US2357706A - Heating and cooling system - Google Patents
Heating and cooling system Download PDFInfo
- Publication number
- US2357706A US2357706A US449029A US44902942A US2357706A US 2357706 A US2357706 A US 2357706A US 449029 A US449029 A US 449029A US 44902942 A US44902942 A US 44902942A US 2357706 A US2357706 A US 2357706A
- Authority
- US
- United States
- Prior art keywords
- steam
- water
- valve
- molds
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/007—Tempering units for temperature control of moulds or cores, e.g. comprising heat exchangers, controlled valves, temperature-controlled circuits for fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S425/00—Plastic article or earthenware shaping or treating: apparatus
- Y10S425/81—Sound record
Definitions
- This invention relates to heat control systems and particularly to a method of and means for increasing the efiiciency of systems wherein certain units are alternately heated with high temperature fluids and cooled with relatively low temperature fluids.
- the record molds are cooled during the molding operation and heated during the remaining portion of the pressing cycle. In this manner the shellac compound or other record material flows evenly between the matrices without excessive pressure at any point during the heating portion of the cycle.
- the record molds are generally heated by steam and cooled by cold water alternately passed through the interior of the molds.
- the .procedure has been to pass the emergent steam and cold water into a common outlet pipe where it was fed to a cooling tower and used over again as the cold water supply with a certain amount being by-passed for boiler feed water. This arrangement of course, required a certain boiler capacity to maintain an adequate supply of steam at the desired temperature.
- the present invention is directed to a diversion valve system whereby the steam and cold water are separated after passing through the molds, the steam condensate being returned to the boiler feedwater tank and the cooling water passing on to the cooling tower.
- the principal object of the invention is to provide improved means for facilitating the manufacture of phonograph records.
- Another object of the invention is to provide means for reducing the boiler capacity of a heating system for record presses.
- a further object of the invention is to provide improved means for heating record molds and for conserving heat energy of the heating system.
- a further object of the invention is to provide an improved phonograph record-pressing system having a minimum heat source capacity for a given number of presses operating in alternate short time cycles'of heating and cooling.
- Fig. 1 is a diagrammatic arrangement of a phonograph record press heating and cooling system embodying the invention.
- Fig. 2 is a cross-sectional view of a thermostatic valve unit used in the system of Fig. 1;
- Fig. 3 is a detail view taken along the line 33 of Fig. 2.
- a plurality of phonograph record presses are shown diagrammatically as having lower fixed molds, 5, 6, 'l and 8 and respective movable molds l3, ll, l2 and I3.
- Each mold has an individual valve such as shown at IE to 22, inclusive, each valve being adjusted individually to vary the steam and cold water to its respective mold in accordance with the position and size of each mold. After these valves are once adjusted they remain fixed.
- Steam is supplied to the molds from a steam generator or boiler over a pipe 26, the steam being fed to Valves 28, 29, and 3
- Cold water from a supply tank 33 is fed over a pipe 3 shown in dotted lines to valves 28, 29, 30 and 3
- thermostatic valve unit 31 Emergent steam and water from the molds 5 and i0 pass through a common pipe 36 to a thermostatic valve unit 31; the steam and water from molds 6 and I I pass through a common pipe 38 to thermostatic valve unit 39; the steam and water from molds l and I2 pass through common pipe 40 to thermostatic valve unit 4!; and the steam and water from molds 8 and I3 pass through pipe 42 to thermostatic valve unit 43.
- and43 have two outlets, one shown by the solid line 45 which is a pipe leading to a feed-water tank 46, while the other outlet is shown by the dotted lines 48 which is a pipe leading to a cooling tower 49.
- auxiliaries such as pumps and main valves have not been shown. It is also to be understood-that many more presses than the four illustrated may be connected to a single steam generator.
- the shellac compound In the manufacture of shellac compound records with the above-described system, the shellac compound, after preheating, is placed on the lower fixed molds 5, 6, l and 8 and the upper molds I0, ll, l2 and I3 are moved in contact with the compound and pressure applied. During the period that the molds are separated, steam is passed therethrough to heat the stamping matrices to a certain temperature. This is accomplished by adjusting valves 28, 29, 30 and 3
- and 43 are adjusted to cut off the steam from pipe 26 and feed cold water to the molds from the supply 33 over pipe 34.
