US2087991A - Aluminum-base alloys - Google Patents
Aluminum-base alloys Download PDFInfo
- Publication number
- US2087991A US2087991A US95180A US9518036A US2087991A US 2087991 A US2087991 A US 2087991A US 95180 A US95180 A US 95180A US 9518036 A US9518036 A US 9518036A US 2087991 A US2087991 A US 2087991A
- Authority
- US
- United States
- Prior art keywords
- per cent
- alloy
- nickel
- aluminum
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
Definitions
- This invention relates generally to the heat treatable strong aluminum-base alloys containing copper, with or without the so-called hardeners or hardening elements manganese, chrotainable by thermal treatment.
- the invention relates to aluminum-copper alloys containing silicon.
- One of the objects of the invention is to provide thermally treated articles of such alloys, possessing greater improvement in one or another physical property than has heretofore beenob-
- Another object of the invention is to provide articles composed vof alloys of the type indicated, with improvement particularly in the direction of yield strength .in the artificially aged condition;
- Another object is to provide high hardness in articles composed of such alloys.
- a further object is toprovide alloy articles which will have improved resistance to' corrosion in the artificially aged condition.
- the alloys to which the invention herein claimed is directed are those aluminum-base alloys containing copper 2.0 to 12.0 per cent, silicon 0.05 to 14.0 per cent, and nickel 0.05 to 7.0 per cent, the total amount of said nickel and silicon lying between 0.1 and 14.0 per cent, the nickel in no case exceeding 7.0 per cent.
- To these alloys may be added a total of 0.1 to 3.0 per cent of one or more of the so-called hardening elements mentioned above.
- tin has been known as an. alloying element which in aluminum-base alloys containing copper increases the fluidity and improves the machining and polishing characteristics of the alloy. Its use, howeter, has been generally discontinued, it having been learned, as investigators have pointed out, that tin in the amounts heretofore used adversely affects the hot working characteristics of aluminum and aluminum-base alloys, diminishes the' corrosion resistance of such materials, and, generally, serves no useful function not more advantageously obtained with other alloying elements,
- tin is present in amounts of 0.005 to 0.1 per of the art, I have discovered that certain small amounts of tin are beneficial and desirable in aluminum-copper alloys with or without one or more of the elements silicon, nickel, and zinc;
- any of which alloys may also contain one or more of the hardeners manganese, chromium, molybdenum, zirconium, beryllium, and titanium.
- the alloy contains copper; (3) the alloy contains no magnesiumor contains that metal only in so small an amount as to constitute a mere impurity; (4) the alloy is artificially aged, that is to say, when the alloy is subjected to artificial aging (preferably but not necessarily after high temperature heat treatment), say at a temperature between about 100 and 200 C.
- the benefits of my invention appear to be due to the response of a peculiar internal alloy structure to the artificial aging treatment. Aging phenomena in aluminum-base alloys are believed to be .the result of the precipitation of an all yin: element from a solid solution thereof in aluminum which is super-saturated with respect thereto. The precipitation is submicroscopic or on the border line between submicroscopic and microscopic. By careful methods, however, it is possible to prepare metal specimens which, under the action of an etching agent, reveal a structure indicative of the artificially aged condition of the metal.
- a section of an artificially aged per cent of copper without tin, etched with a mixture of hydrofluoric, hydrochloric and nitric acids shows under a magnification of 500 diameters an-aluminum matrix composed of contrasting grains having distinctly marked boundaries. Particles of the constituent CuAl: are seen scattered through the matrix but substantially none are found in the grain boundaries.
- the same alloy containing 0.05 per cent of tin shows after the same artificial aging only slight grain contrast, the grain boundaries are distinctly less sharp, and they contain multitudes of small particles of CuAh.
- my invention possesses another advantage.
- the artificial aging of aluminum-base alloys containing copper in substantial amount usually results in'a decreased resistance of the alloy to corrosion, but I have found that when these alloys, especially those of the preferred copper content (2.0 to 6.5 per cent as stated above), containtin in the amount prescribed by my invention this detrimental result is considerably lessened by the enhanced agingeifect.
- the artificially aged alloys show a marked decrease in propensity to' undergo intercrystalline or intergranular corrosion, a type of corrosion which is more objectionable than the ordinary surface type because it is often not readily apparent and so is" apt to escape observation until the corroded part or article fails as a result of the internal weakening.
- the aluminum-base alloys which are improved by the enhanced aging induced therein by the addition of small amounts of tin are those containing 2.0 to 12.0 per cent of copper, with or without certain other alloying elements which I have found to be useful in modifying the general properties of the alloy without masking or destroying the beneficial properties above noted.
