US20250049119A1 - Cartomiser - Google Patents
Cartomiser Download PDFInfo
- Publication number
- US20250049119A1 US20250049119A1 US18/722,664 US202218722664A US2025049119A1 US 20250049119 A1 US20250049119 A1 US 20250049119A1 US 202218722664 A US202218722664 A US 202218722664A US 2025049119 A1 US2025049119 A1 US 2025049119A1
- Authority
- US
- United States
- Prior art keywords
- cartomizer
- vaporizer
- aerosol
- generating device
- lower support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006200 vaporizer Substances 0.000 claims abstract description 221
- 239000000463 material Substances 0.000 claims abstract description 63
- 239000000443 aerosol Substances 0.000 claims abstract description 25
- 239000007788 liquid Substances 0.000 claims description 57
- 239000000758 substrate Substances 0.000 claims description 35
- 239000012530 fluid Substances 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 238000005553 drilling Methods 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000012811 non-conductive material Substances 0.000 claims 1
- 239000000796 flavoring agent Substances 0.000 description 15
- 235000019634 flavors Nutrition 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 12
- 239000013543 active substance Substances 0.000 description 11
- 238000007373 indentation Methods 0.000 description 10
- 239000000470 constituent Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 235000002899 Mentha suaveolens Nutrition 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- 235000004357 Mentha x piperita Nutrition 0.000 description 6
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 6
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 6
- 244000061176 Nicotiana tabacum Species 0.000 description 6
- 244000269722 Thea sinensis Species 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 235000006679 Mentha X verticillata Nutrition 0.000 description 5
- 235000014749 Mentha crispa Nutrition 0.000 description 5
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229960002715 nicotine Drugs 0.000 description 5
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 5
- 241000218236 Cannabis Species 0.000 description 4
- 240000004160 Capsicum annuum Species 0.000 description 4
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 4
- 244000018436 Coriandrum sativum Species 0.000 description 4
- 244000163122 Curcuma domestica Species 0.000 description 4
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 4
- 244000303040 Glycyrrhiza glabra Species 0.000 description 4
- 235000014435 Mentha Nutrition 0.000 description 4
- 241001072983 Mentha Species 0.000 description 4
- 244000246386 Mentha pulegium Species 0.000 description 4
- 235000016257 Mentha pulegium Nutrition 0.000 description 4
- 235000009421 Myristica fragrans Nutrition 0.000 description 4
- 235000012550 Pimpinella anisum Nutrition 0.000 description 4
- 240000004760 Pimpinella anisum Species 0.000 description 4
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 240000006914 Aspalathus linearis Species 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 3
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 3
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 3
- 235000005979 Citrus limon Nutrition 0.000 description 3
- 244000131522 Citrus pyriformis Species 0.000 description 3
- 244000004281 Eucalyptus maculata Species 0.000 description 3
- 235000004204 Foeniculum vulgare Nutrition 0.000 description 3
- 240000006927 Foeniculum vulgare Species 0.000 description 3
- 235000008227 Illicium verum Nutrition 0.000 description 3
- 240000007232 Illicium verum Species 0.000 description 3
- 244000078639 Mentha spicata Species 0.000 description 3
- 241001479543 Mentha x piperita Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 235000009470 Theobroma cacao Nutrition 0.000 description 3
- 244000299461 Theobroma cacao Species 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 235000009120 camo Nutrition 0.000 description 3
- 235000005607 chanvre indien Nutrition 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000011487 hemp Substances 0.000 description 3
- 235000001050 hortel pimenta Nutrition 0.000 description 3
- 239000001771 mentha piperita Substances 0.000 description 3
- 235000019640 taste Nutrition 0.000 description 3
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- KOCVACNWDMSLBM-UHFFFAOYSA-N 4-(Ethoxymethyl)-2-methoxyphenol Chemical compound CCOCC1=CC=C(O)C(OC)=C1 KOCVACNWDMSLBM-UHFFFAOYSA-N 0.000 description 2
- 241001280436 Allium schoenoprasum Species 0.000 description 2
- 235000001270 Allium sibiricum Nutrition 0.000 description 2
- 235000003092 Artemisia dracunculus Nutrition 0.000 description 2
- 240000001851 Artemisia dracunculus Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- -1 B6 or B12 or C Chemical compound 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- 235000009467 Carica papaya Nutrition 0.000 description 2
- 240000006432 Carica papaya Species 0.000 description 2
- 240000003538 Chamaemelum nobile Species 0.000 description 2
- 235000007866 Chamaemelum nobile Nutrition 0.000 description 2
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 2
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 2
- 240000007154 Coffea arabica Species 0.000 description 2
- 235000002787 Coriandrum sativum Nutrition 0.000 description 2
- 235000001543 Corylus americana Nutrition 0.000 description 2
- 240000007582 Corylus avellana Species 0.000 description 2
- 235000007466 Corylus avellana Nutrition 0.000 description 2
- 235000015655 Crocus sativus Nutrition 0.000 description 2
- 244000124209 Crocus sativus Species 0.000 description 2
- 240000008067 Cucumis sativus Species 0.000 description 2
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 2
- 235000007129 Cuminum cyminum Nutrition 0.000 description 2
- 244000304337 Cuminum cyminum Species 0.000 description 2
- 235000014375 Curcuma Nutrition 0.000 description 2
- 235000003392 Curcuma domestica Nutrition 0.000 description 2
- 240000004784 Cymbopogon citratus Species 0.000 description 2
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 2
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 2
- VZWGRQBCURJOMT-UHFFFAOYSA-N Dodecyl acetate Chemical compound CCCCCCCCCCCCOC(C)=O VZWGRQBCURJOMT-UHFFFAOYSA-N 0.000 description 2
- 240000002943 Elettaria cardamomum Species 0.000 description 2
- MWAYRGBWOVHDDZ-UHFFFAOYSA-N Ethyl vanillate Chemical compound CCOC(=O)C1=CC=C(O)C(OC)=C1 MWAYRGBWOVHDDZ-UHFFFAOYSA-N 0.000 description 2
- 239000005770 Eugenol Substances 0.000 description 2
- 240000001238 Gaultheria procumbens Species 0.000 description 2
- 235000007297 Gaultheria procumbens Nutrition 0.000 description 2
- 241000208152 Geranium Species 0.000 description 2
- 235000008100 Ginkgo biloba Nutrition 0.000 description 2
- 244000194101 Ginkgo biloba Species 0.000 description 2
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 2
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 2
- 235000005206 Hibiscus Nutrition 0.000 description 2
- 235000007185 Hibiscus lunariifolius Nutrition 0.000 description 2
- 244000284380 Hibiscus rosa sinensis Species 0.000 description 2
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 2
- 241000721662 Juniperus Species 0.000 description 2
- 235000013628 Lantana involucrata Nutrition 0.000 description 2
- 240000005183 Lantana involucrata Species 0.000 description 2
- 235000017858 Laurus nobilis Nutrition 0.000 description 2
- 244000165082 Lavanda vera Species 0.000 description 2
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 description 2
- 240000006240 Linum usitatissimum Species 0.000 description 2
- 235000007232 Matricaria chamomilla Nutrition 0.000 description 2
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 2
- 235000010654 Melissa officinalis Nutrition 0.000 description 2
- 244000062730 Melissa officinalis Species 0.000 description 2
- 244000024873 Mentha crispa Species 0.000 description 2
- 244000182807 Mentha suaveolens Species 0.000 description 2
- 235000006677 Monarda citriodora ssp. austromontana Nutrition 0.000 description 2
- 244000179970 Monarda didyma Species 0.000 description 2
- 235000010672 Monarda didyma Nutrition 0.000 description 2
- 235000008708 Morus alba Nutrition 0.000 description 2
- 240000000249 Morus alba Species 0.000 description 2
- 244000270834 Myristica fragrans Species 0.000 description 2
- 235000007265 Myrrhis odorata Nutrition 0.000 description 2
- 240000005125 Myrtus communis Species 0.000 description 2
- 235000013418 Myrtus communis Nutrition 0.000 description 2
- DATAGRPVKZEWHA-YFKPBYRVSA-N N(5)-ethyl-L-glutamine Chemical compound CCNC(=O)CC[C@H]([NH3+])C([O-])=O DATAGRPVKZEWHA-YFKPBYRVSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 241001529734 Ocimum Species 0.000 description 2
- 240000004737 Ocimum americanum Species 0.000 description 2
- 235000010676 Ocimum basilicum Nutrition 0.000 description 2
- 235000004195 Ocimum x citriodorum Nutrition 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 235000011203 Origanum Nutrition 0.000 description 2
- 240000000783 Origanum majorana Species 0.000 description 2
- 244000124853 Perilla frutescens Species 0.000 description 2
- 235000016374 Perilla frutescens var crispa Nutrition 0.000 description 2
- 235000015640 Perilla frutescens var frutescens Nutrition 0.000 description 2
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 2
- 235000011552 Rhamnus crocea Nutrition 0.000 description 2
- 235000001466 Ribes nigrum Nutrition 0.000 description 2
- 241001312569 Ribes nigrum Species 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- 244000178231 Rosmarinus officinalis Species 0.000 description 2
- 240000000513 Santalum album Species 0.000 description 2
- 235000008632 Santalum album Nutrition 0.000 description 2
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 2
- 244000223014 Syzygium aromaticum Species 0.000 description 2
- 235000005212 Terminalia tomentosa Nutrition 0.000 description 2
- 244000125380 Terminalia tomentosa Species 0.000 description 2
- 235000006468 Thea sinensis Nutrition 0.000 description 2
- 235000007303 Thymus vulgaris Nutrition 0.000 description 2
- 240000002657 Thymus vulgaris Species 0.000 description 2
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 2
- 240000000851 Vaccinium corymbosum Species 0.000 description 2
- 235000003095 Vaccinium corymbosum Nutrition 0.000 description 2
- 235000017537 Vaccinium myrtillus Nutrition 0.000 description 2
- 235000013832 Valeriana officinalis Nutrition 0.000 description 2
- 244000126014 Valeriana officinalis Species 0.000 description 2
- 235000009499 Vanilla fragrans Nutrition 0.000 description 2
- 244000263375 Vanilla tahitensis Species 0.000 description 2
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 2