- the thermostatic units 31, 39, 4i and 43 the units automatically adjust themselves to pass the cold water to pipe 48 and to the cooling tower 48.
- each press may be operated at 'difierent times, but in each case the respective thermostatic unit will divert the steam to the feed-water tank and the cold water to the cooling tower.
- Fig. 2 wherein is shown any one of units 3'7, 38, 4! and 63 such as unit 37, having the common inlet pipe 36, a steam and condensation outlet pipe 45 and the cold water outlet pipe 48.
- the valve assembly comprises a casing of two sections 50 and Si bolted together by bolts such as shown at 53. Longitudinally positioned within the casing is a thermostatic element 55 of the bellows type, one end of which is connected to an actuating rod 56 on which is mounted a valve 51 adjacent the other end of rod 56.
- the valve 51 upon expansion of the element 55, will seat itself against valve seat 59 and upon contraction of the thermostatic element 55 will seat itself against valve seat 60.
- the thermostatic element 55 is in a chamber 62, the chamber 62 being connected through a passage 63 with valve chamber 58.
- connects chamber 58 with outlet pipe 45 while a passage 68 connects chamber 58 with outlet pipe 48.
- a positioning and adjust ng plate 64 is provided at the end of the casing 58. Plugs ,65 and 66 are provided for cleaning the passage 63 when necessary.
- the end of the actuating rod 56 for the valve 51 is supported in a spider 61, as shown in Fig. 3. Although the valve unit is shown in a horizontal position, it is to be understood that the valve will function in a vertical or any other position and that the exact form may not be as illustrated.
- the present invention prevents the mixing of the high and low temperaturefluids by diverting or separating the steam and condensate from the i6 cold water immediately after each has served its purpose.
- By returning the steam and co de back to the feed water for the boilers it increases the temperature of the feed water above what it would be if the mixture were returned, thus requirlng less fuel or boiler capacity to supply a given number of operating presses,
- the cooling water is also not heated by the steam and less cooling tower capacity is required.
- the invention provides better heating of the record molds, resulting in a longer life for the molds and the production of a higherpercentage of salable phonograph records.
- This is accomplished by constructing the valve 51 and seat in the form of an orifice valve which holds the steam within the molds to approximately the condensation point.
- This result may also be accomplished by the use of a conventional steam trap in conjunction with the diversion valve, in which event the steam outlet 51-458 could be the same as water outlet 51--59 Without the diversion valve unit, 'a steam trap is not practical because of its inability to adequately handle the amount of cooling water necessary.
- a system for alternately heating and cooling an element with steam and water including a common outlet valve mechanism for both said steam and water, said mechanism comprising a casing having an entrance opening for passing both said steam and water, an exit opening for said water only and an exit opening for steam condensate, a thermostat in said casing, and a valve head actuated by said thermostat foralternately'opening and closing said exit openings, said exit openings for said condensate being proportioned to hold said steam within said element to substantially the condensation point thereof.
- a valve mechanism comprising a casing having an inlet opening for steam and water, an exit opening for said water, said exit opening being sufficiently large to accommodate the passage of said water, and an exit opening for steam condensate, said exit opening for said condensate being in the form of an orifice valve to hold the steam within said mold to approximately the condensation point thereof, a thermostat; within said casing, and a valve head for alternately closmg and opening said exit openings.
- a system for cyclically heating an elemen by steam and water, respectively, and diverting steam condensate and said water into separate channels including a valve mechanism comprising'a casing, a thermostat within said casing, a
- pair of outlet ports in said casing one for steam bined condensate and steam, and said water.
- valve head connected to said thermostat for closing said water outlet port and opening said condensate port when said thermostat is contacted by said steam and for closing said condensate outlet port and opening said water port when said thermostat is contacted by said water, said water outlet port being sufliciently large to permit the ready flow of said water therethrough, and said condensate outlet port being in the form of an orifice valve to hold said steam within said element to approximately the condensation point.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Temperature-Responsive Valves (AREA)
Description
P 1944 G. A. TOEPPERWEIN 2,357,706
HEATING AND COOLING SYSTEM Filed June 29, 1942 Fea L Water Tank .TV 29 18 6 E 19 .40 41 L p v 21 I i Cold Water Sup 6V 59 65 4a 64 i a \iifi 605% VA. YZEPPERWQM,
INVENTOR.