- magnesium is a harmful addition tothe alloys above described in that its presence in substantial amounts destroys in large part the effects induced by the addition of small amounts of tin.
- the preferred alloys are those in which one or all the above described properties are present to a marked extent, especially the yield strength. These alloys, as abovenoted, contain 2.0 to 6.5 per cent of copper and 0.005 to 0.1 per centof tin, 0.05 to 0.1 per cent being preferred, and they are characterized in the artificially aged condition by a yield strength substantially higher than that of the same alloy devoid of tin. In their ⁇ preferred form, these alloys may also contain 0.1-to.
- the alloys may contain a total of 0.1 to 5.0 per cent of an element of the class consisting of zinc, nickel, and silicon.
- the total should not exceed 5.0 per cent, the lower limits being nickel 0.05 per cent, zinc 0.05 per cent, and silicon 0.05 per cent.
- the upper limits should be, nickel 1.0 per cent, silicon 3.0 per cent, and zinc 5.0 per cent.
- the total amount of these elements should not exceed 3.0 or 4.0 per cent,
- the lower limits for each element, when used alone; should be, silicon but if the alloy is to be extruded a total of about 0.1 per cent, nickel 0.1 per cent, and zinc 0.1 per cent, and the upper limits should be, silicon 14.0.
- the lower limits should be, silicon 0.05 per cent, nickel 0.05
- a wrought aluminum-base alloy without magnesium containing about 4.4 per cent of copper, about 0.85 per cent of manganese, about 0.75 per cent of silicon, about 0.4 per cent of iron
- Two alloys of this composition, with and without the addition of 0.05- per cent of tin were heat treated at 520 C. for 15 minutes, quenched in water, and subjected for 18-hours to an aging treatment at 143 C.
- the tin-free alloy had a tensile strength of 58,700 pounds per square inch, :1. yield strength of 33,250 pounds per square inch, and an elongation of 16.8 per cent in two inches.
- the artificial aging usually comprises heating the aluminum-copper alloy to temperatures of about 100 to 200 C. until the desired increase in properties is obtained.
- the artificial aging in the preferred practice of the invention is preceded by heat treatment, but the enhanced aging effect herein described and its general results may be developed to an advantageous extent by the artificial aging alone.
- the aluminum-base alloys herein described and claimed are those containing at least 70.0 per cent of aluminum, which metal may contain impurities, such as amounts of iron up to about 1.5 per cent and, likewise, small amounts of silicon such as are known to occur invirgin aluminum.
- the term tensile property, or the like is intended to include hardness as a property which can be favorably affected by the enhanced artificial aging produced by my invention.
- the article may be an ingot or other body designed for further casting or for working, or it may be a cast or wrought article which is suitable for immediateuse or sale or which may require some further operation to fit it for use or sale.
- an article of aluminum alloy forming an article of a magnesiumfree alloy containing 2.0 to 12.0 per cent copper, 0.05 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of said nickel and silicon being between 0.1 and 14.0' per cent, the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminum; heat treating the article between about 400 C. and the temperature of incipient fusion; and artificially aging the article between about 100 C. and 200 C. inclusive, whereby a tensile property 01' the alloy is improved over that of a like alloy free from tin..
- an article of aluminum alloy forming an article of a magnesiumfree alloy containing 2.0 to 6.5 per cent copper; 0.005 to 0.1 per cent tin; at lea'st 0.05 per cent nickel and at least 0.05 per cent silicon, the total ,amount of nickel and silicon being between 0.1 and 5.0 per cent; and at least one hardening element of the class consisting of manganese, chromium, boron, molybdenum, zirconium, beryllium, and titanium, the total hardening content being 0.1 to 3.0 per cent, and the remainder being essentially alumium; heat treating the article between about 400 C. and the temperature of incipient fusion; and artiflcially'aging the article between about 100 C. and 200 C. inclusive, whereby a tensile property of the alloy is improved over that 01 a like alloy free from tin.
- the nickel in any case not being in excess jot 7.0 per cent, the remainder being essentially aluminum.
- An article of artificially aged aluminum 1s.
- An artlcle of artificially aged aluminum f being 0.1 to 3.0 per cent, the remainder of the alloy being essentially aluminum.
- the alloy being characterized by a strucincipient fusion, cooling the alloy, and thereafter ture produced by heating the alloy to over 400 artificially aging the alloy.
- the alloy being characterized by a strucincipient fusion, cooling the alloy, and thereafter ture produced by heating the alloy to over 400 artificially aging the alloy.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Patented July 27, 1937 UNITED STATES PATENT OFFICE amber ALUMINUM-BASE armors.
