US2409668A - Heat transfer means and method of assembly - Google Patents
Heat transfer means and method of assembly Download PDFInfo
- Publication number
- US2409668A US2409668A US451448A US45144842A US2409668A US 2409668 A US2409668 A US 2409668A US 451448 A US451448 A US 451448A US 45144842 A US45144842 A US 45144842A US 2409668 A US2409668 A US 2409668A
- Authority
- US
- United States
- Prior art keywords
- core
- cavity
- anode
- solder
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J19/00—Details of vacuum tubes of the types covered by group H01J21/00
- H01J19/28—Non-electron-emitting electrodes; Screens
- H01J19/32—Anodes
- H01J19/36—Cooling of anodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2893/00—Discharge tubes and lamps
- H01J2893/0001—Electrodes and electrode systems suitable for discharge tubes or lamps
- H01J2893/0012—Constructional arrangements
- H01J2893/0027—Mitigation of temperature effects
Definitions
- This invention relates to heat transfer means and particularly to cooling means applied to and in combination with an external electrode of an electron discharge device, and method of assembly therewith.
- solder on entry of the electrode into the core, is fr quently forced from the intervening device and strikes the glass part of the envelope either causing immediate breakage or a weakened spot which develops into a defect and point of leakage.
- insufficie-nt solder has frequently been employed thereby leaving an air gap between the electrodeand radiator core with resultant loss of conduction.
- An object of the present invention is to overcome the detrimental eifects of prior art construction and method of fabrication.
- a further object of the invention is to improve the structure and method of fabrication and at the same time reduce discards or shrinkagein manufacture and development of defective devices in use from the cause mentioned.
- Another object of the invention is to obtain maximum heat conduction from the electrode to the radiator core.
- Yet another object is to reduce the time and attention required of the operator in making a perfect assembly of the electrode and. radiator core.
- Figure 1 is a longitudinal sectional view of an electron discharge device with a cooling means applied thereto in accordance with my invention
- Figure 2 is a sectional View of the core showing steps of fabrication
- Figure 3 is a sectional View of anode and core of Fig. 1 about to be assembled.
- the reference numeral ii) designates an electron discharge device in general, having usual triode or other electrodes of which the anode ll shown herein is formed as part of the envelope and provides a peripheral rim portion l2 sealed into an edge margin of glass portion E3 of said envelope.
- the anode structure while not per se novel, enters into the present invention as illustrative of the metallic portion of the electron device to which an external radiator is to be applied.
- Said anode is shown as an inverted dome the base part of which curls or flares outwardly at M and then downwardly to form said rim portion 12 spaced from and engirdling a part of the body of the anode nearest the base part thereof.
- the structure accordingly provides an inverted channel i5 between the dome or body portion of the anode and said rim portion l2;
- the glass portion i3 of the envelope is provided with a reentrant edge margin 16, and it isthis reentrant margin which is sealed to the said rim portion i2 of the anode.
- the heat transfer means or radiator designated in general by numeral ll, comprises a metallic core [8 the lower portion whereof has fins 18 extending longitudinally thereof and radiating therefrom.
- the outer longitudinal edges of the fins are here shown engaging and attached to the inner face of a ring 28 surrounding the annular series of fins.
- the fins are situated at their inner longitudinal margins in grooves 2! provided in the outer surface of the lower cylindrical part of the core. Other constructions of fins and means of attachment may be substituted.
- the upper part of core I8 is hollowed, thereby providing an anode cavity 22 shaped to conform to the dome shape of the anode. Assembly clearance and manufacturing tolerance results in a minute space existing between the cavity wall and the anode, and that space is filled with a film of solder 23 during fabrication. It may now be pointed out that the upper part 24 of core I8 is annular, due to the cavity 22 therein, and this annular part of the core enters between the reentrant glass margin [6 and the body of the anode as well as between the channel-forming parts of the anode, so that the upper end of the core is above the edge of the glass and therefore solder ejected from the provided space is apt to,
- the present invention overcomes this prevalent detrimental condition.
- an overflow catch basin formed by means of an annular channel 25.
- this channel is interposed between the space for the solder and the glass part of the envelope, excess solder from said space will lodge in said channel, thereby protecting the glass. Since the channel is annular or continuous around the anode, large amounts of solder extruded at one position will flow around to parts of the channel where no solder has been caught, and thus the channel will accommodate irregularity of extrusion of the solder. If desired, and where space permits, the outer wall of the catch basin or channel may be made higher than the inner wall, as shown, to more positively prevent overflow of the extruded solder.