ATTORNEY.
Patented Sept. 5, 1944 HEATING AND COOLING SYSTEM Gustav A. Toepperwein, Los Angeles, Calif., assignor to Radio Corporation of America, a corporation of Delaware Application June 29, 1942, Serial No. 449,029
Claims.
This invention relates to heat control systems and particularly to a method of and means for increasing the efiiciency of systems wherein certain units are alternately heated with high temperature fluids and cooled with relatively low temperature fluids.
In the manufacture of many articles such as disc type phonograph records, the record molds are cooled during the molding operation and heated during the remaining portion of the pressing cycle. In this manner the shellac compound or other record material flows evenly between the matrices without excessive pressure at any point during the heating portion of the cycle. The record molds are generally heated by steam and cooled by cold water alternately passed through the interior of the molds. In the past the .procedure has been to pass the emergent steam and cold water into a common outlet pipe where it was fed to a cooling tower and used over again as the cold water supply with a certain amount being by-passed for boiler feed water. This arrangement of course, required a certain boiler capacity to maintain an adequate supply of steam at the desired temperature.
The present invention is directed to a diversion valve system whereby the steam and cold water are separated after passing through the molds, the steam condensate being returned to the boiler feedwater tank and the cooling water passing on to the cooling tower. By this arrangement the boiler capacity required for a given number of presses has been considerably reduced, while better and more eificient heating of the record molds has been obtained, as will be explained hereinafter. Better heating of the molds has resulted in longer life of the molds and the production of -a higher percentage of salable records.
The principal object of the invention, therefore, is to provide improved means for facilitating the manufacture of phonograph records.
Another object of the invention is to provide means for reducing the boiler capacity of a heating system for record presses.
A further object of the invention is to provide improved means for heating record molds and for conserving heat energy of the heating system.
A further object of the invention is to provide an improved phonograph record-pressing system having a minimum heat source capacity for a given number of presses operating in alternate short time cycles'of heating and cooling.
Although the novel features which are believed to be characteristic of this invention are pointed out with particularity in the claims appended hereto, the manner of its organization and the mode of its operation will be better understood by referring to the following description, read in conjunction with the accompanying drawing, in which:
Fig. 1 is a diagrammatic arrangement of a phonograph record press heating and cooling system embodying the invention.
Fig. 2 is a cross-sectional view of a thermostatic valve unit used in the system of Fig. 1; and,
Fig. 3 is a detail view taken along the line 33 of Fig. 2.
Referring now to Fig. 1, a plurality of phonograph record presses are shown diagrammatically as having lower fixed molds, 5, 6, 'l and 8 and respective movable molds l3, ll, l2 and I3. Each mold has an individual valve such as shown at IE to 22, inclusive, each valve being adjusted individually to vary the steam and cold water to its respective mold in accordance with the position and size of each mold. After these valves are once adjusted they remain fixed. Steam is supplied to the molds from a steam generator or boiler over a pipe 26, the steam being fed to Valves 28, 29, and 3|. Cold water from a supply tank 33 is fed over a pipe 3 shown in dotted lines to valves 28, 29, 30 and 3|, these valves being either manually or automatically operated so that either steam or cold water is fed to the respective molds 5 to 8 and Ill to l3.
Emergent steam and water from the molds 5 and i0 pass through a common pipe 36 to a thermostatic valve unit 31; the steam and water from molds 6 and I I pass through a common pipe 38 to thermostatic valve unit 39; the steam and water from molds l and I2 pass through common pipe 40 to thermostatic valve unit 4!; and the steam and water from molds 8 and I3 pass through pipe 42 to thermostatic valve unit 43. The thermostatic valve units 31, 39, 4| and43 have two outlets, one shown by the solid line 45 which is a pipe leading to a feed-water tank 46, while the other outlet is shown by the dotted lines 48 which is a pipe leading to a cooling tower 49. In the above description and drawing, auxiliaries such as pumps and main valves have not been shown. It is also to be understood-that many more presses than the four illustrated may be connected to a single steam generator.
