[go: up one dir, main page]

US2432416A - Clock construction - Google Patents

Clock construction Download PDF

Info

Publication number
US2432416A
US2432416A US550701A US55070144A US2432416A US 2432416 A US2432416 A US 2432416A US 550701 A US550701 A US 550701A US 55070144 A US55070144 A US 55070144A US 2432416 A US2432416 A US 2432416A
Authority
US
United States
Prior art keywords
clock
movement
casing
pinion
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US550701A
Inventor
Haydon Arthur William
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAYDON Manufacturing Co Inc
HAYDON MANUFACTURING COMPANY Inc
Original Assignee
HAYDON Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAYDON Manufacturing Co Inc filed Critical HAYDON Manufacturing Co Inc
Priority to US550701A priority Critical patent/US2432416A/en
Application granted granted Critical
Publication of US2432416A publication Critical patent/US2432416A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C15/00Clocks driven by synchronous motors
    • G04C15/0009Clocks driven by synchronous motors without power-reserve

Definitions

  • This invention relates to electric clocks and more particularly to the construction of the clock movement thereof and to the assembly of this clock movement into the clock casing.
  • gearing arrangements have generally required two or more gear shafts and a separate setting shaft which had to be moved axially to effect engagement of the setting gears for the setting operation.
  • pillars and bolts have been generally used to hold the plates in spaced relationship which makes for a greater number of clock parts.
  • Such prior constructions and their assembly into the clock casing have been complicated and unadapted to conveyor line production.
  • all of the gearing for the clock movement is assembled on two shafts and these two shafts and the gears thereon are contained between the front and rear frame plates.
  • the arrangement is such that the movement front frame plate serves as the dial backing.
  • One of these two shafts extends, rearwardly through the clock casing back plate and serves as the setting shaft. Axial adjustment of this setting shaft is unnecessary to reset the clock.
  • the gears are kept in mesh at all times and their ratio relationship is such that rotation of the exposed setting knob is merely at the harmless speed of less than one revolution per hour.
  • the gears of the respective shafts are assembled separately and dropped as units into the rear frame plate.
  • the front dial backing plate is fitted over these units and secured to forwardly bent pillar projections of the rear plate.
  • An electric motor is mounted on the rear face of the movement rear plate.
  • the movement with the motor is assembled into the clock casing without a separate dial back having to be connected to it.
  • the clock casing has a large movement opening extending therethrough.
  • a clock glass is first dropped into the clock movement opening from the rear of the casing and is retained at the front of the casing by a bezel.
  • the clock hands are attached to the central shaft assembly, and rearwardly bent projections on the rear plate are secured to the casing back plate.
  • the movement is then dropped into the casing behind the glass and the casing back secured by screws or the like to the clock casing.
  • a setting knob is attached to the portion of the setting shaft which extends through the casing back.
  • the forwardly and rearwardly bent projections of the rear plate eliminate the necessity for the usual pillars found in most clocks. These projections may be welded or riveted to the front plate and cas ing back. Inasmuch as the movement frame is braced against lateral movement when in the casing opening by the front plate and dial fitting tightly therein and against the bezel and by the casing, the frame is of lighter gauge material than that used in clocks where the movement has to be self-supporting.
  • the movement is so designed that by merely using a different size of front plate and casing back, it may be fitted into clock casings having different size opening and dials.
  • the method of assembly in each case will be the same.
  • thedifferent clock casings are of the same depth but, in case of a greater depth, longer, rearwardly bent projections may be provided.
  • a kitchen style clock is shown herein.