- 241000759263 Ventia crocea Species 0.000 description 2
- 235000007212 Verbena X moechina Moldenke Nutrition 0.000 description 2
- 240000001519 Verbena officinalis Species 0.000 description 2
- 235000001594 Verbena polystachya Kunth Nutrition 0.000 description 2
- 235000007200 Verbena x perriana Moldenke Nutrition 0.000 description 2
- 235000002270 Verbena x stuprosa Moldenke Nutrition 0.000 description 2
- 235000006886 Zingiber officinale Nutrition 0.000 description 2
- 244000273928 Zingiber officinale Species 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 235000020279 black tea Nutrition 0.000 description 2
- 235000021014 blueberries Nutrition 0.000 description 2
- 229960001948 caffeine Drugs 0.000 description 2
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 2
- CRPUJAZIXJMDBK-UHFFFAOYSA-N camphene Chemical compound C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 2
- 239000001511 capsicum annuum Substances 0.000 description 2
- 235000005300 cardamomo Nutrition 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- 229930002875 chlorophyll Natural products 0.000 description 2
- 235000019804 chlorophyll Nutrition 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 235000017803 cinnamon Nutrition 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 235000016213 coffee Nutrition 0.000 description 2
- 235000013353 coffee beverage Nutrition 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 235000003373 curcuma longa Nutrition 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- 229960002217 eugenol Drugs 0.000 description 2
- 235000008995 european elder Nutrition 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 235000008397 ginger Nutrition 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 235000009569 green tea Nutrition 0.000 description 2
- 239000001102 lavandula vera Substances 0.000 description 2
- 235000018219 lavender Nutrition 0.000 description 2
- 229940010454 licorice Drugs 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 235000011477 liquorice Nutrition 0.000 description 2
- 239000001115 mace Substances 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 2
- 229960003987 melatonin Drugs 0.000 description 2
- 239000001220 mentha spicata Substances 0.000 description 2
- 229940041616 menthol Drugs 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000001702 nutmeg Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004248 saffron Substances 0.000 description 2
- 235000013974 saffron Nutrition 0.000 description 2
- 235000002020 sage Nutrition 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 235000019615 sensations Nutrition 0.000 description 2
- 235000013599 spices Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- 235000013616 tea Nutrition 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- 239000001585 thymus vulgaris Substances 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 210000003901 trigeminal nerve Anatomy 0.000 description 2
- 235000013976 turmeric Nutrition 0.000 description 2
- 235000016788 valerian Nutrition 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- QGDOQULISIQFHQ-UHFFFAOYSA-N 1,3,7,9-tetramethyluric acid Chemical compound CN1C(=O)N(C)C(=O)C2=C1N(C)C(=O)N2C QGDOQULISIQFHQ-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 1
- 235000003320 Adansonia digitata Nutrition 0.000 description 1
- 244000056971 Adansonia gregorii Species 0.000 description 1
- 235000003319 Adansonia gregorii Nutrition 0.000 description 1
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- 244000144927 Aloe barbadensis Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 240000007087 Apium graveolens Species 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 235000010591 Appio Nutrition 0.000 description 1
- 239000009405 Ashwagandha Substances 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 240000007436 Cananga odorata Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000005747 Carum carvi Nutrition 0.000 description 1
- 240000000467 Carum carvi Species 0.000 description 1
- 240000007681 Catha edulis Species 0.000 description 1
- 235000006696 Catha edulis Nutrition 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 244000037364 Cinnamomum aromaticum Species 0.000 description 1
- 235000014489 Cinnamomum aromaticum Nutrition 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241001672694 Citrus reticulata Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 235000006025 Durio zibethinus Nutrition 0.000 description 1
- 240000000716 Durio zibethinus Species 0.000 description 1
- 239000004097 EU approved flavor enhancer Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004348 Glyceryl diacetate Substances 0.000 description 1
- 244000267823 Hydrangea macrophylla Species 0.000 description 1
- 235000014486 Hydrangea macrophylla Nutrition 0.000 description 1
- 235000018481 Hylocereus undatus Nutrition 0.000 description 1
- 244000157072 Hylocereus undatus Species 0.000 description 1
- 235000010254 Jasminum officinale Nutrition 0.000 description 1
- 240000005385 Jasminum sambac Species 0.000 description 1
- 244000255365 Kaskarillabaum Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 235000019501 Lemon oil Nutrition 0.000 description 1
- 240000000759 Lepidium meyenii Species 0.000 description 1
- 235000000421 Lepidium meyenii Nutrition 0.000 description 1
- 241000768444 Magnolia obovata Species 0.000 description 1
- 235000011430 Malus pumila Nutrition 0.000 description 1
- 244000070406 Malus silvestris Species 0.000 description 1
- 235000015103 Malus silvestris Nutrition 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 235000016278 Mentha canadensis Nutrition 0.000 description 1
- 244000245214 Mentha canadensis Species 0.000 description 1
- 241000531303 Mentha x rotundifolia Species 0.000 description 1
- 235000009665 Mentha x villosa Nutrition 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 240000004371 Panax ginseng Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 235000000556 Paullinia cupana Nutrition 0.000 description 1
- 240000003444 Paullinia cupana Species 0.000 description 1
- MIYFJEKZLFWKLZ-UHFFFAOYSA-N Phenylmethyl benzeneacetate Chemical compound C=1C=CC=CC=1COC(=O)CC1=CC=CC=C1 MIYFJEKZLFWKLZ-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000008180 Piper betle Nutrition 0.000 description 1
- 240000008154 Piper betle Species 0.000 description 1
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Primaeres Camphenhydrat Natural products C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 244000299790 Rheum rhabarbarum Species 0.000 description 1
- 235000009411 Rheum rhabarbarum Nutrition 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- 240000006909 Tilia x europaea Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 240000000143 Turnera diffusa Species 0.000 description 1
- 240000001717 Vaccinium macrocarpon Species 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- 244000002783 Vanda tricolor Species 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 244000195452 Wasabia japonica Species 0.000 description 1
- 235000000760 Wasabia japonica Nutrition 0.000 description 1
- 235000001978 Withania somnifera Nutrition 0.000 description 1
- 240000004482 Withania somnifera Species 0.000 description 1
- 235000010358 acesulfame potassium Nutrition 0.000 description 1
- 229960004998 acesulfame potassium Drugs 0.000 description 1
- 239000000619 acesulfame-K Substances 0.000 description 1
- 235000019647 acidic taste Nutrition 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 235000019658 bitter taste Nutrition 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 229930006739 camphene Natural products 0.000 description 1
- ZYPYEBYNXWUCEA-UHFFFAOYSA-N camphenilone Natural products C1CC2C(=O)C(C)(C)C1C2 ZYPYEBYNXWUCEA-UHFFFAOYSA-N 0.000 description 1
- 239000003557 cannabinoid Substances 0.000 description 1
- 229930003827 cannabinoid Natural products 0.000 description 1
- 229940065144 cannabinoids Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- FDJOLVPMNUYSCM-WZHZPDAFSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+3].N#[C-].N([C@@H]([C@]1(C)[N-]\C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C(\C)/C1=N/C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C\C1=N\C([C@H](C1(C)C)CCC(N)=O)=C/1C)[C@@H]2CC(N)=O)=C\1[C@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]1[C@@H](O)[C@@H](N2C3=CC(C)=C(C)C=C3N=C2)O[C@@H]1CO FDJOLVPMNUYSCM-WZHZPDAFSA-L 0.000 description 1
- 235000020057 cognac Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical class OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- PEUGOJXLBSIJQS-UHFFFAOYSA-N diethyl octanedioate Chemical compound CCOC(=O)CCCCCCC(=O)OCC PEUGOJXLBSIJQS-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003571 electronic cigarette Substances 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019264 food flavour enhancer Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000013531 gin Nutrition 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000019443 glyceryl diacetate Nutrition 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000010501 lemon oil Substances 0.000 description 1
- 235000012902 lepidium meyenii Nutrition 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002664 nootropic agent Substances 0.000 description 1
- 230000001777 nootropic effect Effects 0.000 description 1
- 239000002417 nutraceutical Substances 0.000 description 1
- 235000021436 nutraceutical agent Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 235000019719 rose oil Nutrition 0.000 description 1
- 239000010666 rose oil Substances 0.000 description 1
- 235000013533 rum Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 235000021092 sugar substitutes Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 235000013529 tequila Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 229940026510 theanine Drugs 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- 235000019505 tobacco product Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- 235000004952 turnera diffusa Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 235000015041 whisky Nutrition 0.000 description 1
- DBRXOUCRJQVYJQ-CKNDUULBSA-N withaferin A Chemical compound C([C@@H]1[C@H]([C@@H]2[C@]3(CC[C@@H]4[C@@]5(C)C(=O)C=C[C@H](O)[C@@]65O[C@@H]6C[C@H]4[C@@H]3CC2)C)C)C(C)=C(CO)C(=O)O1 DBRXOUCRJQVYJQ-CKNDUULBSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/42—Cartridges or containers for inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/44—Wicks
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/48—Fluid transfer means, e.g. pumps
- A24F40/485—Valves; Apertures
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/70—Manufacture
Definitions
- the present invention relates to a cartomizer for an aerosol-generating device such as a vaping device.