In the manufacture of shellac compound records with the above-described system, the shellac compound, after preheating, is placed on the lower fixed molds 5, 6, l and 8 and the upper molds I0, ll, l2 and I3 are moved in contact with the compound and pressure applied. During the period that the molds are separated, steam is passed therethrough to heat the stamping matrices to a certain temperature. This is accomplished by adjusting valves 28, 29, 30 and 3| so as to connect pipe 26 to the molds, thus passing steam from boiler 25 to the molds, the upper and lower molds receiving a quantity of steam proportioned by the setting of valves l to 22. If all presses are operating, steam passes through common pipes 36, 38, 48 and 42 to the thermostatic valve units 31, 39, 4| and 43, these units operating to pass the steam and condensation through pipe 45 to the feed-water tank 46. During the nextportion of the cycle of operation the valves 28, 29, 30 and 3| are adjusted to cut off the steam from pipe 26 and feed cold water to the molds from the supply 33 over pipe 34. When the cold water is passed to the thermostatic units 31, 39, 4i and 43, the units automatically adjust themselves to pass the cold water to pipe 48 and to the cooling tower 48. In actual operation each press may be operated at 'difierent times, but in each case the respective thermostatic unit will divert the steam to the feed-water tank and the cold water to the cooling tower.
To illustrate the automatic operation of the diversion valve unit, reference is made to Fig. 2, wherein is shown any one of units 3'7, 38, 4! and 63 such as unit 37, having the common inlet pipe 36, a steam and condensation outlet pipe 45 and the cold water outlet pipe 48. The valve assembly comprises a casing of two sections 50 and Si bolted together by bolts such as shown at 53. Longitudinally positioned within the casing is a thermostatic element 55 of the bellows type, one end of which is connected to an actuating rod 56 on which is mounted a valve 51 adjacent the other end of rod 56. The valve 51, upon expansion of the element 55, will seat itself against valve seat 59 and upon contraction of the thermostatic element 55 will seat itself against valve seat 60. The thermostatic element 55 is in a chamber 62, the chamber 62 being connected through a passage 63 with valve chamber 58. A passage 6| connects chamber 58 with outlet pipe 45 while a passage 68 connects chamber 58 with outlet pipe 48. A positioning and adjust ng plate 64 is provided at the end of the casing 58. Plugs ,65 and 66 are provided for cleaning the passage 63 when necessary. The end of the actuating rod 56 for the valve 51 is supported in a spider 61, as shown in Fig. 3. Although the valve unit is shown in a horizontal position, it is to be understood that the valve will function in a vertical or any other position and that the exact form may not be as illustrated.
When steam passes to the thermostatic element 55 through the pipe 36, the valve expands, moving the rod 56 and the valve 51 to the right. This movement of the valve 51 closes the outlet from chamber 58 to passage 68 and to the pipe 48 and permits the steam to pass from the chamber 58 to passage 6| and to the pipe 45 and back to the feed-water tank 46. When the cold water enters the chamber 62, it contracts the thermostatic element 55, moving the rod 56 to the left to close the steam outlet 51-68. This movement opens the cold water outlet 51-59 to pipe 48, and the cold water is permitted to flow to the pipe 48 and to the cooling tower 48.
From the above it is readily realized that the present invention prevents the mixing of the high and low temperaturefluids by diverting or separating the steam and condensate from the i6 cold water immediately after each has served its purpose. By returning the steam and co de back to the feed water for the boilers, it increases the temperature of the feed water above what it would be if the mixture were returned, thus requirlng less fuel or boiler capacity to supply a given number of operating presses, The cooling water is also not heated by the steam and less cooling tower capacity is required.
As mentioned above, it has also been found that the invention provides better heating of the record molds, resulting in a longer life for the molds and the production of a higherpercentage of salable phonograph records. This is accomplished by constructing the valve 51 and seat in the form of an orifice valve which holds the steam within the molds to approximately the condensation point. This result may also be accomplished by the use of a conventional steam trap in conjunction with the diversion valve, in which event the steam outlet 51-458 could be the same as water outlet 51--59 Without the diversion valve unit, 'a steam trap is not practical because of its inability to adequately handle the amount of cooling water necessary.
Thus, from the above, it will be noted that a more efficient transfer of the potential heat of the steam to the mold is obtained which, of itself, reduces the boiler capacity over that heretofore required. However, in addition a more uniform and rapid heating of the molds is obtained, which produces records in shorter time cycles. By the combination of the orifice steam valve or trap and the automatic diversion of the steam condensate and cooling water to their respective sources, more and a higher percentage of good records are obtainable.