  • Fig. 1 is a cross-sectional view, in elevation, taken through the movement and casing of the assembied clock;
  • Fig. 2 is a partially exploded view of the frame plates, with the .shaft assemblies ,alreadymounted on the .rear plate, and of the .casing back;
  • Fig. 3 is an enlarged cross-sectional view of the setting shaft gear assembly
  • Fig. 4 is an enlarged cross-sectional view of the central shaft gear assembly with clock hands thereon;
  • Fig. 5 is a small plan view .ofthe movement rear plate and a dottedline s'howingjof the blank with unbent pillar projections;
  • Fig. 6 is a side view of the rear plate of Fig 5;
  • Fig. 7 is a small plan view of thelback plate of the clock casing.
  • Fig. 8 is a small plan -.view of the front frame plat of the movement.
  • a clock casing II which maybe of anysize or shape and through which there isan opening l2 adapted to receive a clock movement #3.
  • abezel M for supporting , a clock glass '15, whichis .inserted from the rear of the opening 12.
  • Assembled on the movement l3 is a dial l6 :and hour, .minute :and sweep secnd hands l'l,'i8.and IS.
  • the movement, with these parts attached, is connectedto a casing back or plate 2
  • Rearwardly bent projections 23 are provided on the movement for this purpose.
  • An electric motor 24 is secured to the movement l3, and wires '25 thereof pass outwardly through the casing back 2
  • the electric motor 24 maybe of the construction disclosed in my prior Patent 1,935,208 or 1,996,375 orof any other construction as may be desired, but preferably thedimensions of the motor should be such that the motor does not interfere witha counter or setting shaft 26 projecting through the rear of the clock movement 13.
  • a setting knob 21 is fixed to the end'oftheshaft 2$-and is accessible from the rear of the casing.
  • The'motor'24 may be welded or otherwise fixed to the mounting plate in the position illustrated-in'Fig. 1.
  • the shaft assembly 29 includes a central shaft 3
  • a gear'31 is fixed to pinion '36.
  • 'Asleeve '32 carrying the minute'hand I8 and a pinion 39 is rotatablymounted on the shaft 3
  • Another sleeve33 carrying the hour'hand I! and 'agear 44 is,-in turn, rotatably'mounted on sleeve 32.
  • Loosely mounted on the rearward 'end of shaft 3! is a pinion 35 with-a gear 34 fixed thereto.
  • the pinion 36 with the gear 31 thereon may :be fixed to the shaft'by pressing it onto'a knurled portion of the shaft, as shown at 3B, or in any other suitable manner.
  • the pinion 39 has shoulder 39 on Which --a gear 4
  • the central and setting shaft gear assemblies ;into mesh.
  • Drive shaft 59 extending through bearing 58 carries a pinion 6! which meshes with and drives theigear134 on'the central shaft.
  • Pinion 35 will then drive central shaft 3! through'gear 54 and pinion 53 on the setting shaft 28, and gear 37 and pinion 35.
  • the reduction in speed effected by this gearing is such as to ro-tate'shaft 3i and the 'sweepsecond hand l9 one revolution per minute.
  • Pinion 36 drives gear 52 and pinion 5i, and the latter, in turn, drives the frlctionally retained gear 4! and large pinion '33 on minute sleeve'SZ.
  • minute hand i8 is driven.
  • Large pinion 39 drives gear 49 and pinion @8 to slowly rotate setting shaft 25, and
  • a lowgear ratio of less than two to one is provided between gear and the large pinion 3'9 e i 2 i 64 24 12 Because pinion 39 and plate .gear Q! are only frictionally held together, as effected by spring '43, the setting of .the minute and hour hands;
  • the setting knob 27 makes less than one revolution per hour while the clock is running, which is unnoticed and unharmful.
  • the small pinion gears on both shafts have the same number of teeth (8) and .pitch, and also, the large gears 34, 54, 52 are of the same pitch and number of teeth (60) and the large gears 31, 45 and 44 are the same pitch and number of teeth (64). 'The motor pinion is run at 450 revolutions per minute.
  • the rear plate 55 has forwardly bent projections 65 as well as the rearwardly bent projections 23, Figs. '5, 6.
  • a front frame plate 61 is fitted on the forward projections 65 to complete the movement frame. With the shaft assemblies properly in place on the rear frame 55, the front frame plate 51 is dropped into place over the gear assemblies and projections 65 to form front bearing plate.
  • Sleeve '33 is received in a plate 67 and be upset or welded to fix front frame plate securelyupon the projections 65.