' Joseph A. Nock, 11"., Tarentum, 2a., Aluminum Company of America,
assignor to Pittsburg Pa, a corporation of Pennsylvania No Drawing. Application August 10. 19:6.- Serial No. 95,180
20 Claims. (Cl. ire-41.1)
Contrary to the accepted opinion and trend This invention relates generally to the heat treatable strong aluminum-base alloys containing copper, with or without the so-called hardeners or hardening elements manganese, chrotainable by thermal treatment.
mium, zirconium, molybdenum, beryllium, boron, and titanium. More particularly the invention relates to aluminum-copper alloys containing silicon. One of the objects of the invention is to provide thermally treated articles of such alloys, possessing greater improvement in one or another physical property than has heretofore beenob- Another object of the invention is to provide articles composed vof alloys of the type indicated, with improvement particularly in the direction of yield strength .in the artificially aged condition; Another object is to provide high hardness in articles composed of such alloys. A further object is toprovide alloy articles which will have improved resistance to' corrosion in the artificially aged condition. These and other objects I attain with these alloys by the addition thereto of a small amount of tin, not exceeding 0.1 per cent and preferably more than about 0.05 per cent. In fact, I have found beneficial results to be obtained withas little as 0.005 per cent. The advantages of the invention are, however, obtained only when the alloy is free from magnesium, that is, when the metal is either totally absent or is present only in amount so small as to be a mere impurity,.not exceeding, say, about 0.1 per cent.
The alloys to which the invention herein claimed is directed are those aluminum-base alloys containing copper 2.0 to 12.0 per cent, silicon 0.05 to 14.0 per cent, and nickel 0.05 to 7.0 per cent, the total amount of said nickel and silicon lying between 0.1 and 14.0 per cent, the nickel in no case exceeding 7.0 per cent. To these alloys may be added a total of 0.1 to 3.0 per cent of one or more of the so-called hardening elements mentioned above.
, In amounts of about 0.15 to 15.0 per cent, tin has been known as an. alloying element which in aluminum-base alloys containing copper increases the fluidity and improves the machining and polishing characteristics of the alloy. Its use, howeter, has been generally discontinued, it having been learned, as investigators have pointed out, that tin in the amounts heretofore used adversely affects the hot working characteristics of aluminum and aluminum-base alloys, diminishes the' corrosion resistance of such materials, and, generally, serves no useful function not more advantageously obtained with other alloying elements,
boron,
. is present in amounts of 0.005 to 0.1 per of the art, I have discovered that certain small amounts of tin are beneficial and desirable in aluminum-copper alloys with or without one or more of the elements silicon, nickel, and zinc;
any of which alloys may also contain one or more of the hardeners manganese, chromium, molybdenum, zirconium, beryllium, and titanium. In accordance withv these discoveries and as a result of a series of experiments directed thereto, I have determined that tin is extremely beneficial and desirable when (1) the tin cent by weight; (2) the alloy contains copper; (3) the alloy contains no magnesiumor contains that metal only in so small an amount as to constitute a mere impurity; (4) the alloy is artificially aged, that is to say, when the alloy is subjected to artificial aging (preferably but not necessarily after high temperature heat treatment), say at a temperature between about 100 and 200 C.
The benefits of my invention appear to be due to the response of a peculiar internal alloy structure to the artificial aging treatment. Aging phenomena in aluminum-base alloys are believed to be .the result of the precipitation of an all yin: element from a solid solution thereof in aluminum which is super-saturated with respect thereto. The precipitation is submicroscopic or on the border line between submicroscopic and microscopic. By careful methods, however, it is possible to prepare metal specimens which, under the action of an etching agent, reveal a structure indicative of the artificially aged condition of the metal.
For example, a section of an artificially aged per cent of copper without tin, etched with a mixture of hydrofluoric, hydrochloric and nitric acids, shows under a magnification of 500 diameters an-aluminum matrix composed of contrasting grains having distinctly marked boundaries. Particles of the constituent CuAl: are seen scattered through the matrix but substantially none are found in the grain boundaries. The same alloy containing 0.05 per cent of tin shows after the same artificial aging only slight grain contrast, the grain boundaries are distinctly less sharp, and they contain multitudes of small particles of CuAh. According to the theories of submicroscopic precipitation, the differences in structure-noted in the tin-containing alloy indicate a more advanced stage of submicroscopic precipitation of CuAh, in fact showing that the precipitation has advanced to a lage'extent beyond the wrought aluminum alloy article composed of 4.0
submicroscopic to the submicroscopic stage. This is evidenced by the particles of CuAlz in the grain boundaries, resulting from coalescence of particles precipitated in submicroscopic size.