I claim as my invention:
1. In a system for alternately heating and cooling an element with steam and water, respectively, including a common outlet valve mechanism for both said steam and water, said mechanism comprising a casing having an entrance opening for passing both said steam and water, an exit opening for said water only and an exit opening for steam condensate, a thermostat in said casing, and a valve head actuated by said thermostat foralternately'opening and closing said exit openings, said exit openings for said condensate being proportioned to hold said steam within said element to substantially the condensation point thereof. 6
2. In a system for alternately heating and cooling a mold with steam and water, respectively, and for diverting said Waterto its, source and steam condensate to its source, said system including a valve mechanism comprising a casing having an inlet opening for steam and water, an exit opening for said water, said exit opening being sufficiently large to accommodate the passage of said water, and an exit opening for steam condensate, said exit opening for said condensate being in the form of an orifice valve to hold the steam within said mold to approximately the condensation point thereof, a thermostat; within said casing, and a valve head for alternately closmg and opening said exit openings.
3. The method of cyclically heating and cooling an element by steam and water, respectively, and separating said water and steam and steam condensate which is formed, comprising passing said steam and water alternately through said element, passing said steam and condensate formed therefrom, and water from said element through a common passage with separate exits for said cooling water and combined steam and aas'moo steam condensate, releasing said water through said water-exit at the rate of flow of said water through said element, releasing said combined steam and condensate at a rate to hold said steam within said element to approximately the condensation point thereof, and controlling the releasing of said water and said combined steam and condensate by the temperature of said 'comand said waterby the temperature of said steam and said water.
5. A system for cyclically heating an elemen by steam and water, respectively, and diverting steam condensate and said water into separate channels including a valve mechanism comprising'a casing, a thermostat within said casing, a
. pair of outlet ports in said casing, one for steam bined condensate and steam, and said water.
and controlling the diverting of said condensate condensate and the otherfor said water, and a valve head connected to said thermostat for closing said water outlet port and opening said condensate port when said thermostat is contacted by said steam and for closing said condensate outlet port and opening said water port when said thermostat is contacted by said water, said water outlet port being sufliciently large to permit the ready flow of said water therethrough, and said condensate outlet port being in the form of an orifice valve to hold said steam within said element to approximately the condensation point.
GUSTAV A. TOEPPERWEIN.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US449029A US2357706A (en) | 1942-06-29 | 1942-06-29 | Heating and cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US449029A US2357706A (en) | 1942-06-29 | 1942-06-29 | Heating and cooling system |
Publications (1)
Publication Number | Publication Date |
---|---|
US2357706A true US2357706A (en) | 1944-09-05 |
Family
ID=23782584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US449029A Expired - Lifetime US2357706A (en) | 1942-06-29 | 1942-06-29 | Heating and cooling system |
Country Status (1)
Country | Link |
---|---|
US (1) | US2357706A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2580566A (en) * | 1948-09-04 | 1952-01-01 | American Viscose Corp | Bra forming device |
US2620635A (en) * | 1950-09-09 | 1952-12-09 | Erwin W Mautner | Cooling system and control |
US2915298A (en) * | 1955-04-22 | 1959-12-01 | Phillips Petroleum Co | Temperature control system |