  • Casing back is then fitted to rearwardly bent projections 23 so that projecting tongues thereof are extended through slots 16 and setting shaft 26 extended through opening H.
  • the tongues are upset or welded to the back 2 I.
  • Knob 21' is connected to the setting shaft 26 and its hub portion 18 extends loosely into large opening 11.
  • containing the wires 25 is slid into open ended slot 82 of the casing back.
  • the wires 25 are preferably knotted as indicated at 83 to prevent the wires from being pulled through the grommet and loosened from the motor.
  • this new assembly i dropped into the casing opening I2 and the back secured to the casing by putting screws 22 in casing shoulder portion 84 and tightening the back against casing H.
  • the movement and the attached parts are carried by the casing back and thus can readily be made free of the clock casing by simply removing the casing back.
  • a different size dial may be supported and the move ment thereby readily adapted for a clock with a larger face.
  • the length of the bent back projections 23 the movement is altered for a clock casing of different depth.
  • the entire clock movement assembly is held rigid by support from the casing ll, thereby allowing the use of relatively light gauge metal for the frame 55.
  • the front plate is coextensive with the thin dial [9 to provide adequate support therefor throughout the entire rear surface thereof.
  • a clock movement comprising a rear frame plate, a front plate, means for securing the front plate to the rear plate to provide a frame, a motor mounted on the rear of the frame and having a drive shaft extending through the frame, a central shaft supported in the frame and extending between said plates, minute and hour hands and driving sleeves and reduction gears carried by said central shaft, a single countershaft journalled in the frame and extending between said. plates, reduction gears on said countershaft coop-- erating with the gears on the central shaft to complete driving connections with the sleeves of,
  • a clock casing having an opening therethrough, a bezel in the front of the opening, a clock glass insertable from the rear of the opening and adapted to bear against the bezel, a casing back adapted to close the rear of the clock opening, a clock movement adapted to fit the opening and to support a dial, said movement including a rear frame plate, central and setting shaft assemblies fitted into the rear plate, a motor carried bythe rear frame for driving the shaft assemblies, a front plate secured to the rear plate in front of the assemblies, a dial fitted flatly against the front plate, said central shaft assembly extending through the front plate and the dial, clock hands secured to the central shaft assembly in front of the dial, said movement with the related parts thereof connected to the casing back to be supported thereon, said setting shaft extending through the rear frame plate and through the casing back to be accessible at the rear of the clock, and means for securing the casing back to the clock casing to support the movement and the related parts within the clock opening and in rear of the clock glass.
  • a clock mechanism comprising a pair of frame plates held in spaced relationship with one another, a motor mounted on one of the plates and having a drive shaft extending through one of the plates, a central shaft supported in the plates, minute and hour hands and driving sleeves and reduction gears carried by the central shaft, a single countershaft journalled in the plates, reduction gears on the countershaft cooperating with the gears and the central shaft to drive the sleeves thereof, a pinion on the motor drive shaft engaging a gear on one of the other shafts, said countershaft having an extension adapted to be manually turned to effect the setting of the minute and hour hands, and
  • setting gears including a pinion keyed to the countershaft, a gear on the hour hand sleeve meshed with the pinion, a large pinion on the minute hand sleeve, a gear adapted to be turned by the ccuntershaft and meshed with the large pinion, one of said reduction gears on the central shaft being normally frictionally retained against the large pinion but remaining stationary as the countershaft is turned to set the minute and hour hands.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