The foregoing enhanced aging phenomenon which occurs in the above described aluminum alloys containing tin is particularly manifested in such alloys by the development, under the action of the artificial aging treatment, of certain unusual and distinctive properties now to be described. 1
When tin in amounts of 0.005 to 0.1 per cent is present in aluminum alloys containing 2.0 to 12.0 per cent of. copper and free from magnesium, a relatively short artificial aging treatment will develop high hardness. Thus an aluminum alioy casting containing 11.78 per cent of copper and 0.05 per cent of tin, heat treated for 16 hours at 515 C. and aged for 15 hours at 150 0., had a Brinell hardness of 122. The same alloy without tin, similarly heat treated and aged, had a Brinell hardness of only 107. Similarly, and under the same treatment, an alloy containing about 4.0 per cent of copper, about 10.0 per cent of silicon, and about 0.04 per cent of tin, developed a Brinell hardness of 124, while a similar alloy not containing tin developed a Brinell hardness of only 106. A further effect of the tin addition upon aging is particularly evidenced in certain specially valuable and preferred alloys. Under the influence of aging treatments, aluminus alloys containing 2.0
to 6.5 per cent of copper, 0.005 to 0.1 per cent of tin, and substantially free from magnesium, developed yield strengths which are on the order of 30 to 200 per cent greater than the yield strengths of. similar alloys not containing tin. While the fundamental reasons for such increase in yield strength are obscure, the effect is very pronounced. For instance, a magnesium-free aluminum -base alloy containing 4.0 per cent of copper and 0.05 per cent of tin was heat treated at 510 C; for 20 minutes, quenched to room tem perature, and artificially aged for 18 hours at C. This alloy had a yield strength of 43,000
- pounds per square inch. A similar alloy, similarly treated but not containing tin, had a yield strength of only 20,200 pounds per squareinch.
In addition to the eflects described, my invention possesses another advantage. The artificial aging of aluminum-base alloys containing copper in substantial amount usually results in'a decreased resistance of the alloy to corrosion, but I have found that when these alloys, especially those of the preferred copper content (2.0 to 6.5 per cent as stated above), containtin in the amount prescribed by my invention this detrimental result is considerably lessened by the enhanced agingeifect. In particular the artificially aged alloys show a marked decrease in propensity to' undergo intercrystalline or intergranular corrosion, a type of corrosion which is more objectionable than the ordinary surface type because it is often not readily apparent and so is" apt to escape observation until the corroded part or article fails as a result of the internal weakening.
The aluminum-base alloys which are improved by the enhanced aging induced therein by the addition of small amounts of tin are those containing 2.0 to 12.0 per cent of copper, with or without certain other alloying elements which I have found to be useful in modifying the general properties of the alloy without masking or destroying the beneficial properties above noted.
cent, molybdenum 0.1 to 1.0 per cent, zirconium 0.1 to 0.5 per cent, beryllium 0.1 to 2.0 per cent,
and titanium 0.03 to 0.5 per cent.
I have determined that magnesium is a harmful addition tothe alloys above described in that its presence in substantial amounts destroys in large part the effects induced by the addition of small amounts of tin.
The preferred alloys are those in which one or all the above described properties are present to a marked extent, especially the yield strength. These alloys, as abovenoted, contain 2.0 to 6.5 per cent of copper and 0.005 to 0.1 per centof tin, 0.05 to 0.1 per cent being preferred, and they are characterized in the artificially aged condition by a yield strength substantially higher than that of the same alloy devoid of tin. In their} preferred form, these alloys may also contain 0.1-to.
1.0 per cent, in total, of one or more of the hardening elements above mentioned. For making castings of the preferred alloys that are to be used in the unworked condition the alloys may contain a total of 0.1 to 5.0 per cent of an element of the class consisting of zinc, nickel, and silicon. When two or all three of the'elements zinc, nickel, and silicon are present, the total should not exceed 5.0 per cent, the lower limits being nickel 0.05 per cent, zinc 0.05 per cent, and silicon 0.05 per cent. For making wrought articles, the same foregoing lower limits should be observed, but where two or all three of the named elements are present, the upper limits should be, nickel 1.0 per cent, silicon 3.0 per cent, and zinc 5.0 per cent. For rolling or forging, the total amount of these elements, should not exceed 3.0 or 4.0 per cent,
ing cast unworked articles the lower limits for each element, when used alone; should be, silicon but if the alloy is to be extruded a total of about 0.1 per cent, nickel 0.1 per cent, and zinc 0.1 per cent, and the upper limits should be, silicon 14.0.
per cent, nickel 7.0 per cent, and zinc 14.0 per cent. Furthermore, if two or more of the elements are present in cast unworked articles, the lower limits should be, silicon 0.05 per cent, nickel 0.05
per cent, and zinc 0.05 per cent, the total amount of any two or inoreofthe elements being 14.0 per cent, the total nickel. content, however, not exceeding 7.0 percent.