US2952446A (en) * | 1958-09-17 | 1960-09-13 | Melvin L Holland | Heating and cooling alternator valve |
US3024008A (en) * | 1958-01-23 | 1962-03-06 | Borg Warner | Three-pipe air conditioning systems |
US3166121A (en) * | 1961-01-27 | 1965-01-19 | Svenska Flaektfabriken Ab | Space heat exchange unit |
US3191668A (en) * | 1960-12-29 | 1965-06-29 | Trane Co | Pump control system |
US3191667A (en) * | 1960-12-29 | 1965-06-29 | Trane Co | Air conditioning system and pump controls therefor |
US3259175A (en) * | 1964-06-15 | 1966-07-05 | Robert A Kraus | Heating and cooling system for molds |
US3288205A (en) * | 1964-11-02 | 1966-11-29 | Borg Warner | Three-pipe air conditioning system and control arrangement therefor |
US3318371A (en) * | 1963-07-01 | 1967-05-09 | Borg Warner | Air conditioning systems |
US3384159A (en) * | 1966-12-21 | 1968-05-21 | Frank Corp Alan I W | Plastic molding apparatus |
US3406744A (en) * | 1965-09-01 | 1968-10-22 | Sulzer Ag | Heating and air-conditioning apparatus |
US3630686A (en) * | 1965-01-15 | 1971-12-28 | Horst Rothert | Apparatus for continuously polycondensing and polymerizing monomers |
US3847209A (en) * | 1972-04-21 | 1974-11-12 | Churchill Instr Co Ltd | Temperature controlled systems |
US4145176A (en) * | 1971-02-26 | 1979-03-20 | Townsend & Townsend | Cable molding apparatus for accomplishing same |
US4945980A (en) * | 1988-09-09 | 1990-08-07 | Nec Corporation | Cooling unit |
US4975766A (en) * | 1988-08-26 | 1990-12-04 | Nec Corporation | Structure for temperature detection in a package |
US5014777A (en) * | 1988-09-20 | 1991-05-14 | Nec Corporation | Cooling structure |
US5023695A (en) * | 1988-05-09 | 1991-06-11 | Nec Corporation | Flat cooling structure of integrated circuit |
US5036384A (en) * | 1987-12-07 | 1991-07-30 | Nec Corporation | Cooling system for IC package |
US5293754A (en) * | 1991-07-19 | 1994-03-15 | Nec Corporation | Liquid coolant circulating system |
US5522452A (en) * | 1990-10-11 | 1996-06-04 | Nec Corporation | Liquid cooling system for LSI packages |
US6026896A (en) * | 1997-04-10 | 2000-02-22 | Applied Materials, Inc. | Temperature control system for semiconductor processing facilities |
US6102113A (en) * | 1997-09-16 | 2000-08-15 | B/E Aerospace | Temperature control of individual tools in a cluster tool system |
US6775996B2 (en) | 2002-02-22 | 2004-08-17 | Advanced Thermal Sciences Corp. | Systems and methods for temperature control |
US20070295013A1 (en) * | 2004-04-07 | 2007-12-27 | Albert Bauer | Cooling And/or Heating Device |
US20100187709A1 (en) * | 2008-10-16 | 2010-07-29 | Zhong Wang | System and method for rapidly heating and cooling a mold |
US9156198B2 (en) | 2011-07-27 | 2015-10-13 | Flextronics Ap, Llc | Temperature controlled molding of composite components |
US9270940B1 (en) | 2014-09-30 | 2016-02-23 | International Business Machines Corporation | Remote object sensing in video |
-
1942
- 1942-06-29 US US449029A patent/US2357706A/en not_active Expired - Lifetime
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2580566A (en) * | 1948-09-04 | 1952-01-01 | American Viscose Corp | Bra forming device |
US2620635A (en) * | 1950-09-09 | 1952-12-09 | Erwin W Mautner | Cooling system and control |
US2915298A (en) * | 1955-04-22 | 1959-12-01 | Phillips Petroleum Co | Temperature control system |
US3024008A (en) * | 1958-01-23 | 1962-03-06 | Borg Warner | Three-pipe air conditioning systems |
US2952446A (en) * | 1958-09-17 | 1960-09-13 | Melvin L Holland | Heating and cooling alternator valve |
US3191668A (en) * | 1960-12-29 | 1965-06-29 | Trane Co | Pump control system |
US3191667A (en) * | 1960-12-29 | 1965-06-29 | Trane Co | Air conditioning system and pump controls therefor |
US3166121A (en) * | 1961-01-27 | 1965-01-19 | Svenska Flaektfabriken Ab | Space heat exchange unit |
US3318371A (en) * | 1963-07-01 | 1967-05-09 | Borg Warner | Air conditioning systems |
US3259175A (en) * | 1964-06-15 | 1966-07-05 | Robert A Kraus | Heating and cooling system for molds |
US3288205A (en) * | 1964-11-02 | 1966-11-29 | Borg Warner | Three-pipe air conditioning system and control arrangement therefor |