' Dec. '9, 1947. v w, HAYDQN 2,432,416
I I CLOCK CONSTRUCTION I Filed Aug. 25, 1944 5 Sheets-Sheet 1 INVENTOR ART/M? W MYw/v 3 BY 5 f, '0 MM- QM ATTORNEYS Dec. 9, 1947 A. w. HAYDON 2,432,416
CLOCK CONSTRUCTION Filed Aug. 23, 1944 3 Sheets-Sheet 2 INVENTOR I 4/97/10,? 1. mrw/v I I 0 I2! g ATTORNEYS Patented Dec. 9, 1947 CLOCK CONSTRUCTION Arthur William Haydon, Marion, Conn, assignor t Haydon Manufacturing Company, Inc., Forestville, Conn., a corporation of Connecticut Application August 23, 1944, Serial No. 550,701
3 Claims. 1
This invention relates to electric clocks and more particularly to the construction of the clock movement thereof and to the assembly of this clock movement into the clock casing.
Prior clock constructions have required, in addition to the front and rear plates of the movement which have housed the clock gears and their shafts, a dial backing spaced from the movement front plate in order to provide a flat support for the dial. One reason for this has been that the making of the movement and the assembly of the movement into the clock casing have been separate departmental activities. The movement has been designed and made in one department and then transferred to another department where a separate dial back of desired size was mounted on the movement and the movement and dial back assembled into the clock casing. Another reason was that certain of the gears, particularly those gears utilized to set the clock hands, were located ahead of the move ment front frame plate, leaving no smooth surface on the movement for supporting the dial and consequently requiring that a dial backin be located ahead of these gears. Beyond this, the gearing arrangements have generally required two or more gear shafts and a separate setting shaft which had to be moved axially to effect engagement of the setting gears for the setting operation. Also, pillars and bolts have been generally used to hold the plates in spaced relationship which makes for a greater number of clock parts. Such prior constructions and their assembly into the clock casing have been complicated and unadapted to conveyor line production.
It is among the objects of the present invention to reduce the number of parts of a clock to its prime elements, standardize the methods of assembly of movement for a line of various clocks, and provide a clock suitable for conveyor line production.
It is another object of the invention to provide an electric clock movement wherein only two shafts and two frame plates are used and wherein the movement front plate will serve as the backing for the dial.
It is another object of the invention to eliminate the need for the usual type of pillars and bolts between front and rear frame plates of the movement and, between the movement rear frame plate and the clock casing back plate.
According to the present invention all of the gearing for the clock movement is assembled on two shafts and these two shafts and the gears thereon are contained between the front and rear frame plates. The arrangement is such that the movement front frame plate serves as the dial backing. One of these two shafts extends, rearwardly through the clock casing back plate and serves as the setting shaft. Axial adjustment of this setting shaft is unnecessary to reset the clock. The gears are kept in mesh at all times and their ratio relationship is such that rotation of the exposed setting knob is merely at the harmless speed of less than one revolution per hour. The gears of the respective shafts are assembled separately and dropped as units into the rear frame plate. The front dial backing plate is fitted over these units and secured to forwardly bent pillar projections of the rear plate. An electric motor is mounted on the rear face of the movement rear plate.