As specifically fllustrating these alloys, an example of a wrought aluminum-base alloy without magnesium, containing about 4.4 per cent of copper, about 0.85 per cent of manganese, about 0.75 per cent of silicon, about 0.4 per cent of iron may be cited. Two alloys of this composition, with and without the addition of 0.05- per cent of tin, were heat treated at 520 C. for 15 minutes, quenched in water, and subjected for 18-hours to an aging treatment at 143 C. The tin-free alloy had a tensile strength of 58,700 pounds per square inch, :1. yield strength of 33,250 pounds per square inch, and an elongation of 16.8 per cent in two inches. The other alloy containing V of 46,250 pounds per square inch, and tion of 11.0 per cent in two inches.
an elonga- The effect of tin upon the yield strength andhardness' of I heat treated and artificially aged cast alloys is illustrated by the following examples. Aluminum-base alloys containing copper 4.0 per cent, nickel 2.0 per cent, silicon 7.0 per cent; and copper 4.0 per cent, nickel 4.0 per cent, silicon 10.0 per cent; with and without the addition of 0.05 per cent of tin, werecast, heat treated at 504 C. for 20 hours, quenched .in water, and aged at 154 C. for 16 hours. The yield strength and hardness values of these alloys that were obtained are as follows:
Allo com sition r cent y De Yield strength Brine Per hardness Copper Nickel Silicon Tin men molten, generally known as the point of incipient fusion. The alloy thus treated is, in the.
preferred practice, cooled rapidly, as by quenching in water or air, to room temperature. The artificial aging usually comprises heating the aluminum-copper alloy to temperatures of about 100 to 200 C. until the desired increase in properties is obtained. The artificial aging in the preferred practice of the invention is preceded by heat treatment, but the enhanced aging effect herein described and its general results may be developed to an advantageous extent by the artificial aging alone.
The aluminum-base alloys herein described and claimed are those containing at least 70.0 per cent of aluminum, which metal may contain impurities, such as amounts of iron up to about 1.5 per cent and, likewise, small amounts of silicon such as are known to occur invirgin aluminum.
The enhanced aging herein described as resulting from the addition of tin in the stated amount to magnesium-free aluminum alloys containing from 2.0 to 12.0 per cent of copper is obtained in both cast and wrought articles. In the case of castings of such alloys containing tin, I have found that heat treatment at elevated temperatures without artificial aging produces a higher ductility than is obtainable by .heat treatment of a casting'of the same alloy without the tin. This species of the invention I do not claim specifically herein but do so in my copending application Serial No. 606,755, filed April 21, 1932. and issued as United States Letters. Patent 2,022,686, under date of December 3, 1935.
In the appended claims the term tensile property, or the like, is intended to include hardness as a property which can be favorably affected by the enhanced artificial aging produced by my invention. Also within the spirit of the appended claims the article may be an ingot or other body designed for further casting or for working, or it may be a cast or wrought article which is suitable for immediateuse or sale or which may require some further operation to fit it for use or sale.
1 Articles and methods involving aluminum-copper alloys containing silicon; nickel; zinc; silicon and zinc; nickel and zinc; and silicon, nickel and zinc; and aluminum-copper alloys containing none of the elements silicon, nickel and zinc; are
not claimed herein but are claimed in my copending applications Serial Nos. 95,177, 95,178,
95,179, 95,181, 95,182, 95,183 and 606,756, respectively. This application is a continuation-in part of my copending application Serial No.
606,756, filed April 21, 1932.
I claim:
1. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 12.0 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of said nickel and silicon being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 percent, the remainder being essentially aluminum; and artificially aging the article whereby a tensile property of the alloy is improved over that of a like alloy free from ti'n.
2. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 6.5 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of nickel and'silicon being between 0.1
and 5.0 per cent, the remainder being essentially aluminum; and artificially aging the article whereby a tensile property of the allow is improved over that of a like alloy. free from tin.