- the cavity 22 of the core is a basementtely cleaned and kept in best condition for adherence of the solder. Cleaning may be by acid or otherwise, after which a flow of hydrogen is maintained in the cavity until ready to insert the anode therein.
- Solder 26 in proper amount is placed in the cavity and the core is heated so that all parts thereof are above the melting point of the solder. Flame 2'! is indicative of appropriate heating means.
- the anode is forced, as being done in Fig. 2, gradually and firmly into said cavity, the anode displacing the melted solder and forcing it to rise in the space between the anode and core.
- the fact that the entire core is above the temperature of the solder assures flow, without solidification, to the upper edge of the core.
- excess solder extruded from the space will continue in its liquid state and will flow into the catch basin or channel 25 and will level-off therein to take care of a very considerable overflow.
- the solder completely fills the space between the anode and core and that the extruded excess will be accommodated and. retained by the channel so none will contact the glass part of the envelope. Cooling of the core is then permitted and the solder will accordingly harden in place giving full surface connection throughout the cavity with the anode.
- a heat exchange means comprising a core having a cavity opening upward and having a closed bottom, said cavity adapted to receive a device for heat exchange purposes by conduction from said device through the material of the core, said cavity adapted to contain material in a fluid state subject to extrusion at the upper edge of the cavity upon introduction of said device into the cavity, said core having means for accommodating excess of the fluid material extruded from the cavity.
- a heat exchange means comprising a core having a cavity opening upward and having a closed bottom, said cavity adapted to receive a device for heat exchange purposes by conduction from said device through the material of the core, said cavity adapted to contain material in a fluid state subject to extrusion at the upper edge of the cavity upon introduction of said device into the cavity, said core having a channel for accommodating excess of the fluid material extruded from the cavity.
- a heat exchange means comprising a core having a cavity opening upward and having a closed bottom, said cavity adapted to receive a device for heat exchange purposes by conduction from said device through the material of the core, said cavity adapted to contain material in a fluid state subject to extrusion at the upper edge of the cavity upon introduction of said device into the cavity, said core having a continuous annular channel for accommodating excess of the fluid material extruded from the cavity.
- a heat exchange means comprising a core having a cavity opening upward and having a closed bottom, said cavity adapted to receive a device for heat exchange purposes by conduction from said device through the material of the core, said cavity adapted to contain material in a fluid state subject to extrusion at the upper edge of the cavity upon introduction of said device into the cavity, said core having a channel for accommodating excess of the fluid material extruded from the cavity, the wall of the channel furthest from the said cavity having greater height than the wall of the channel nearest said cavity.
Landscapes
- Joining Of Glass To Other Materials (AREA)
Description
Oct.
22, l'946.- H. J. DAILEY HEAT TRANSFER MEANS AND METHOD OF ASSEMBLY Filed July 18, 1942 INVENTOR H-JT ,D/Y/LE'Y ATTORNEY Patented Oct. 22, 1946 HEAT TRANSFER MEANS AND METHOD OF ASSEMBLY Hampton J. Dailey, Bloomfield, N. J assignor to Westinghouse Electric Corporation, East Pittsburgh, Pa., a corporation of Pennsylvania Application July 18, 1942, Serial No. 451,448
4 Claims.
This invention relates to heat transfer means and particularly to cooling means applied to and in combination with an external electrode of an electron discharge device, and method of assembly therewith.
Heretofore electron discharge devices have been constructed with envelopes partly of glass and partly of metal, at least one of the external 1'. etal parts constituting an electrode. A particular instance of such construction is incorporated in the present showing wherein the external metal part constitutes in part an anode. C'onsequential upon the heat developed in the metallic anode, the junction between the metal and glass is subjected to high temperature differences. Radiators of one sort or another have been applied to the external part of the metallic electrode, and in application of a sleeve type of radiator the fabrication has involved use of solder for obtaining tight contact for insuring maximum conduction of heat from the electrode to the radiator. The solder, on entry of the electrode into the core, is fr quently forced from the intervening device and strikes the glass part of the envelope either causing immediate breakage or a weakened spot which develops into a defect and point of leakage. To avoid this, insufficie-nt solder has frequently been employed thereby leaving an air gap between the electrodeand radiator core with resultant loss of conduction.
An object of the present invention is to overcome the detrimental eifects of prior art construction and method of fabrication.
A further object of the invention is to improve the structure and method of fabrication and at the same time reduce discards or shrinkagein manufacture and development of defective devices in use from the cause mentioned.