The movement with the motor is assembled into the clock casing without a separate dial back having to be connected to it. The clock casing has a large movement opening extending therethrough. A clock glass is first dropped into the clock movement opening from the rear of the casing and is retained at the front of the casing by a bezel. After the dial is fitted against the front plate the clock hands are attached to the central shaft assembly, and rearwardly bent projections on the rear plate are secured to the casing back plate. The movement is then dropped into the casing behind the glass and the casing back secured by screws or the like to the clock casing. To the portion of the setting shaft which extends through the casing back, a setting knob is attached. The forwardly and rearwardly bent projections of the rear plate eliminate the necessity for the usual pillars found in most clocks. These projections may be welded or riveted to the front plate and cas ing back. Inasmuch as the movement frame is braced against lateral movement when in the casing opening by the front plate and dial fitting tightly therein and against the bezel and by the casing, the frame is of lighter gauge material than that used in clocks where the movement has to be self-supporting.
The movement is so designed that by merely using a different size of front plate and casing back, it may be fitted into clock casings having different size opening and dials. The method of assembly in each case will be the same. Generally,'in a given line of clocks thedifferent clock casings are of the same depth but, in case of a greater depth, longer, rearwardly bent projections may be provided. A kitchen style clock is shown herein.
For other objects and for better understanding of the invention, reference may be had to the following detailed description of one embodiment of my invention, illustrated in the accomp-ayin-g drawings in which- Fig. 1 is a cross-sectional view, in elevation, taken through the movement and casing of the assembied clock;
Fig. 2 is a partially exploded view of the frame plates, with the .shaft assemblies ,alreadymounted on the .rear plate, and of the .casing back;
Fig. 3 is an enlarged cross-sectional view of the setting shaft gear assembly;
Fig. 4 is an enlarged cross-sectional view of the central shaft gear assembly with clock hands thereon;
Fig. 5 is a small plan view .ofthe movement rear plate and a dottedline s'howingjof the blank with unbent pillar projections;
Fig. 6 is a side view of the rear plate of Fig 5;
Fig. 7 is a small plan view of thelback plate of the clock casing; and
Fig. 8 is a small plan -.view of the front frame plat of the movement.
Referringparticularly to Fig.1, there'is'shown a clock casing II which maybe of anysize or shape and through which there isan opening l2 adapted to receive a clock movement #3. Around the forward end of opening 12 and attached tothecasing, isabezel M for supporting ,a clock glass '15, whichis .inserted from the rear of the opening 12. Assembled on the movement l3 is a dial l6 :and hour, .minute :and sweep secnd hands l'l,'i8.and IS. The movement, with these parts attached, is connectedto a casing back or plate 2| which is attached by screws 22* .to the clock casing H. Rearwardly bent projections 23 are provided on the movement for this purpose.
An electric motor 24 is secured to the movement l3, and wires '25 thereof pass outwardly through the casing back 2|. The electric motor 24 maybe of the construction disclosed in my prior Patent 1,935,208 or 1,996,375 orof any other construction as may be desired, but preferably thedimensions of the motor should be such that the motor does not interfere witha counter or setting shaft 26 projecting through the rear of the clock movement 13. A setting knob 21 is fixed to the end'oftheshaft 2$-and is accessible from the rear of the casing. The'motor'24 may be welded or otherwise fixed to the mounting plate in the position illustrated-in'Fig. 1.
Referring now particularly to "-Figs. '3 and '4,
there is shown, respectively, asetting or-countershaft assembly 28 and a central shaft assembly '29. The shaft assembly 29 includes a central shaft 3| having fixedthereto-sweep-second hand -'!9,'and'a,pinion"36. A gear'31 is fixed to pinion '36. 'Asleeve '32 carrying the minute'hand I8 and a pinion 39 is rotatablymounted on the shaft 3|. Another sleeve33 carrying the hour'hand I! and 'agear 44 is,-in turn, rotatably'mounted on sleeve 32. Loosely mounted on the rearward 'end of shaft 3! is a pinion 35 with-a gear 34 fixed thereto. The pinion 36 with the gear 31 thereon may :be fixed to the shaft'by pressing it onto'a knurled portion of the shaft, as shown at 3B, or in any other suitable manner. The pinion 39 has shoulder 39 on Which --a gear 4| is rotatably mounted but normally heldin firmifrictional engagement with the face '42 of the gear "39 by means of a spider spring 43 'carriedby the shoulder 39.