- a vaping device may comprise a main housing which contains a power source and control electronics and a replaceable or refillable cartomizer which plugs in to the top end of the main housing.
- a cartomizer is used to heat a liquid to produce an aerosol.
- the liquid may be stored in a reservoir of the cartomizer and a vaporizer with a combined wicking and heating function may be used to wick liquid from the reservoir and to heat the wicked liquid to produce the aerosol, which exits via a mouthpiece at the top end of the cartomizer.
- the vaporizer may be powered by the power source (e.g. a battery) of the main housing via electrical connections which are made across the interface between the top end of the main housing and the bottom end of the cartomizer.
- the cartomizer When the liquid in the reservoir has been used up, the cartomizer may be refilled by refilling the reservoir of the cartomizer, and this typically involves unplugging the cartomizer from the main housing, filling the reservoir with new liquid, and then plugging the cartomizer back in to the top end of the main housing.
- the old (empty) cartomizer may be unplugged and be disposed of or recycled, and a new (full) cartomizer may be plugged in to the main housing.
- a cartomizer for an aerosol-generating device including an aerosol-generating device interface configured to interface with an aerosol-generating device; and a vaporizer for generating aerosol from aerosol-generating material held in a reservoir of the cartomizer.
- the aerosol-generating device interface further comprises one or more through holes, each through hole sized so as to receive a power-supply pin of the aerosol generating device.
- the vaporizer is arranged in the cartridge such that the vaporizer is adjacent the one or more through holes so that, when the cartomizer is engaged with the aerosol-generating device, the respective power-supply pins of the aerosol-generating device electrically couple to the vaporizer.
- an aerosol-generating device comprising a cartomizer according to the first aspect.
- FIG. 1 is a perspective view of a vaping device.
- FIG. 2 is an exploded perspective view of an example cartomizer suitable for use in the vaping device of FIG. 1 .
- FIGS. 3 and 4 are overhead and underneath perspective views of the example cartomizer, with some components omitted for clarity of depiction.
- FIGS. 5 and 6 are vertical sectional and perspective sectional views of the example cartomizer.
- FIGS. 7 A, 7 B and 7 C are respectively side, upper perspective and lower perspective views of an upper clamping unit of the example cartomizer.
- FIGS. 8 A, 8 B and 8 C are respectively an upper perspective view (with the block shown as being transparent, so as to illustrate some hidden features), an upper perspective view (without transparency) and a lower perspective view of a lower support unit of the example cartomizer.
- FIG. 9 is an exploded perspective view of an embodiment of a cartomizer in accordance with the present disclosure suitable for use in the vaping device of FIG. 1 .
- FIGS. 10 A, 10 B and 10 C are respectively a vertical sectional view, an enlarged sectional view portion and a side view of the embodiment of the cartomizer.
- FIG. 11 is a diagrammatic depiction of some dimensions of components of a variant of the embodiment of the cartomizer.
- FIG. 12 is a diagrammatic depiction of air flow paths in a variant of the embodiment of the cartomizer.
- FIG. 13 is an exploded perspective view of an embodiment of a second embodiment of a cartomizer in accordance with the present disclosure, one that is suitable for use in a vaping device similar to the vaping device of FIG. 1 .
- FIG. 14 is a perspective view of a microfluidic vaporizer suitable for use in the second embodiment of the cartomizer, in accordance with a first example.
- FIG. 15 is a perspective view of a microfluidic vaporizer suitable for use in the second embodiment of the cartomizer, in accordance with a second example.
- FIG. 16 is a perspective view of a microfluidic vaporizer, in accordance with a third example.
- the aerosol-generating device is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system (END), although it is noted that the presence of nicotine in the aerosol-generating liquid is not a requirement.
- END electronic nicotine delivery system
- the aerosol-generating device is a hybrid system to generate aerosol using a combination of aerosol-generating materials.
- Each of the aerosol-generating materials may or may not contain nicotine.
- the hybrid system comprises a liquid aerosol-generating material and a solid aerosol-generating material.
- the solid aerosol-generating material may comprise, for example, tobacco or a non-tobacco product.
- the or each aerosol-generating material may comprise one or more active constituents, one or more flavors, one or more aerosol-former materials, and/or one or more other functional materials.
- the active substance as used herein may be a physiologically active material, which is a material intended to achieve or enhance a physiological response.
- the active substance may for example be selected from nutraceuticals, nootropics, psychoactives.
- the active substance may be naturally occurring or synthetically obtained.
- the active substance may comprise for example nicotine, caffeine, taurine, theine, vitamins such as B6 or B12 or C, melatonin, cannabinoids, or constituents, derivatives, or combinations thereof.
- the active substance may comprise one or more constituents, derivatives or extracts of tobacco, cannabis or another botanical.
- the active substance comprises nicotine. In some embodiments, the active substance comprises caffeine, melatonin or vitamin B12.
- the active substance may comprise or be derived from one or more botanicals or constituents, derivatives or extracts thereof.
- botanical includes any material derived from plants including, but not limited to, extracts, leaves, bark, fibers, stems, roots, seeds, flowers, fruits, pollen, husk, shells or the like.
- the material may comprise an active compound naturally existing in a botanical, obtained synthetically.
- the material may be in the form of liquid, gas, solid, powder, dust, crushed particles, granules, pellets, shreds, strips, sheets, or the like.
- Example botanicals are tobacco, eucalyptus, star anise, hemp, cocoa, cannabis, fennel, lemongrass, peppermint, spearmint, rooibos, chamomile, flax, ginger, ginkgo biloba, hazel, hibiscus, laurel, licorice (liquorice), matcha, mate, orange skin, papaya, rose, sage, tea such as green tea or black tea, thyme, clove, cinnamon, coffee, aniseed (anise), basil, bay leaves, cardamom, coriander, cumin, nutmeg, oregano, paprika, rosemary, saffron, lavender, lemon peel, mint, juniper, elderflower, vanilla, wintergreen, beefsteak plant, curcuma, turmeric, sandalwood, cilantro, bergamot, orange blossom, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon
- the mint may be chosen from the following mint varieties: Mentha arventis, Mentha c.v., Mentha niliaca, Mentha piperita, Mentha piperita citrata c.v., Mentha piperita c.v, Mentha spicata crispa, Mentha cardifolia, Memtha longifolia, Mentha suaveolens variegata, Mentha pulegium, Mentha spicata c.v. and Mentha suaveolens
- the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is tobacco.
- the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from eucalyptus, star anise, cocoa and hemp.
- the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from rooibos and fennel.
- flavor and “flavorant” refer to materials which, where local regulations permit, may be used to create a desired taste, aroma or other somatosensorial sensation in a product for adult consumers. They may include naturally occurring flavor materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis, licorice (liquorice), hydrangea, eugenol, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, maple, matcha, menthol, Japanese mint, aniseed (anise), cinnamon, turmeric, Indian spices, Asian spices, herb, wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fruit, papaya, rhubarb, grape, durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch,
- the flavor comprises menthol, spearmint and/or peppermint. In some embodiments, the flavor comprises flavor components of cucumber, blueberry, citrus fruits and/or redberry. In some embodiments, the flavor comprises eugenol. In some embodiments, the flavor comprises flavor components extracted from tobacco. In some embodiments, the flavor comprises flavor components extracted from cannabis.
- the flavor may comprise a sensate, which is intended to achieve a somatosensorial sensation which are usually chemically induced and perceived by the stimulation of the fifth cranial nerve (trigeminal nerve), in addition to or in place of aroma or taste nerves, and these may include agents providing heating, cooling, tingling, numbing effect.
- a suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether and a suitable cooling agent may be, but not limited to eucolyptol, WS-3.
- the aerosol-former material may comprise one or more constituents capable of forming an aerosol.
- the aerosol-former material may comprise one or more of glycerine, glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate.
- the one or more other functional materials may comprise one or more of pH regulators, coloring agents, preservatives, binders, fillers, stabilizers, and/or antioxidants.
- An aerosol-modifying agent is a substance, typically located downstream of the aerosol generation area, that is configured to modify the aerosol generated, for example by changing the taste, flavor, acidity or another characteristic of the aerosol.