Another object of the invention is to obtain maximum heat conduction from the electrode to the radiator core.
Yet another object is to reduce the time and attention required of the operator in making a perfect assembly of the electrode and. radiator core.
Still further objects and advantages will become apparent'both by direct recitation thereof and by implication from the context as the description proceeds.
Referring to the accompanying drawing in which like numerals of reference indicate similar parts throughout the several views;
Figure 1 is a longitudinal sectional view of an electron discharge device with a cooling means applied thereto in accordance with my invention;
Figure 2 is a sectional View of the core showing steps of fabrication; and
Figure 3 is a sectional View of anode and core of Fig. 1 about to be assembled.
In the specific embodiment of the invention illustrated in said drawing, the reference numeral ii) designates an electron discharge device in general, having usual triode or other electrodes of which the anode ll shown herein is formed as part of the envelope and provides a peripheral rim portion l2 sealed into an edge margin of glass portion E3 of said envelope. The anode structure, while not per se novel, enters into the present invention as illustrative of the metallic portion of the electron device to which an external radiator is to be applied. Said anode is shown as an inverted dome the base part of which curls or flares outwardly at M and then downwardly to form said rim portion 12 spaced from and engirdling a part of the body of the anode nearest the base part thereof. The structure accordingly provides an inverted channel i5 between the dome or body portion of the anode and said rim portion l2; The glass portion i3 of the envelope is provided with a reentrant edge margin 16, and it isthis reentrant margin which is sealed to the said rim portion i2 of the anode.
The heat transfer means or radiator, designated in general by numeral ll, comprises a metallic core [8 the lower portion whereof has fins 18 extending longitudinally thereof and radiating therefrom. The outer longitudinal edges of the fins are here shown engaging and attached to the inner face of a ring 28 surrounding the annular series of fins. As here shown, the fins are situated at their inner longitudinal margins in grooves 2! provided in the outer surface of the lower cylindrical part of the core. Other constructions of fins and means of attachment may be substituted.
The upper part of core I8 is hollowed, thereby providing an anode cavity 22 shaped to conform to the dome shape of the anode. Assembly clearance and manufacturing tolerance results in a minute space existing between the cavity wall and the anode, and that space is filled with a film of solder 23 during fabrication. It may now be pointed out that the upper part 24 of core I8 is annular, due to the cavity 22 therein, and this annular part of the core enters between the reentrant glass margin [6 and the body of the anode as well as between the channel-forming parts of the anode, so that the upper end of the core is above the edge of the glass and therefore solder ejected from the provided space is apt to,
and frequently has in the past, contacted with and often lodged upon the glass. The present invention overcomes this prevalent detrimental condition.
In the upper end edge of the annular part 24 of the core is provided an overflow catch basin formed by means of an annular channel 25. As this channel is interposed between the space for the solder and the glass part of the envelope, excess solder from said space will lodge in said channel, thereby protecting the glass. Since the channel is annular or continuous around the anode, large amounts of solder extruded at one position will flow around to parts of the channel where no solder has been caught, and thus the channel will accommodate irregularity of extrusion of the solder. If desired, and where space permits, the outer wall of the catch basin or channel may be made higher than the inner wall, as shown, to more positively prevent overflow of the extruded solder.
In manufacture, and as indicated by the showing of Figure 2, the cavity 22 of the core is a propriately cleaned and kept in best condition for adherence of the solder. Cleaning may be by acid or otherwise, after which a flow of hydrogen is maintained in the cavity until ready to insert the anode therein. Solder 26 in proper amount is placed in the cavity and the core is heated so that all parts thereof are above the melting point of the solder. Flame 2'! is indicative of appropriate heating means.
Next, the anode is forced, as being done in Fig. 2, gradually and firmly into said cavity, the anode displacing the melted solder and forcing it to rise in the space between the anode and core. The fact that the entire core is above the temperature of the solder assures flow, without solidification, to the upper edge of the core. Likewise, excess solder extruded from the space, will continue in its liquid state and will flow into the catch basin or channel 25 and will level-off therein to take care of a very considerable overflow. Thus it can be assured that the solder completely fills the space between the anode and core and that the extruded excess will be accommodated and. retained by the channel so none will contact the glass part of the envelope. Cooling of the core is then permitted and the solder will accordingly harden in place giving full surface connection throughout the cavity with the anode.