Fixed to the forward end of the setting shaft setting shaft 26, and a third'pinion 53 with a gear 5 3 fixed thereon is also looselymounte'd on theshaft-ZS. "In both assemblies the'small pinion and "gear carried thereby may be splin-ed together.
The central and setting shaft gear assemblies ;into mesh.
are made from the same pinion wire.
- the ends of shafts 3| and 26 enter openings there- 'in, Fig. 2. The setting shaft 26 extends through opening 56 while the central shaft 32 is dropped into a central opening 51. All gears are brought Motor shaft bearing 58 in a large opening inrearplate locates the motor therein.
Drive shaft 59 extending through bearing 58 carries a pinion 6! which meshes with and drives theigear134 on'the central shaft.
Pinion 35 will then drive central shaft 3! through'gear 54 and pinion 53 on the setting shaft 28, and gear 37 and pinion 35. The reduction in speed effected by this gearing is such as to ro-tate'shaft 3i and the 'sweepsecond hand l9 one revolution per minute.
Pinion 36, in turn, drives gear 52 and pinion 5i, and the latter, in turn, drives the frlctionally retained gear 4! and large pinion '33 on minute sleeve'SZ. As the sleeve 32 rotates, minute hand i8 is driven. Large pinion 39 drives gear 49 and pinion @8 to slowly rotate setting shaft 25, and
pinion thereon, in turn, drives the gear Mano.
sleeve 33 to thereby effect rotation of hour hand ii.
In order to obtain a smooth setting arrangement, a lowgear ratio of less than two to one is provided between gear and the large pinion 3'9 e i 2 i 64 24 12 Because pinion 39 and plate .gear Q! are only frictionally held together, as effected by spring '43, the setting of .the minute and hour hands;
is done without rotating the main reduction gears. Because of the low ratio of the gears, the setting knob 27 makes less than one revolution per hour while the clock is running, which is unnoticed and unharmful.
The small pinion gears on both shafts have the same number of teeth (8) and .pitch, and Also, the large gears 34, 54, 52 are of the same pitch and number of teeth (60) and the large gears 31, 45 and 44 are the same pitch and number of teeth (64). 'The motor pinion is run at 450 revolutions per minute.
The rear plate 55 has forwardly bent proiections 65 as well as the rearwardly bent projections 23, Figs. '5, 6. A front frame plate 61 is fitted on the forward projections 65 to complete the movement frame. With the shaft assemblies properly in place on the rear frame 55, the front frame plate 51 is dropped into place over the gear assemblies and projections 65 to form front bearing plate. Sleeve '33 is received in a plate 67 and be upset or welded to fix front frame plate securelyupon the projections 65.
"61 thus serves as the dial back for the dial l6.
Casing back is then fitted to rearwardly bent projections 23 so that projecting tongues thereof are extended through slots 16 and setting shaft 26 extended through opening H. The tongues are upset or welded to the back 2 I. Knob 21' is connected to the setting shaft 26 and its hub portion 18 extends loosely into large opening 11. A rubber grommet 8| containing the wires 25 is slid into open ended slot 82 of the casing back. The wires 25 are preferably knotted as indicated at 83 to prevent the wires from being pulled through the grommet and loosened from the motor.
After the clock glass 15 is placed against the bezel M, this new assembly i dropped into the casing opening I2 and the back secured to the casing by putting screws 22 in casing shoulder portion 84 and tightening the back against casing H. By this construction, the movement and the attached parts are carried by the casing back and thus can readily be made free of the clock casing by simply removing the casing back. By merely changing the size of the front plate a different size dial may be supported and the move ment thereby readily adapted for a clock with a larger face. Also, by varying the length of the bent back projections 23 the movement is altered for a clock casing of different depth. By fitting the back 2| into a recess 85 of the casing H and likewise locating the front plate 61 snugly in the bezel I4 or directly against the opening [2, the entire clock movement assembly is held rigid by support from the casing ll, thereby allowing the use of relatively light gauge metal for the frame 55. It will be noted that the front plate is coextensive with the thin dial [9 to provide adequate support therefor throughout the entire rear surface thereof.