- the aerosol-modifying agent may be provided in an aerosol-modifying agent release component, that is operable to selectively release the aerosol-modifying agent.
- the aerosol-modifying agent may, for example, be an additive or a sorbent.
- the aerosol-modifying agent may, for example, comprise one or more of a flavorant, a colorant, water, and a carbon adsorbent.
- the aerosol-modifying agent may, for example, be a solid, a liquid, or a gel.
- the aerosol-modifying agent may be in powder, thread or granule form.
- the aerosol-modifying agent may be free from filtration material.
- FIG. 1 shows a vaping device 1 comprising a main housing 2 and a cartomizer 3 .
- the main housing 2 is in the form of a power pack because it contains a rechargeable battery, as well as control electronics.
- the cartomizer 3 plugs in to a top end 21 of the main housing 2 and may be unplugged therefrom when the cartomizer 3 needs to be re-filled with liquid or replaced with a new cartomizer upon depletion of the liquid in the original cartomizer. This plugging and unplugging occurs along a longitudinal axis L 1 of the vaping device 1 .
- FIGS. 2 to 8 show an example of a first type of cartomizer 3 A suitable for use in the vaping device of FIG. 1 . From the exploded view of FIG. 2 , it may be seen that the cartomizer 3 A is assembled from a stack of components: an outer housing 4 , an upper clamping unit 5 , a planar vaporizer 6 , a lower support unit 7 and an end cap 8 .
- planar vaporizer 6 and the end cap 8 are omitted to improve the clarity of depiction of the components that are shown.
- the cartomizer 3 A has a top end 31 and a bottom end 32 which are spaced apart along the longitudinal axis L 1 , which is the longitudinal axis of the cartomizer as well as being the longitudinal axis of the vaping device 1 .
- the top end 31 of the cartomizer defines a mouthpiece end of the vaping device, and the mouthpiece 33 includes a mouthpiece orifice 41 which is provided at the top end 42 of the outer housing 4 in the center of a top face 43 .
- the outer housing 4 includes a circumferential side wall 44 which leads down from the top end 42 to a bottom end 45 of the outer housing 4 and which defines an internal reservoir 46 .
- the bottom end 45 of the outer housing Prior to assembly of the cartomizer 3 A, the bottom end 45 of the outer housing is open, but upon assembly the bottom end 45 is closed by a plug formed by the upper clamping unit 5 and the lower support unit 7 which are stacked together with the planar vaporizer 6 sandwiched therebetween.
- the upper clamping unit 5 is an intermediate component of the stack of components and is shown in detail in FIGS. 7 A to 7 C .
- the upper clamping unit 5 includes a foot 51 in the form of a block and an upwardly extending air tube 52 .
- the foot 51 On each side of the air tube 52 , the foot 51 includes a well 53 which descends from a flat top surface 54 to a flat bottom surface 55 of the foot 51 .
- each well 53 is open (see FIG. 7 C ) and, specifically, opens into an elongate recess 56 formed in the bottom surface 55 , with the depth of the recess 56 matching the thickness of the planar vaporizer 6 .
- the foot 51 includes two circumferential capillary breaks 57 for reducing or preventing leakage of liquid from the reservoir 46 .
- the air tube 52 extends up from the bottom of the wells 53 and an internal air passage 58 of the air tube 52 has a bottom end 581 at a central portion of the recess 56 and a top end 582 at the top of the air tube 52 . From FIG. 5 , it may be seen that the top of the air tube 52 fits onto the bottom end 471 of an air tube 47 which extends downwards from the mouthpiece orifice 41 in the top face 43 of the outer housing 4 . Thus, the air passage 58 is connected to an air passage 48 of the air tube 47 .
- the lower support unit 7 is shown in detail in FIGS. 8 A to 8 C and is in the form of a block having a flat top surface 71 and a flat bottom surface 72 .
- a central air passage 73 extends upwardly from the bottom surface 72 to the top surface 71 .
- the block of the lower support unit 7 includes a through hole 74 which is shown empty in FIGS. 8 A to 8 C , but which in practice (see, for example, FIGS. 5 and 6 ) includes a co-molded contact pad 75 in the form of a pin.
- Each contact pad 75 is a press fit in its respective through hole 74 .
- Each contact pad 75 provides an electrical connection path from the bottom surface 72 to a respective end portion of the planar vaporizer 6 when the planar vaporizer 6 is sandwiched between the top surface 71 of the lower support unit 7 and the recess 56 of the bottom surface 55 of the upper clamping unit 5 (see, for example, FIG. 5 ).
- the block of the lower support unit 7 includes two circumferential capillary breaks 76 for reducing or preventing leakage of liquid from the reservoir 46 .
- the foot 51 of the upper clamping unit 5 and the lower support unit 7 combine together to form a plug which seals the bottom end of the reservoir 46 (see FIG. 5 ) and in total four circumferential capillary breaks 57 , 76 are present for reducing or preventing leakage of liquid from the reservoir 46 .
- an overall air passage 34 exists from the bottom end 32 to the top end 31 of the cartomizer 3 A and it is formed by the air passage 73 leading to the air passage 58 which, in turn, leads to the air passage 48 and the mouthpiece orifice 41 .
- the air passage 73 meets the air passage 58 , the air flow bifurcates as it passes around the side edges of the planar vaporizer 6 .
- the version of the vaporizer 6 used in the cartomizer 3 A is planar and is in the form of a plate and is elongate in the direction of a longitudinal axis.
- the planar vaporizer 6 has the shape of a strip and has parallel sides.
- the planar vaporizer 6 has parallel upper and lower major (planar) surfaces and parallel side surfaces and parallel end surfaces.
- the length of the planar vaporizer 6 is 10 mm. Its width is 1 mm, and its thickness is 0.12 mm.
- the planar vaporizer has a resistance of 0.5 to 0.6 Ohms.
- the small size of the planar vaporizer 6 enables it to take less time to reach a desired operating temperature compared with a large-size vaporizer, and less energy is used in doing so.
- the small size of the planar vaporizer 6 enables the overall size of the cartomizer to be reduced and the overall mass of the components of the cartomizer to be reduced.
- the vaporizer 6 has a central portion 67 and first and second end portions 68 , 69 (shown in FIG. 2 ).
- the central portion 67 is positioned in the air passage 34 as is shown in, for example, FIGS. 5 and 6 .
- the central portion 67 extends across the top end of the air passage 73 of the lower support unit 7 , and across the bottom end 581 of the air passage 58 of the upper clamping unit 5 .
- the end portions 68 , 69 are clamped between the upper clamping unit 5 and the lower support unit 4 .
- the end portions 68 , 69 are connected in to a heater current circuit from below, by virtue of being seated on the contact pads 75 .
- the end portions 68 , 69 are also configured to receive liquid from the reservoir 46 from above, by virtue of being positioned beneath the wells 53 of the upper clamping unit 5 . Relative to the longitudinal axis L 1 , the wells 53 are inboard of the contact pads 75 , as may be seen in FIGS. 5 and 6 .
- the vaporizer 6 is made of a porous and electrically conductive material.
- the material may be a 316 L stainless steel non-woven sintered mesh.
- the density of fibers may be between 100 g/m 2 and 500 g/m 2 .
- the mesh thickness may be 0.10 mm to 1 mm.
- the sintering temperature range may be 850° C. to 1400° C. under a weighted mass of between 0.5 kg and 25 kg.
- a vacuum and an inert gas such as nitrogen may be used, with a cycle time ranging from 2 hours to 16 hours.
- the resultant mesh is then compressed to the required thickness using a powered press.
- the mesh is then cut through to the required shape using mechanical cutting or laser cutting.
- Other metals may be used, such as Hastalloy or nickel chrome.
- the longitudinal axis L 2 of the planar vaporizer 6 is transverse to the longitudinal axis L 1 of the cartomizer 3 A.
- the plane of the plate-like planar vaporizer 6 is perpendicular to the longitudinal axis L 1 .
- the end portions 68 , 69 of the vaporizer sit flat on top of the lower support unit 7 on the top surface 71 thereof.
- the thickness dimension of the planar vaporizer is typically small (e.g.
- the thickness of 0.12 mm already mentioned) and the orientation of the planar vaporizer is such that the planar vaporizer barely contributes to the overall height of the components making up the cartomizer compared with a cartomizer in which the planar vaporizer is upright (with the planar vaporizer extending in the longitudinal direction of the cartomizer). Also, the liquid storage volume of the reservoir 46 does not have to be reduced as a result of the planar vaporizer projecting up into the reservoir.
- planar vaporizer 6 is seated in the recess 56 , it may be considered that the presence of the planar vaporizer does not itself contribute any height at all to the overall height of the stack of internal components of the cartomizer (the lower support unit, the vaporizer and the upper clamping unit).
- the top end 21 of the main housing 2 includes an air inlet hole 22 on each side of the main housing 2 (with one of the two air inlet holes 22 being visible in FIG. 1 ). Air can enter the air inlet holes 22 and flow transversely inwards to the longitudinal axis L 1 so as to enter the bottom end of the air passage 73 of the lower support unit 7 and to start to flow in the direction of the longitudinal axis L 1 towards the mouthpiece 33 .
- the main housing 2 has two power supply pins (not shown) which make contact with the bottom ends of the contact pads 75 .