3. In a method of making an article of aluminum alloy, forming an article of a. magnesiumfree alloy containing 2.0 to 12.0 per cent copper; 0.005 to 0.1 per cent tin; at least 0.05per cent nickel and at least 0.05 per cent silicon, the total amount of said nickel and silicon being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0- per cent; and at least one hardening element of the class consisting of manganese 0.1 to 2.0 per cent, chromium 0.1 to 1.0 per cent, boron 0.1 to 0.5 per cent, molybmenum 0.1 to 1.0 per cent, zirconium 0.1 to 0.5 per cent, beryllium 0.1 to 2.0 per cent, and titanium 0.03 to 0.5 .per' cent, the total hardening content being 0.1 to 3.0 per cent, and the remainder being essentially aluminum; and artificially aging the article whereby a tensile'property of the alloy is-improved over that of a like alloy free from tin. y
4. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 12.0 per centcopper, 0.005 to 0.1 per /cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon, the 'total amount of said nickel and silicon being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminum; and artificially aging the article between about 100 C. and 200 C. inclusiye, whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
5. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to. 6.5 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon; the total amount of nickel and silicon being between 0.1 and 5.0 per cent, the remainder being essentially aluminum; and artificially aging thearticle' be- Q improved tween about c. and 200 C.inc1usi've, wherev 1 free alloy containing 2.0 to 12.0 per cent copper;
0.005 to 0.1 per cent tin; at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of said nickel and silicon being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 per cent; and at least one hardening element of the class consisting of manganese 0.1 to 2.0 per cent, chromium 0.1 to 1.0 per cent, boron 0.1 to 0.5 per cent, molybdenum' 0.1 to 1.0 per cent, zirconium 0.1 to 0.5 per cent, beryllium 0.1 to 2.0 per cent, and titanium- 0.03 to 0.5 per cent, the total hardening content being 0.1 to 3.0 per cent, and the re-' mainder being essentially aluminum; and artificially aging the article between about 100 C. and 200 C. inclusive, whereby a tensile property of the alloy-is improved over that of a like alloy free from tin.
'7. In a method'of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 12.0 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of said nickel and silicon being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminum; heat treating the article between about 400 C. and the temperature of incipient fusion; and artificially aging the article between about 100 C. and 200 C. inclusive, whereby a tensile property 01' the alloy is improved over that of a like alloy free from tin.
8. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 12.0 per cent copper, 0.05 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of said nickel and silicon being between 0.1 and 14.0' per cent, the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminum; heat treating the article between about 400 C. and the temperature of incipient fusion; and artificially aging the article between about 100 C. and 200 C. inclusive, whereby a tensile property 01' the alloy is improved over that of a like alloy free from tin..
,tensile property 01' the alloy is improved over that of a like alloyfree from tin.
10. In a method of making an article 01' aluminum alloy, forming an article of amagnesiumfree alloy containing 2.0 to 6.5 per cent copper, 0.05 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of nickel and silicon being between 0.1
and 5.0 percent, the remainder being essentially aluminum; heat treating the article between about 400 C. and the temperature of incipient fusion; and artificially aging the article between about C. and 200 C. inclusive, whereby a tensile property of the alloy is improved over that of a like alloy tree from tin.
11. In a method of making an article of aluminum alloy. forming anarticle of a magnesiumminum allOy, an article of a magnesiumfree alloy containing 2.0 to 12.0 per cent copper;
0.005 to 0.1 per cent tin; at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of said nickel and silicon being between 0.1 and 14.0 per cent, the nickelin any case not being in excess of 7.0 per cent; and at least one hardening element of the. class consisting of manganese 0.1 to 2.0 per cent, chromium 0.1 to 1.0 per cent, boron 0.1 to 0.5 per cent, molybdenum 0.1 to 1.0 per cent, zirconium 0.1 to 0.5 per cent. beryllium 0.1 to 2.0 per cent, and titanium 0.03 to 0.5 per cent, the total hardening content being 0.1 to 3.0 per cent, and the remainder being essentially aluminum; heat treating the-article between about 400 C. and the temperature of incipient fusion; and artificially aging the article between about 100 ,C. and 200 C. inclusive,
whereby a tensile property of the alloy is ima I proved over that of a like alloy free from tin.
12. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 6.5 per cent copper; 0.005 to 0.1 per cent tin; at lea'st 0.05 per cent nickel and at least 0.05 per cent silicon, the total ,amount of nickel and silicon being between 0.1 and 5.0 per cent; and at least one hardening element of the class consisting of manganese, chromium, boron, molybdenum, zirconium, beryllium, and titanium, the total hardening content being 0.1 to 3.0 per cent, and the remainder being essentially alumium; heat treating the article between about 400 C. and the temperature of incipient fusion; and artiflcially'aging the article between about 100 C. and 200 C. inclusive, whereby a tensile property of the alloy is improved over that 01 a like alloy free from tin.
alloy free from magnesium and containing 2.0 to 12.0 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of said nickel and silicon being between 0.1 and 14.0 per cent,
the nickel in any case not being in excess jot 7.0 per cent, the remainder being essentially aluminum.
14. An article of artificially aged aluminum 1s. An artlcle of artificially aged aluminum f being 0.1 to 3.0 per cent, the remainder of the alloy being essentially aluminum.
15. An article of artificially aged aluminum alloy free from magnesium and containing 2.0 to 6.5 percent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of nickel and silicon being between 0.1 and 5.0 per cent, the
remainder of the alloy being essentially aluminum.