It should now be apparent that there has been provided a clock movement in which only two shafts are utilized, one of which serves as a setting shaft, and in which all of the gears are included between two frame plates. It should also be apparent that an arrangement has been provided wherein the front frame plate serves as the dial back for the dial and the pillars are integral parts of one of the movement plates.
While various changes may be made in the details of construction, it shall be understood that such changes shall be within the spirit and scope of the invention as defined by the appended claims.
What is claimed is:
1. A clock movement comprising a rear frame plate, a front plate, means for securing the front plate to the rear plate to provide a frame, a motor mounted on the rear of the frame and having a drive shaft extending through the frame, a central shaft supported in the frame and extending between said plates, minute and hour hands and driving sleeves and reduction gears carried by said central shaft, a single countershaft journalled in the frame and extending between said. plates, reduction gears on said countershaft coop-- erating with the gears on the central shaft to complete driving connections with the sleeves of,
the central shaft, a pinion on the motor shaft engaging a gear on the central shaft, said countershaft extending through said frame at one side of said motor whereby the projecting end of the countershaft can be turned by hand to set the clock.
2. In a clock, a clock casing having an opening therethrough, a bezel in the front of the opening, a clock glass insertable from the rear of the opening and adapted to bear against the bezel, a casing back adapted to close the rear of the clock opening, a clock movement adapted to fit the opening and to support a dial, said movement including a rear frame plate, central and setting shaft assemblies fitted into the rear plate, a motor carried bythe rear frame for driving the shaft assemblies, a front plate secured to the rear plate in front of the assemblies, a dial fitted flatly against the front plate, said central shaft assembly extending through the front plate and the dial, clock hands secured to the central shaft assembly in front of the dial, said movement with the related parts thereof connected to the casing back to be supported thereon, said setting shaft extending through the rear frame plate and through the casing back to be accessible at the rear of the clock, and means for securing the casing back to the clock casing to support the movement and the related parts within the clock opening and in rear of the clock glass.
3. A clock mechanism comprising a pair of frame plates held in spaced relationship with one another, a motor mounted on one of the plates and having a drive shaft extending through one of the plates, a central shaft supported in the plates, minute and hour hands and driving sleeves and reduction gears carried by the central shaft, a single countershaft journalled in the plates, reduction gears on the countershaft cooperating with the gears and the central shaft to drive the sleeves thereof, a pinion on the motor drive shaft engaging a gear on one of the other shafts, said countershaft having an extension adapted to be manually turned to effect the setting of the minute and hour hands, and
setting gears including a pinion keyed to the countershaft, a gear on the hour hand sleeve meshed with the pinion, a large pinion on the minute hand sleeve, a gear adapted to be turned by the ccuntershaft and meshed with the large pinion, one of said reduction gears on the central shaft being normally frictionally retained against the large pinion but remaining stationary as the countershaft is turned to set the minute and hour hands.
ARTHUR WILLIAM HAYDON.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 1,797,912 Hammond May 24, 1931 1,909,073 Putnam May 16, 1933 1,962,653 Gottlieb June 12, 1934 1,965,772 Hanson July 10, 1934. 2,041,342 Hogenbirk May 19, 1936 1,957,694 Chamberlain et al. May 19, 1934 FOREIGN PATENTS Number Country Date 339,180 Great Britain Dec. 4, 1930
US550701A 1944-08-23 1944-08-23 Clock construction Expired - Lifetime US2432416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US550701A US2432416A (en) 1944-08-23 1944-08-23 Clock construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US550701A US2432416A (en) 1944-08-23 1944-08-23 Clock construction