- the top ends of the contact pads 75 are in electrical contact with the end portions 68 , 69 of the planar vaporizer 6 .
- the end portions 68 , 69 of the planar vaporizer 6 are exposed at the bottom of the wells 53 to the liquid in the reservoir 46 , and the wicking characteristic of the porous planar vaporizer 6 transports a supply of the liquid to the central portion 67 of the planar vaporizer 6 which is exposed to the air flow along the air passage 34 (the air passage 73 , the air passage 58 and the air passage 48 ).
- the current supplied by the contact pads 75 from the power source (e.g. the battery) of the main housing 2 causes the central portion 67 of the planar vaporizer 6 to heat up.
- the wicked liquid in the planar vaporizer 6 at the central portion 67 thereof becomes an aerosol and becomes entrained in the air flow along the air passage 34 .
- the aerosol travels up the air passage 34 and out of the mouthpiece orifice 41 and is breathed in by the user of the vaping device 1 .
- the cartomizer 3 A includes an end cap 8 at its bottom end.
- the end cap 8 is made of metal and serves to assist with retaining the cartomizer 3 A in the main housing 2 when the cartomizer 3 A is plugged in to the top end of the main housing 2 , because the main housing 2 is provided with magnets which are attracted to the metal of the end cap 8 .
- the end cap 8 has a bottom wall 81 with a central opening 82 (see FIG. 5 ) which conforms to the shape of the raised central portion of the bottom surface 72 of the lower support unit 7 .
- the end cap 8 also has a circumferential side wall 83 which has two opposed cut-outs 84 which latch onto corresponding projections 49 on the outer surface of the bottom end of the side wall 44 of the outer housing 4 , so that the end cap 8 has a snap-fit type connection onto the bottom end of the outer housing 4 .
- the end cap 8 When the end cap 8 has been fitted in position, it holds in position the lower support unit 7 , the upper clamping unit 5 and the planar vaporizer 6 which is sandwiched between the lower support unit 7 and the upper clamping unit 5 .
- the cartomizer 3 A could be provided with indentations which engage with projections at the top end 21 of the main housing 2 , so that a releasable connection is provided between the cartomizer and the main housing.
- the cartomizer 3 A is provided with what may more generally be referred to as a device interface which is a part of the cartomizer 3 A that interfaces with the main housing 2 (or aerosol-generating device).
- the device interface may include the metal cap 8 including the bottom wall 81 and circumferential side wall 83 and/or the lower support unit 7 including the bottom surface 72 .
- the device interface of the cartomizer 3 A may encompass any part or parts of the cartomizer 3 A that contact, abut, engage or otherwise couple to the main housing 2 .
- FIGS. 9 to 12 show an embodiment of a cartomizer 3 B suitable for use in the vaping device of FIG. 1 .
- the cartomizer 3 B is generally the same as the cartomizer 3 A; however, as will be discussed below, the cartomizer 3 B is configured in such a way as to provide an electrical contact between the vaporizer 6 and the battery in the main housing 2 of the vaping device 1 which reduces the number of components, particularly in the cartomizer 3 B itself.
- vaping device 1 is configured such that multiple cartomizers 3 , 3 A, 3 B are to be used with the main housing 2 (e.g., when the cartomizer is depleted)
- reducing the number of components in the cartomizer 3 B can be beneficial for reducing waste when the cartomizer is disposed of and/or of reducing costs when the cartomizer is produced.
- the cartomizer 3 B is substantially the same as the example cartomizer 3 A described above. Like components are represented with like reference signs, and a detailed description thereof will be omitted for conciseness; Only the differences relative thereto will be discussed herein.
- the cartomizer 3 B omits the two contact pads 75 of the cartomizer 3 A.
- the through holes 74 of the of the lower support unit 7 are designed to receive power-supply pins 23 of the main housing 2 which are longer than the power-supply pins of the main housing that would be used with the cartomizer 3 A.
- the additional length corresponds approximately to the height of the lower support unit 7 .
- the device interface comprises one or more through holes (e.g., the two through holes 74 through the lower support unit 7 ) which are configured to permit power-supply pins 23 of the main housing 2 to be received in the one or more through holes (as shown in FIG. 3 B , this may encompass one power-supply pin 23 received in a first through hole and another power-supply pin 23 received in a second through hole). That is to say, the through holes 74 form part of the device interface that allow the power-supply pins 23 of the main housing 2 to interface with the cartridge 3 B. As shown in FIGS.
- each power-supply pin 23 is shown as touching the undersurface (the lower surface 62 ) of a respective one of the end portions 68 , 69 of the planar vaporizer 6 so as to form an electrical connection therewith. Accordingly, the power supply pins 23 interface with/contact the planar vaporizer 6 of the cartomizer 3 B to form an electric circuit therewith. It should also be appreciated that the planar vaporizer 6 is arranged in the cartridge 3 B such that the vaporizer is adjacent the through holes 74 (specifically, the end portions 68 , 69 each spatially overlap a respective through hole 74 ).
- annular gap between the top end 231 and the side wall of the through hole 74 .
- This annular gap may be omitted if, for example, the through hole 74 is given a taper and the top end 231 of the power-supply pin 23 is given a corresponding taper so that, when the power-supply pin 23 is fully inserted, the top end 231 seals against the side wall of the through hole 74 .
- each through hole 74 This can assist with preventing leakage of liquid down the two through holes 74 .
- it involves the hole having a slightly wider width at the bottom surface 72 of the lower support unit 7 and a slightly narrower width at the top surface 71 of the lower support unit 7 .
- additional or alternative mechanisms may be employed to help reduce or prevent leakage, such as a flexible member made, e.g., from silicone (such as an O-ring) against which the power-supply pin 23 (or top end 231 thereof) forms a corresponding seal.
- each through hole 74 is sized and/or shaped to receive a corresponding power-supply pin 23 (or the top end 231 thereof) from the main housing 2 .
- the planar vaporizer 6 is arranged such that the planar vaporizer 6 is adjacent the one or more through holes 74 of the lower support unit 7 so that, when the cartomizer 3 B is engaged with the main housing 2 (or more generally, the aerosol-generating device), the respective power-supply pins 23 of the main housing 2 electrically couple to the planar vaporizer 6 .
- FIG. 11 is a diagrammatic depiction of some dimensions of components of a variant of the cartomizer 3 B.
- the height of the upper clamping unit 5 and the height of the lower support unit 7 have been reduced, compared to the cartomizer 3 B.
- the end cap 8 of cartomizer 3 B has been omitted.
- a friction fit and/or an adhesive and/or a weld may be used to secure the upper clamping unit 5 and the lower support unit 7 in the bottom end 45 of the outer housing 4 .
- FIG. 12 is a diagrammatic depiction of the air flow paths in said variant of the cartomizer 3 B.
- the arrows A 1 represent air flow that has entered the vaping device 1 through the air inlet holes 22 of the main housing 2 and is travelling transversely towards the central (longitudinal) axis of the vaping device.
- the arrows A 2 represent air flow that is turning from the horizontal to the vertical ready to enter the air passage 73 of the lower support unit 7 .
- the arrow A 3 represents air flow that is approaching the lower surface 62 of the planar vaporizer 6 and is getting ready to bifurcate ready to pass around the sides of the planar vaporizer.
- the arrow A 4 represents air flow that has entrained the aerosol produced by the heating of the planar vaporizer 6 by the electric current passing therealong.
- the orientation of the vaporizer means that the contribution of the vaporizer to the height of the components making up the cartomizer is reduced compared with a cartomizer in which the vaporizer is upright (with the elongate vaporizer extending in the longitudinal direction of the cartomizer).
- the height of the lower support unit and the vaporizer is less than for a lower support unit which has an elongate vaporizer which extends upright from (is perpendicular to) the lower support unit.
- the liquid storage volume of the reservoir does not have to be reduced as a result of the vaporizer projecting up into the reservoir.
- Corrugations of the central portion of the vaporizer increase an effective length of the central portion that is exposed to an air flow of the air passage, and this may provide an increased rate of evaporation from the central portion.
- this may reduce the air flow resistance imparted by the presence of the central portion in the air passage, whilst still maintaining the surface area of evaporation provided by the central portion.
- This arrangement of the upper clamping unit so it sits on top of the lower support unit may securely hold the (planar) vaporizer in position, and the orientation of the vaporizer minimises the contribution of the vaporizer to the overall height of the stack of components (lower support unit, vaporizer and upper clamping unit).
- the provision of the recess may assist with assembling the components of the cartomizer, because the recesss provides a destination location in which the vaporizer is to be positioned. If the depth of the recess is the same as or greater than the thickness of the end portions of the vaporizer, the vaporizer does not itself contribute any height to the overall height of the stack of components (lower support unit, vaporizer and upper clamping unit).
- the plug formed by the lower support unit and the upper clamping unit which closes the bottom end of the outer housing also serves a second purpose of closing the reservoir which is defined inside the outer housing.
- the first and second through holes of the lower support unit enable power supply pins, of the main housing, when the cartomizer is plugged into the main housing, to directly contact the end portions of the vaporizer.
- the tapering of the holes may enable the holes to seal against correspondingly tapered power supply pins, which may help with reducing leakage of liquid from the reservoir of the cartomizer.