15. An article of artificially aged aluminum alloy free from magnesium and containing 2.0 to 6.5 per cent copper; 0.005 to 0.1 per cent tin; at least 0.05 per cent nickel and at least 0.05
per cent silicon, the total amount of nickel and silicon being between 0.1 and 5.0 per cent; and at least one element 01 the class of hardeners composed of manganese, chromium, boron,
molybdenum, zirconium, beryllium, and titanium, to over 400 C. but below incpient fusion, cooling the total hardening content being 0.1 to 3.0 per .the alloy, and thereafter artificially aging the cent, the remainder of the alloy being essentially alloy.
aluminum. i 19. An article of thermally treated aluminum 5 1'1. An article of thermally treated aluminum alloy free from magnesium and containing 2.0 5
alloy free from magnesium and containing 2.0 to 6.5 per cent copper, 0.005 to 0.1 per cent tin, to 12.0 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of nickel and per cent silicon, the total amount of said nickel silicon being between 0.1 and 5.0 per cent, the and silicon being between 0.1 and 14.0 per cent, remainder being essentially aluminum; the alloy 10 the nickel in any case not being in excess of 1.0 being characterized by a structure produced by per cent, the remainder being essentially alumiheating the alloyto over 400 C. but below num; the alloy being characterized by a strucincipient fusion, cooling the alloy, and thereafter ture produced by heating the alloy to over 400 artificially aging the alloy. C. but below incipient fusion, cooling the alloy, 20. An article of thermally treated aluminum 1.) and thereafter artificially aging the alloy. alloy free from magnesium and containing 2.0 18. An article of thermally treated aluminum to 6.5 per cent copper, 0.005 to 0.1 per cent tin, alloy free from magnesium and containing 2.0 at least 0.05 per cent nickel and at least 0.05 to 12.0 per cent copper; 0.005 to 0.1 per cent tin; per cent silicon, the total amount of nickel and at least 0.05 per cent nickel and at least 0.05 silicon being between 0.1 and 5.0 per cent; and 20 per cent silicon, the total amount of said nickel at least one element of the class of hardeners and silicon being between 0.1 and 14.0 per cent, composed of manganese, chromium, boron, the nickel in any case not being in excess of molybdenum, zirconium, beryllium, and titanium, 7.0 per cent; and at least one element of the the total hardening content being 0.1 to 3.0 per class of hardeners composed of manganese, cent, the remainder being essentially aluminum;' chromium, boron, molybdenum, zirconium, berthe alloy being characterized bya structure proyllium, and titanium, the total hardening conduced by heating the alloy to over 400 C. but tent being 0.1 to 3.0 per cent, the remainder bei'ng below incipient fusion, cooling the alloy, and essentially aluminum; the alloy being characterthereafter artificially aging the alloy.
3 ized by a structure produced by heating the alloy JOSEPH A. NOCK, Jn.,
CERTIFICATE or; CORRECTION.
Patent No. 2,087,991. July 27, 1937.
JOSEPHA. Noc JR.
It is hereby certified that error appears in the printed specification of the above numbered patent requiring correction as follows: Page 1, second column, line 55, for "lage" read large; page 2, first column, line 1, for submicroscopic" second occurrence read microscopic; and line 32, for "aluminus" read aluminum page 3, second column, i line 31, claim 2, for "allow read alloy; and that the said Letters Patent should be read with these corrections therein that the samemay conform to the record of the case in the Patent Office.
.Signed and sealed this 5th day of October, A. D. 1937.-
Henry Van Arsdale i Acting Commissioner of Patents.
molybdenum, zirconium, beryllium, and titanium, to over 400 C. but below incpient fusion, cooling the total hardening content being 0.1 to 3.0 per .the alloy, and thereafter artificially aging the cent, the remainder of the alloy being essentially alloy.