Publications (1)

Publication Number Publication Date
US2432416A true US2432416A (en) 1947-12-09

Family

ID=24198263

Family Applications (1)

Application Number Title Priority Date Filing Date
US550701A Expired - Lifetime US2432416A (en) 1944-08-23 1944-08-23 Clock construction

Country Status (1)

Country Link
US (1) US2432416A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559480A (en) * 1946-10-05 1951-07-03 United States Time Corp Instrument case construction
US2644853A (en) * 1949-05-21 1953-07-07 Gen Time Corp Casing for an electrical clock movement having a cord storage compartment
DE1197533B (en) * 1961-01-23 1965-07-29 Heliowatt Werke Elek Zitaets G Synchronous timer
US3759032A (en) * 1969-11-21 1973-09-18 Mallory & Co Inc P R Motor driven timer
US3837160A (en) * 1971-08-17 1974-09-24 H Hettich Battery driven clock with a self-regulating escapement system and a plastics material housing
US3897700A (en) * 1974-06-18 1975-08-05 Tri Tech Clock setting mechanism
US8902717B1 (en) 2013-06-03 2014-12-02 Alex Garzon Clockwork mechanism that enables a second hand to be positioned below the hour hand and the minute hand on a clock face

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB339180A (en) * 1930-01-28 1930-12-04 Helmut Junghans Improvements in or relating to alarm-clocks
US1797912A (en) * 1929-06-18 1931-03-24 Hammond Clock Company Alternating-current clock
US1909073A (en) * 1932-03-18 1933-05-16 Waterbury Clock Company Electric clock
US1957694A (en) * 1931-10-06 1934-05-08 New Haven Clock Co Electric clock
US1962653A (en) * 1931-12-04 1934-06-12 Gottlieb Joseph Synchronous motor for driving electrical clocks and the like
US1965772A (en) * 1932-03-03 1934-07-10 Electric Corp Electric clock motor
US2041342A (en) * 1931-12-08 1936-05-19 Electric Auto Lite Co Time indicating mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1797912A (en) * 1929-06-18 1931-03-24 Hammond Clock Company Alternating-current clock
GB339180A (en) * 1930-01-28 1930-12-04 Helmut Junghans Improvements in or relating to alarm-clocks
US1957694A (en) * 1931-10-06 1934-05-08 New Haven Clock Co Electric clock
US1962653A (en) * 1931-12-04 1934-06-12 Gottlieb Joseph Synchronous motor for driving electrical clocks and the like
US2041342A (en) * 1931-12-08 1936-05-19 Electric Auto Lite Co Time indicating mechanism
US1965772A (en) * 1932-03-03 1934-07-10 Electric Corp Electric clock motor
US1909073A (en) * 1932-03-18 1933-05-16 Waterbury Clock Company Electric clock

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559480A (en) * 1946-10-05 1951-07-03 United States Time Corp Instrument case construction
US2644853A (en) * 1949-05-21 1953-07-07 Gen Time Corp Casing for an electrical clock movement having a cord storage compartment
DE1197533B (en) * 1961-01-23 1965-07-29 Heliowatt Werke Elek Zitaets G Synchronous timer
US3759032A (en) * 1969-11-21 1973-09-18 Mallory & Co Inc P R Motor driven timer
US3837160A (en) * 1971-08-17 1974-09-24 H Hettich Battery driven clock with a self-regulating escapement system and a plastics material housing
US3897700A (en) * 1974-06-18 1975-08-05 Tri Tech Clock setting mechanism
US8902717B1 (en) 2013-06-03 2014-12-02 Alex Garzon Clockwork mechanism that enables a second hand to be positioned below the hour hand and the minute hand on a clock face

Similar Documents

Publication Publication Date Title
US2852908A (en) Mysterious wrist watch
US2432416A (en) Clock construction
CH625663GA3 (en)
GB2062300A (en) Gear train for a timepiece with a stepping motor
US2248195A (en) Clock
US2082612A (en) Advertising clock
US2645077A (en) Clock setting and regulating mechanism
US2821063A (en) Clockwork mechanism
US1790359A (en) Elapsed time indicator
US2642713A (en) Clock
US2576119A (en) Wall and desk cyclometer clock
GB1442530A (en) Automatic winding mechanical watch movement
US2211426A (en) Electric alarm clock
US2700867A (en) Clock setting and regulating mechanism
US2670590A (en) Calendar clock
US2060531A (en) Clock provided with a transparent dial and an invisible mechanism
GB1216097A (en) A hands setting device in a watch mechanism
US3043089A (en) Electric clock
US2694285A (en) Display clock construction
US2091770A (en) Alarm clock
US2451639A (en) Setting means for world clocks
US2066357A (en) Manual or automatic means for correcting time-keeping mechanisms
US4657407A (en) Clock construction and method of making the same
GB1537309A (en) Wristwatch movement
GB481703A (en) Improvements in clocks