- the co-molded contact pads may be used as an alternative to the through holes.
- the co-molded contact pads may provide a more-secure means of reducing leakage of liquid from the reservoir of the cartomizer, compared with sealing the tapered through holes with tapered power supply pins which are repeatedly inserted into and removed from the tapered through holes as the cartomizer is plugged into and unplugged from the main housing.
- a small size of the vaporizer enables it to take less time to reach a desired operating temperature compared with a large-size vaporizer, and less energy is used in doing so.
- a small size of the vaporizer enables the overall size of the cartomizer to be reduced and the overall mass of the components of the cartomizer to be reduced.
- the rate of aerosol generation may be increased, and the aerosol particle size may be reduced, for example to an average of about 0.5 microns.
- the component count of the cartomizer may be reduced. For example, there is no need to provide a bottom end cap (e.g. a metal end cap) which clips onto the other components at the bottom end of the cartomizer. If the number of components of the cartomizer is reduced, the cost of the cartomizer is reduced.
- a bottom end cap e.g. a metal end cap
- FIG. 13 is an exploded perspective view of a further cartomizer 3 C in accordance with aspects of the present disclosure.
- the cartomizer 3 C is suitable for use in a vaping device similar to the vaping device of FIG. 1 .
- the differences relative to the cartomizer 3 B will be discussed in more detail below.
- the vaporizer 6 ′ is different to the vaporizer 6 described above.
- the vaporizer 6 described above is made of a porous and electrically conductive material.
- the vaporizer 6 ′ in cartomizer 3 C is a microfluidic vaporizer 6 ′.
- the microfluidic vaporizer 6 ′ is shown, highly schematically, in FIG. 14 .
- the microfluidic vaporizer 6 ′ is formed from a non-conductive substrate material 162 (such as silicon dioxide) and an electrically resistive layer 164 provided on a surface of the substrate material 162 .
- the electrically resistive layer 164 may be formed from any suitable electrically conductive material, for example a metal or metal alloy, such as nickel chromium (NiCr) or titanium.
- the electrically resistive layer 164 is capable of heating when a suitable electrical current is passed through the electrically resistive layer 164 (for example, as supplied by main housing 2 ).
- microfluidic vaporizer 6 ′ comprises three sections or parts; a central part 167 and two end parts 168 , 169 adjacent the central part 167 .
- microfluidic vaporizer 6 ′ also includes a plurality of capillary tubes 166 in the central part 167 .
- the capillary tubes 166 extend through the microfluidic vaporizer 6 ′. More specifically, the capillary tubes 166 extend from a first surface of the substrate material 162 opposite the surface on which the electrically resistive layer 164 is disposed (not shown in FIG. 14 ), through the substrate material 162 and through the electrically resistive layer 164 .
- the capillary tubes 166 extend from a first side of the vaporizer 6 ′, through the vaporizer 6 ′ and to a second side of the vaporizer 6 ′.
- the side of the substrate material 162 opposite the electrically resistive layer 164 is arranged in the cartomizer 3 C so as to receive fluid from the reservoir 46 (explained in more detail below).
- the capillary tubes 166 are configured so as to facilitate the transfer of liquid aerosol-generating material from one side of the substrate material 162 to the electrically resistive layer 164 via capillary action/capillary forces.
- the capillary tubes 166 provide liquid aerosol-generating material to the electrically resistive layer 164 which, when energised, vaporizes the liquid aerosol-generating material.
- the capillary tubes 166 are formed in the vaporizer 6 ′ via a manufacturing process. That is to say, the capillary tubes 166 do not naturally exist in the substrate material 162 , e.g., as a result of the selection of the substrate material, such as a porous material, but rather, the capillary tubes 166 are formed in the substrate material 162 and/or electrically resistive layer 164 through a suitable process.
- a suitable process is laser drilling, however any other suitable technique may be employed in order to generate the capillary tubes 166 .
- the capillary tubes 166 may have a diameter on the order to tens of microns, e.g., 10 ⁇ m to 100 ⁇ m.
- the exact size of the capillary tubes 166 may depend on the properties of the liquid aerosol-generating material (e.g., viscosity) that is intended to pass along the capillary tubes 166 (that is, the properties of the liquid in the reservoir 46 of the cartomizer 3 C).
- the capillary tubes 166 are engineered in the vaporizer 6 ′, the capillary tubes 166 follow a substantially linear (straight) path from one side of the vaporizer 6 ′ to the other side of the vaporizer 6 ′. Put another way, the engineered capillary tubes 166 span the shortest distance between points on different sides of the vaporizer 6 ′.
- Providing engineered capillary tubes 166 enables not only more flexibility in the choice of material to use as the substrate material 162 but also allows for the capillary tubes 166 to be engineered to provide optimal capillary action for the specific liquid aerosol-generating material to be used with the vaporizer 6 ′.
- the microfluidic vaporizer 6 ′ is located in a similar position between a lower support unit 7 ′ and upper clamping unit 5 ′ as discussed in respect of the vaporizer 6 in cartomizer 3 B. More specifically, the microfluidic vaporizer 6 ′ is orientated such that the electrically resistive layer 164 faces towards the lower support unit 7 ′ while the opposite side of the substrate material 162 (i.e., the lower surface not shown in FIG. 14 ) is orientated towards the upper clamping unit 5 ′.
- the upper clamping unit 5 ′ and lower support unit 7 ′ are substantially similar to their counterparts described in cartomizer 3 B. However, owing in part to the differences in the vaporizers 6 , 6 ′, the airflow is different in cartomizer 3 C as compared to cartomizer 3 B. In particular, with the vaporizer 6 of cartomizer 3 B, liquid is able to wick in the direction along the longitudinal axis of the vaporizer 6 towards the central portion 67 of the vaporizer 6 where it is subsequently vaporized and is entrained in airflow flowing through the central air passage 73 and along the air tube 52 .
- the vaporizer 6 ′ is less adapt at transporting liquid along the longitudinal axis of the vaporizer 6 ′; predominantly because the capillary tubes 166 extend in a relatively vertical orientation.
- the upper clamping unit 5 ′ is provided with a central well/opening (not shown in FIG. 13 ) that substantially aligns with a central portion of the vaporizer 6 ′. Liquid held in the reservoir 46 is able to flow to the central portion of the vaporizer 6 ′ (and more specifically the capillary tubes 166 ) via the central opening of the upper clamping unit 5 ′.
- an airflow channel 52 ′ is provided by an indentation in the foot 51 of the upper clamping unit 5 ′.
- the lower support unit 7 ′ is provided with a substantially larger opening forming the central air passage 73 ′.
- the central air passage 73 ′ is show as being square and has a width dimension substantially larger than the width dimension of the vaporizer 6 ′. That is to say, the vaporizer 6 ′ (or a central portion thereof) extends across a part of the opening of air passage 73 ′ but the air passage 73 ′ extends either side of the vaporizer 6 ′.
- the indentation overlaps one side of the opening of air passage 73 ′ such that the indentation allows for air to pass through the air passage 73 ′ and along the airflow channel 52 ′.
- air that enters the lower support unit 7 ′ and passes along air passage 73 ′ is able to pass across the surface of the vaporizer 6 ′, thereby entraining vaporized liquid in the airflow, and subsequently pass around a side of the vaporizer 6 ′ and up through the airflow channel 52 ′.
- outer housing 4 ′ is correspondingly adapted to accommodate the different air flow.
- outer housing 4 of cartomizer 3 B is configured to couple to the central air channel 52 of the upper clamping unit 5 .
- the outer housing 4 ′ is provided with a side channel (not shown) providing a tubular passageway extending from the bottom end 45 of the housing 4 ′ to the mouthpiece orifice 41 .
- the end of the side channel at the bottom end 45 of housing 4 ′ is configured to engage with the indentation of the foot 51 of the upper clamping unit 5 ′.
- a wall of the side channel of housing 4 ′ may be pressed into engagement with the upper clamping unit 5 ′ at the location of the indentation to provide a fluid tight coupling between the two.
- the side channel may comprise a wall which extends along, or part way along, the indentation when the housing 4 ′ and upper clamping unit 5 ′ are coupled together, such that the indentation/foot 51 surrounds the wall of the side channel.
- the coupling between the housing 4 ′ and upper clamping unit 5 ′ is configured to be fluid tight, such that liquid from the reservoir 46 may not leak into the air channel 52 ′/side channel of housing 4 ′, while air/aerosol from the air channel 52 ′/side channel of housing 4 ′ is unable to pass into the reservoir 46 . Any suitable coupling may be employed.
- upper clamping unit 5 ′ shown in FIG. 13 comprises one indentation.
- the opposite side of the opening of air passage 73 ′ is blocked off by the upper clamping unit 5 ′, such that air is only permitted to flow past one side of the vaporizer 6 ′.
- a second indentation may be provided on the opposite side of the upper clamping unit 5 ′, forming a corresponding air channel, Subsequently, air may be permitted to flow past both sides of the vaporizer 6 ′ in such implementations.
- the vaporizer 6 ′ is arranged such that it is adjacent the through holes 74 in lower support unit 7 ′. More specifically, the vaporizer 6 ′ extends over/overlaps the through holes 74 .