aluminum. i 19. An article of thermally treated aluminum 5 1'1. An article of thermally treated aluminum alloy free from magnesium and containing 2.0 5
alloy free from magnesium and containing 2.0 to 6.5 per cent copper, 0.005 to 0.1 per cent tin, to 12.0 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 at least 0.05 per cent nickel and at least 0.05 per cent silicon, the total amount of nickel and per cent silicon, the total amount of said nickel silicon being between 0.1 and 5.0 per cent, the and silicon being between 0.1 and 14.0 per cent, remainder being essentially aluminum; the alloy 10 the nickel in any case not being in excess of 1.0 being characterized by a structure produced by per cent, the remainder being essentially alumiheating the alloyto over 400 C. but below num; the alloy being characterized by a strucincipient fusion, cooling the alloy, and thereafter ture produced by heating the alloy to over 400 artificially aging the alloy. C. but below incipient fusion, cooling the alloy, 20. An article of thermally treated aluminum 1.) and thereafter artificially aging the alloy. alloy free from magnesium and containing 2.0 18. An article of thermally treated aluminum to 6.5 per cent copper, 0.005 to 0.1 per cent tin, alloy free from magnesium and containing 2.0 at least 0.05 per cent nickel and at least 0.05 to 12.0 per cent copper; 0.005 to 0.1 per cent tin; per cent silicon, the total amount of nickel and at least 0.05 per cent nickel and at least 0.05 silicon being between 0.1 and 5.0 per cent; and 20 per cent silicon, the total amount of said nickel at least one element of the class of hardeners and silicon being between 0.1 and 14.0 per cent, composed of manganese, chromium, boron, the nickel in any case not being in excess of molybdenum, zirconium, beryllium, and titanium, 7.0 per cent; and at least one element of the the total hardening content being 0.1 to 3.0 per class of hardeners composed of manganese, cent, the remainder being essentially aluminum;' chromium, boron, molybdenum, zirconium, berthe alloy being characterized bya structure proyllium, and titanium, the total hardening conduced by heating the alloy to over 400 C. but tent being 0.1 to 3.0 per cent, the remainder bei'ng below incipient fusion, cooling the alloy, and essentially aluminum; the alloy being characterthereafter artificially aging the alloy.
3 ized by a structure produced by heating the alloy JOSEPH A. NOCK, Jn.,
CERTIFICATE or; CORRECTION.
Patent No. 2,087,991. July 27, 1937.
JOSEPHA. Noc JR.
It is hereby certified that error appears in the printed specification of the above numbered patent requiring correction as follows: Page 1, second column, line 55, for "lage" read large; page 2, first column, line 1, for submicroscopic" second occurrence read microscopic; and line 32, for "aluminus" read aluminum page 3, second column, i line 31, claim 2, for "allow read alloy; and that the said Letters Patent should be read with these corrections therein that the samemay conform to the record of the case in the Patent Office.
.Signed and sealed this 5th day of October, A. D. 1937.-
Henry Van Arsdale i Acting Commissioner of Patents.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US95180A US2087991A (en) | 1936-08-10 | 1936-08-10 | Aluminum-base alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US95180A US2087991A (en) | 1936-08-10 | 1936-08-10 | Aluminum-base alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
US2087991A true US2087991A (en) | 1937-07-27 |
Family
ID=22250507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US95180A Expired - Lifetime US2087991A (en) | 1936-08-10 | 1936-08-10 | Aluminum-base alloys |
Country Status (1)
Country | Link |
---|---|
US (1) | US2087991A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040213694A1 (en) * | 2003-04-24 | 2004-10-28 | Ford Global Technologies, Llc | A high strength cast aluminum alloy with accelerated response to heat treatment |
-
1936
- 1936-08-10 US US95180A patent/US2087991A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040213694A1 (en) * | 2003-04-24 | 2004-10-28 | Ford Global Technologies, Llc | A high strength cast aluminum alloy with accelerated response to heat treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3198676A (en) | Thermal treatment of aluminum base alloy article | |
EP0124286B1 (en) | Aluminium alloys | |
US6056835A (en) | Superplastic aluminum alloy and process for producing same | |
US5593516A (en) | High strength, high toughness aluminum-copper-magnesium-type aluminum alloy | |
US4021271A (en) | Ultrafine grain Al-Mg alloy product | |
US2062329A (en) | Thermal treatment of aluminum alloys containing copper | |
US5738735A (en) | Al-Cu-Mg alloy with high creep resistance | |
US3703367A (en) | Copper-zinc alloys | |
US1947121A (en) | Aluminum base alloys | |
US11708630B2 (en) | Titanium alloy with moderate strength and high ductility | |
JPS58167757A (en) | Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability | |
US2087992A (en) | Aluminum-base alloys | |
US3674448A (en) | Anodic aluminum material and articles and composite articles comprising the material | |
US2087991A (en) | Aluminum-base alloys | |
US2087988A (en) | Aluminum-base alloys | |
US2087989A (en) | Aluminum-base alloys | |
US3366477A (en) | Copper base alloys | |
JPS602644A (en) | Aluminum alloy | |
JPS62149839A (en) | Aluminum alloy with excellent strength and wear resistance for machining | |
US2087993A (en) | Aluminum-base alloys | |
US2087990A (en) | Aluminum-base alloys | |
US2225925A (en) | Heat treated alloy | |
US2087994A (en) | Aluminum-base alloys | |
US1629699A (en) | Process of improving aluminum alloys | |
US2022686A (en) | Aluminum alloy casting and method of making the same |