Since the various details of construction, and steps involved in the method, as well as the precise relation and functioning of parts are subject to variation and change without departing from the inventive concept or scope of the invention, it is intended that all matter contained in the specification or illustrated in the drawing, shall be interpreted as exemplary and not in a limiting sense. It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein shown and described and all statements of the scope of the invention herein set forth as a matter of language which might be said to fall therebetween.
I claim:
I. A heat exchange means comprising a core having a cavity opening upward and having a closed bottom, said cavity adapted to receive a device for heat exchange purposes by conduction from said device through the material of the core, said cavity adapted to contain material in a fluid state subject to extrusion at the upper edge of the cavity upon introduction of said device into the cavity, said core having means for accommodating excess of the fluid material extruded from the cavity.
2. A heat exchange means comprising a core having a cavity opening upward and having a closed bottom, said cavity adapted to receive a device for heat exchange purposes by conduction from said device through the material of the core, said cavity adapted to contain material in a fluid state subject to extrusion at the upper edge of the cavity upon introduction of said device into the cavity, said core having a channel for accommodating excess of the fluid material extruded from the cavity.
3. A heat exchange means comprising a core having a cavity opening upward and having a closed bottom, said cavity adapted to receive a device for heat exchange purposes by conduction from said device through the material of the core, said cavity adapted to contain material in a fluid state subject to extrusion at the upper edge of the cavity upon introduction of said device into the cavity, said core having a continuous annular channel for accommodating excess of the fluid material extruded from the cavity.
4. A heat exchange means comprising a core having a cavity opening upward and having a closed bottom, said cavity adapted to receive a device for heat exchange purposes by conduction from said device through the material of the core, said cavity adapted to contain material in a fluid state subject to extrusion at the upper edge of the cavity upon introduction of said device into the cavity, said core having a channel for accommodating excess of the fluid material extruded from the cavity, the wall of the channel furthest from the said cavity having greater height than the wall of the channel nearest said cavity.
HAMPTON J. DAILEY.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US451448A US2409668A (en) | 1942-07-18 | 1942-07-18 | Heat transfer means and method of assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US451448A US2409668A (en) | 1942-07-18 | 1942-07-18 | Heat transfer means and method of assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US2409668A true US2409668A (en) | 1946-10-22 |
Family
ID=23792256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US451448A Expired - Lifetime US2409668A (en) | 1942-07-18 | 1942-07-18 | Heat transfer means and method of assembly |
Country Status (1)
Country | Link |
---|---|
US (1) | US2409668A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2513255A (en) * | 1948-03-03 | 1950-06-27 | Electrons Inc | Grid control metal envelope gas tube |
US3002271A (en) * | 1956-06-08 | 1961-10-03 | Philco Corp | Method of providing connection to semiconductive structures |
-
1942
- 1942-07-18 US US451448A patent/US2409668A/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2513255A (en) * | 1948-03-03 | 1950-06-27 | Electrons Inc | Grid control metal envelope gas tube |
US3002271A (en) * | 1956-06-08 | 1961-10-03 | Philco Corp | Method of providing connection to semiconductive structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2219573A (en) | Method of making composite glassmetal articles | |
US2698913A (en) | Cathode structure | |
US2409668A (en) | Heat transfer means and method of assembly | |
US2292863A (en) | Lead-in arrangement | |
US2431153A (en) | Electronic device | |
US3045138A (en) | Electric discharge tubes | |
US2078892A (en) | Vacuum tube and method of making the same | |
US2431144A (en) | External anode with cooling fins | |
US2193600A (en) | Carbon grid for transmitting vacuum tubes | |
US2348852A (en) | Electron tube | |
US2013411A (en) | Pluro-metallic rod | |
US2189906A (en) | Electronic discharge tube | |
US2409360A (en) | Seal structure for electric lamps and similar devices | |
US2451900A (en) | Electrical discharge device and base | |
US2425599A (en) | Flexible, rubberlike jacket for liquid cooling of glass tubes | |
US1886705A (en) | Indirect electron excitation for thermionic vacuum tubes | |
US2181366A (en) | Electron tube | |
US2064364A (en) | Lamp, tube, and similar device | |
US3299948A (en) | Cooling device having a plurality of annular parallel discs forming compartments adjacent the heated element | |
US2420829A (en) | Ignitron, seal, and method of making | |
US2250183A (en) | Electron discharge tube and method of manufacture | |
US1715151A (en) | Composite anode for x-ray tubes | |
US2379063A (en) | Base for electric lamps and the like | |
US2082848A (en) | Stem for electron discharge devices | |
CN105789002B (en) | X-ray tube |