- the vaporizer 6 ′ in this example has a longitudinal extent (i.e., an extent in the longitudinal direction) of approximately 9 to 10 mm.
- the vaporizer 6 ′ may have a longitudinal extent that is equal to or greater than 4 mm, equal to or greater than 3 mm or equal to or greater than 2 mm. Both aerosol generation performance of the vaporizer 6 ′ and the separation distance of the power-supply pins 23 may dictate the overall size/footprint of the vaporizer 6 ′.
- the two end portions 168 and 169 of the vaporizer 6 ′ each overlap a respective through hole 74 .
- the end portions 168 and 169 do not comprise any capillary tubes 166 but are provided with the electrically resistive layer 164 .
- power-supply pins 23 (and top ends 231 ) of the main housing 2 are capable of extending through the through holes 74 and contacting respective ends of the vaporizer 6 ′ when the cartomizer 3 C is coupled to the main housing 2 .
- an electrical circuit is capable of being formed with the rechargeable battery of the main housing 2 .
- Electrical power is able to be supplied to the vaporizer 6 ′ from the rechargeable battery via the power-supply pins 23 to cause heating of the electrically resistive layer 164 and subsequently any liquid brought into contact/proximity of the electrically resistive layer 164 .
- the reservoir 46 is effectively a sealed volume defined by the inner surface of the outer housing 4 ′, the upper clamping unit 5 ′ and lower support unit 7 ′, and at least the central portion 167 of the vaporizer 6 ′ which is positioned to abut against the central well (not shown) of the upper clamping unit 5 ′.
- the capillary tubes 166 are substantially the only the designed fluid passage into/out of the reservoir 46 , when the capillary tubes 166 are filled with liquid, then air may be unable to pass into the reservoir 46 .
- the pressure within the reservoir 46 may change if air is unable to enter the reservoir 46 to help balance out this pressure change.
- the change in pressure may impact the ability of the vaporizer/capillary tubes 166 to transport liquid to the electrically resistive layer 164 .
- the cartomizer 3 C is designed to have an air inlet in fluid communication with the reservoir 46 that allows air to enter the reservoir 46 to counteract the pressure change.
- the air inlet may be liquid impermeable to prevent or reduce liquid exiting the reservoir 46 through the air inlet.
- the air inlet may be an opening (e.g., towards the top end 31 of the cartomizer 3 C), having a small diameter such that any liquid is unable to escape the reservoir through the opening due to surface tension, or the opening may be provided with a liquid impermeable, air permeable layer to allow air to enter the reservoir 46 but prevent liquid escaping.
- the upper clamping unit 5 ′ and/or lower support unit 7 ′ may be designed with a weakness in the seal formed by the outer circumferential surface of the foot 51 or the outer circumferential surface of the lower support unit 7 ′.
- Such weakness may be provided via a thinning of the wall of the upper clamping unit 5 ′/lower support unit 7 ′ which may temporarily deform or marginally separate from the outer housing 4 ′ when exposed to a change in pressure, to thereby produce a temporary gap that allows air to enter into the reservoir 46 .
- a cartomizer for an aerosol-generating device comprising: a vaporizer for generating aerosol from aerosol-generating material held in a reservoir of the cartomizer, wherein the vaporizer comprises a substrate and an electrically resistive layer disposed on a first surface of the substrate, wherein one or more capillary tubes extend from another surface of the substrate and through the electrically resistive layer disposed on the first surface of the substrate, and the cartomizer comprises an air inlet configured to allow air to enter the reservoir of the cartomizer.
- the air inlet may optionally be configured to reduce or prevent liquid escaping the reservoir through the air inlet.
- the air inlet may optionally be provided via a weakened region in one or more liquid sealing elements of the cartomizer.
- cartomizer 3 C employing a microfluidic vaporizer 6 ′.
- the example cartomizer 3 C is one example of a cartomizer 3 C employing a microfluidic vaporizer 6 ′ in which power-supply pins 23 are provided to pass through though holes 74 in a device interface of the cartomizer 3 C, with the power supply-pins 23 subsequently forming an electric circuit with the vaporizer 6 ′.
- Other configurations of cartomizers including the microfluidic vaporizer 6 ′ may be realised (for example, having different shapes, different components, different configurations, different airflow paths, etc.).
- a cartomizer 3 C that comprises a microfluidic vaporizer 6 ′ for generating aerosol from aerosol-generating material held in the cartomizer.
- the cartomizer 3 C includes an aerosol-generating device interface configured to interface with an aerosol-generating device/main housing 2 (whereby the device interface may include the metal cap 8 including the bottom wall 81 and circumferential side wall 83 and/or the lower support unit 7 ′ including the bottom surface 72 ). More generally, the device interface of the cartomizer 3 C may encompass any part or parts of the cartomizer 3 C that contact, abut, engage or otherwise couple to the main housing 2 .
- the aerosol-generating device interface further comprises one or more through holes 74 , with each through hole 74 sized so as to receive a power-supply pin 23 of the aerosol generating device/main housing 2 .
- the vaporizer 6 ′ is arranged in the cartomizer 3 C such that the vaporizer 6 ′ is adjacent the one or more through holes 74 so that, when the cartomizer 3 C is engaged with the aerosol-generating device/main housing 2 , the respective power-supply pins 23 of the aerosol-generating device/electrically couple to the vaporizer 6 ′.
- the end portions 168 , 169 of the vaporizer 6 ′ do not comprise capillary tubes 166 .
- the end portions 168 , 169 may comprise capillary tubes 166 .
- the capillary tubes 166 in the end portions 168 , 169 may be redundant in that the ends of capillary tubes 166 of the end portions 168 , 169 do not contact the central opening of the upper clamping unit 5 ′ and thus are not in fluid communication with the reservoir 46 .
- the microfluidic vaporizer 6 ′ may, in some implementations, be formed to have a relatively small footprint. Because the capillary tubes 166 are engineered to provide suitable capillary action for the liquid aerosol-generating material stored in the cartomizer 3 C, the microfluidic vaporizer 6 ′ may be effective at supplying liquid to the electrically resistive layer 164 and thus a smaller footprint for the vaporizer 6 ′ having suitable performance characteristics for the given application at hand may be achievable. For example, in some instances, the vaporizer 6 ′ may have a footprint of 4 ⁇ 4 mm (16 mm 2 ) or less, 3 mm ⁇ 3 mm (9 mm 2 ) or less, or 2 ⁇ 2 mm (4 mm 2 ) or less.
- the significant quantity is the longitudinal extent.
- the vaporizer 6 ′ may have a longitudinal extent of less than or equal to 4 mm, 3 mm, or 2 mm. While such smaller footprint/longitudinal extent vaporizers 6 ′ may be achievable, the process of electrically coupling the vaporizer 6 ′ to the power-supply pins 23 may require further adaptation of the cartomizer 3 C.
- the power-supply pins 23 are spaced apart a distance of 8.5 mm, and each power-supply pin 23 may have a diameter on the order of one millimetre or so. In some implementations, the spacing of the power-supply pins 23 on the main housing 2 , along with the corresponding through holes 74 , may be decreased (to a distance comparable to the length of the vaporizer 6 ′).
- the pins 23 may be spaced around 2-3 mm apart which may restrict the size of the air channel 52 ′).
- the vaporizer 6 ′ may be coupled to electrically conductive contact elements at end portions thereof, so as to facilitate the electrical coupling of the microfluidic vaporizer 6 ′.
- FIG. 15 depicts, highly schematically, such an example of the microfluidic vaporizer 6 ′′ coupled to electrically conductive contact elements.
- the substrate material 162 has a different (i.e., smaller) dimension in the longitudinal direction than the substrate material of FIG. 14 . More specifically, the substrate material 162 is approximately the same size as the central portion 167 comprising the plurality of capillary tubes 166 .
- the electrically resistive layer 164 is provided in the central portion 167 of the vaporizer 6 ′′.
- the vaporizer 6 ′′ is shown as being coupled to electrically conductive contact elements 168 ′′ and 169 ′′.
- the electrically conductive contact elements may be formed from any suitable conductive material (e.g., the same or different material that electrically resistive layer 164 is formed from).
- the electrically conductive contact elements 168 ′′, 169 ′′ may be in the form of contact pads.
- the electrically conductive contact elements 168 ′′, 169 ′′ are electrically connected to the electrically resistive layer 164 , e.g., via suitable wiring or soldering, etc. It should be appreciated that the electrically conductive contact elements 168 ′′, 169 ′′ are provided at a position relative to the vaporizer 6 ′′ so as to electrically couple the power-supply pins 23 to the electrically resistive layer 164 of the vaporizer 6 ′′.
- electrically conductive contact elements 168 ′′, 169 ′′ can be provided to the vaporizer 6 ′′ to take account of the spacing stipulated by the placement of the power-supply pins 23 of the main housing 2 (e.g., when the length of the substrate material 162 is different (i.e., smaller) than the distance between the power-supply pins 23 ).
- the vaporizer 6 ′′ is provided adjacent the through holes 74 ; however, it is the electrically conductive contact elements that overlap the through holes 74 .
