | |
JPS63301809A (en) | Water-soluble keratin, its production and hair cosmetic containing same | |
JPH10291999A (en) | Reduced protein from hair of higher animal, its dispersion in aqueous medium and its production | |
US2474339A (en) | Keratin derivatives and process of preparation thereof | |
CA1148536A (en) | Process for lowering gelling temperature of whey proteins obtained from milk | |
DE2250864A1 (en) | ALL-WHITE HAIR DETERGENT | |
FUJII | The effect of amines added to an alkali-pretreatment on the solubilisation of collagen and on the properties of gelatin | |
US2979438A (en) | Extraction of collagen | |
Hasanuddin et al. | Functional Properties of collagen from purple-spotted bigeye (Priacanthus tayenus Richardson, 1846) bone and fins extracted with different acids | |
US3786076A (en) | Lipoaminoacids | |
US2622036A (en) | Process for the treatment of | |
JPH01249709A (en) | Cosmetic containing hen's egg polypeptide derivative | |
Reddy et al. | Keratin-based Materials | |
RU2092072C1 (en) | Method of keratin preparing | |
US3075961A (en) | Reconstitution of native collagen fiber from acid precursor gelatin | |
US2597228A (en) | Method of treating proteins with saturated aliphatic polyamines and resulting product | |
US2521582A (en) | Treatment of keratinaceous materials | |
Feairheller et al. | Recovery and analyses of hair proteins from tannery unhairing wastes |