US3630686A (en) * | 1965-01-15 | 1971-12-28 | Horst Rothert | Apparatus for continuously polycondensing and polymerizing monomers |
US3406744A (en) * | 1965-09-01 | 1968-10-22 | Sulzer Ag | Heating and air-conditioning apparatus |
US3384159A (en) * | 1966-12-21 | 1968-05-21 | Frank Corp Alan I W | Plastic molding apparatus |
US4145176A (en) * | 1971-02-26 | 1979-03-20 | Townsend & Townsend | Cable molding apparatus for accomplishing same |
US3847209A (en) * | 1972-04-21 | 1974-11-12 | Churchill Instr Co Ltd | Temperature controlled systems |
US5036384A (en) * | 1987-12-07 | 1991-07-30 | Nec Corporation | Cooling system for IC package |
US5023695A (en) * | 1988-05-09 | 1991-06-11 | Nec Corporation | Flat cooling structure of integrated circuit |
US4975766A (en) * | 1988-08-26 | 1990-12-04 | Nec Corporation | Structure for temperature detection in a package |
US4945980A (en) * | 1988-09-09 | 1990-08-07 | Nec Corporation | Cooling unit |
US5014777A (en) * | 1988-09-20 | 1991-05-14 | Nec Corporation | Cooling structure |
US5522452A (en) * | 1990-10-11 | 1996-06-04 | Nec Corporation | Liquid cooling system for LSI packages |
US5293754A (en) * | 1991-07-19 | 1994-03-15 | Nec Corporation | Liquid coolant circulating system |
US6026896A (en) * | 1997-04-10 | 2000-02-22 | Applied Materials, Inc. | Temperature control system for semiconductor processing facilities |
US6499535B2 (en) | 1997-09-16 | 2002-12-31 | B/E Aerospace | Temperature control of individual tools in a cluster tool system |
US6247531B1 (en) | 1997-09-16 | 2001-06-19 | B/E Aerospace | Temperature control of individual tools in a cluster tool system |
US6102113A (en) * | 1997-09-16 | 2000-08-15 | B/E Aerospace | Temperature control of individual tools in a cluster tool system |
US6775996B2 (en) | 2002-02-22 | 2004-08-17 | Advanced Thermal Sciences Corp. | Systems and methods for temperature control |
US20070295013A1 (en) * | 2004-04-07 | 2007-12-27 | Albert Bauer | Cooling And/or Heating Device |
US8051903B2 (en) * | 2004-04-07 | 2011-11-08 | Albert Bauer | Cooling and/or heating device |
US20100187709A1 (en) * | 2008-10-16 | 2010-07-29 | Zhong Wang | System and method for rapidly heating and cooling a mold |
US9005495B2 (en) * | 2008-10-16 | 2015-04-14 | Flextronics Ap, Llc | System and method for rapidly heating and cooling a mold |
US9156198B2 (en) | 2011-07-27 | 2015-10-13 | Flextronics Ap, Llc | Temperature controlled molding of composite components |
US9270940B1 (en) | 2014-09-30 | 2016-02-23 | International Business Machines Corporation | Remote object sensing in video |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2357706A (en) | Heating and cooling system | |
US1582704A (en) | Die for phonograph records | |
US2813683A (en) | Combination hot water heating and room heating system | |
US2555012A (en) | Fluid flow control system and valve therefor | |
US2268361A (en) | Heat exchange apparatus | |
US3041046A (en) | Heat transfer apparatus | |
US4586531A (en) | Valve arrangement | |
US3396783A (en) | Temperature-controlled press platen | |
US2942858A (en) | Heat exchange apparatus | |
US1403493A (en) | Temperature-controlling apparatus for internal-combustion engines | |
US2372502A (en) | Inner tube radiation with internal metallic conduction | |
US2532951A (en) | Steam flow control system | |
DE2055584A1 (en) | Device for keeping the temperature of the impression cylinders of multicolor printing machines constant | |
US2664275A (en) | Tankless heater and by-passing valve construction therefor | |
US3406744A (en) | Heating and air-conditioning apparatus | |
US3144208A (en) | Controlled fluid unit | |
US2993348A (en) | Pressure and temperature responsive pilot valve for refrigeration systems | |
US2328874A (en) | Refrigerating apparatus | |
US2307341A (en) | System for providing hot wash water | |
US1854750A (en) | Pressure and temperature valve device for hot water supplies | |
US1385450A (en) | Radiator | |
GB1210378A (en) | Sequencing valve, more particularly for air-conditioning plants with induction apparatus | |
US1407130A (en) | bowman | |
US2346590A (en) | Inner-tube radiation with modulating trap | |
US2414953A (en) | Valve control for fuel oil heaters |