- FIG. 15 shows a vaporizer 6 ′′ in which electrically conductive contact elements 168 ′′, 169 ′′ are provided at opposing longitudinal ends of the vaporizer 6 ′′
- the electrically conductive contact elements may be formed by extensions of the electrically resistive layer 164 . That is to say, rather than providing separate electrically conductive contact elements 168 ′′, 169 ′′ that are subsequently electrically coupled to the vaporizer 6 ′′, the electrically resistive layer 164 may have a greater dimension in the longitudinal direction than the substrate material 162 . Put another way, the electrically resistive layer 164 may overhang the ends of the substrate material 162 . In these implementations, the extended ends of the electrically resistive layer 164 overlap the through holes 74 and provide contact with the power-supply pins 23 .
- the vaporizer 6 ′, 6 ′′ when the footprint of the substrate material 162 of the vaporizer 6 ′, 6 ′′ is chosen so as to have a length that is less than twice the diameter of the power supply pins 23 , then the vaporizer 6 ′, 6 ′′ is provided either with an extension of the resistive layer 164 , or with separate electrically conductive contact elements as shown in FIG. 15 . Moreover, in implementations where the footprint of the substrate material 162 of the vaporizer 6 ′, 6 ′′ is chosen so as to have a length that is greater than twice the diameter of the power supply pins 23 , the vaporizer 6 ′, 6 ′′ may still be provided either with an extension of the resistive layer 164 or with separate electrically conductive contact elements as shown in FIG. 15 , depending on the configuration of the power-supply pins 23 of the main housing 2 .
- the power-supply pins 23 directly contact the vaporizer 6 ′ (specifically the electrically resistive layer 164 ).
- the orientation of the vaporizer 6 ′ such that the electrically resistive layer 164 faces towards the bottom of the cartomizer 3 C (device interface) and subsequently the power supply pins 23 of the main housing 2 when the main housing couples to the cartomizer 3 C.
- the orientation of the vaporizer 6 ′ is not limited to this and, in other implementations, the vaporizer 6 ′ may be provided in alternative implementations, for example, where the electrically resistive layer faces away from the bottom of the cartomizer 3 C (device interface).
- the vaporizer may be provided with electrically conductive elements that facilitate the electrical coupling of the power-supply pins 23 to the electrically resistive layer 164 .
- FIG. 16 depicts, highly schematically, such an example of the microfluidic vaporizer 6 ′′′.
- the microfluidic vaporizer 6 ′′′ is similar to microfluidic vaporizer 6 ′; however, the microfluidic vaporizer 6 ′′′ includes vias 168 a and 169 a at respective end portions 168 , 169 of the vaporizer 6 ′′′, shown in phantom in FIG. 16 .
- the vias 168 a , 169 a extend from one side of the substrate material 162 to the other side of the substrate material 162 and may or may not also extend through the electrically resistive layer 164 .
- the vias 168 a , 169 a are configured to provide an electrically conductive path between the underside (i.e., the side not visible in FIG. 16 ) of the substrate material 162 and the electrically resistive layer 164 .
- the vaporizer 6 ′′′ is orientated in the cartomizer 3 C such that the electrically resistive layer 164 faces away from the device interface. Accordingly, when the power-supply pins 23 pass through the through holes 74 of the lower support unit 7 ′, the power-supply pins 23 make electrical contact with the surface of the vias 168 a , 169 a opposite the electrically resistive layer 164 .
- An electrical circuit may nonetheless be formed but, in this implementation, the current supplied by the power-supply pins 23 additionally passes through the vias 168 a , 169 a.
- the vias 168 a , 169 a shown in FIG. 16 are one example of an electrically conductive element designed to electrically connect the electrically resistive layer 164 when the electrically resistive layer 164 is unable to directly contact the power-supply pins 23 .
- the end portions 168 , 169 of the vaporizer may be coated in an electrically resistive material and/or electrical tracks may be provided on the outer surfaces of the substrate material 162 such that an electrical path is formed around the outside surfaces of the substrate material 162 and coupled to the electrically resistive layer 164 .
- the substrate material 162 itself may include, locally at the end portions 168 , 169 or entirely throughout the substrate material 162 , conductive elements (e.g., fibers/wires) that permit current to be applied to the underside of the vaporizer and pass to the electrically resistive layer 164 .
- conductive elements e.g., fibers/wires
- the cartomizer may be adapted in order to supply liquid to the underside of the vaporizer 6 ′′′.
- the reservoir 46 may be moved so as to sit beneath the vaporizer 6 ′′′.
- this has some drawbacks including separating the vaporizer 6 ′′′ from the device interface by a greater margin.
- a wicking element (or more generally a liquid transport element) may be provided to transport liquid from the reservoir 46 (which may be located above the vaporizer 6 ′′′, e.g., as in cartomizers 3 B and 3 C), to the underside of the vaporizer 6 ′′′.
- a cartomizer for an aerosol-generating device including an aerosol-generating device interface configured to interface with an aerosol-generating device; and a vaporizer for generating aerosol from aerosol-generating material held in a reservoir of the cartomizer.
- the aerosol-generating device interface further comprises one or more through holes, each through hole sized so as to receive a power-supply pin of the aerosol generating device, and the vaporizer is arranged in the cartridge such that the vaporizer is adjacent the one or more through holes so that, when the cartomizer is engaged with the aerosol-generating device, the respective power-supply pins of the aerosol-generating device electrically couple to the vaporizer.
- an aerosol-generating device comprising the abovementioned cartomizer.
Landscapes
- Catching Or Destruction (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
A cartomizer for an aerosol-generating device, the cartomizer including an aerosol-generating device interface configured to interface with an aerosol-generating device; and a vaporizer for generating aerosol from aerosol-generating material held in a reservoir of the cartomizer. The aerosol-generating device interface further includes one or more through holes, each through hole sized so as to receive a power-supply pin of the aerosol generating device, and the vaporizer is arranged in the cartridge such that the vaporizer is adjacent the one or more through holes so that, when the cartomizer is engaged with the aerosol-generating device, the respective power-supply pins of the aerosol-generating device electrically couple to the vaporizer. Also described is an aerosol-generating device including the abovementioned cartomizer.
Description
- The present application is a National Phase entry of PCT Application No. PCT/GB2022/053342 filed Dec. 21, 2022, which claims priority to GB Application No. 2118793.5 filed Dec. 22, 2021 and GB Application No. 2206239.2 filed Apr. 28, 2022, each of which is hereby incorporated by reference in their entirety.
- The present invention relates to a cartomizer for an aerosol-generating device such as a vaping device.
- A vaping device may comprise a main housing which contains a power source and control electronics and a replaceable or refillable cartomizer which plugs in to the top end of the main housing.
- A cartomizer is used to heat a liquid to produce an aerosol. The liquid may be stored in a reservoir of the cartomizer and a vaporizer with a combined wicking and heating function may be used to wick liquid from the reservoir and to heat the wicked liquid to produce the aerosol, which exits via a mouthpiece at the top end of the cartomizer. The vaporizer may be powered by the power source (e.g. a battery) of the main housing via electrical connections which are made across the interface between the top end of the main housing and the bottom end of the cartomizer. When the liquid in the reservoir has been used up, the cartomizer may be refilled by refilling the reservoir of the cartomizer, and this typically involves unplugging the cartomizer from the main housing, filling the reservoir with new liquid, and then plugging the cartomizer back in to the top end of the main housing. Alternatively, the old (empty) cartomizer may be unplugged and be disposed of or recycled, and a new (full) cartomizer may be plugged in to the main housing.
- In either scenario, it is likely the main housing will be used with multiple cartomizers (even in the case of a refillable cartomizer, cross contamination of liquids or fouling of the vaporizer may lead to users replacing these refillable cartomizers after a period of use). Accordingly, there can be a high level of material waste when cartomizers are disposed of or unable to be recycled. Various approaches are described which seek to help address some of these issues.
- According to a first aspect of certain embodiments there is provided a cartomizer for an aerosol-generating device, the cartomizer including an aerosol-generating device interface configured to interface with an aerosol-generating device; and a vaporizer for generating aerosol from aerosol-generating material held in a reservoir of the cartomizer. The aerosol-generating device interface further comprises one or more through holes, each through hole sized so as to receive a power-supply pin of the aerosol generating device. The vaporizer is arranged in the cartridge such that the vaporizer is adjacent the one or more through holes so that, when the cartomizer is engaged with the aerosol-generating device, the respective power-supply pins of the aerosol-generating device electrically couple to the vaporizer.
- According to a second aspect of certain embodiments there is provided an aerosol-generating device comprising a cartomizer according to the first aspect.
- It will be appreciated that features and aspects of the invention described above in relation to the first and other aspects of the invention are equally applicable to, and may be combined with, embodiments of the invention according to other aspects of the invention as appropriate, and not just in the specific combinations described above.
- Embodiments of the invention will now be described, by way of example only, with reference to accompanying drawings, in which:
-
FIG. 1 is a perspective view of a vaping device. -
FIG. 2 is an exploded perspective view of an example cartomizer suitable for use in the vaping device ofFIG. 1 . -
FIGS. 3 and 4 are overhead and underneath perspective views of the example cartomizer, with some components omitted for clarity of depiction. -
FIGS. 5 and 6 are vertical sectional and perspective sectional views of the example cartomizer. -
FIGS. 7A, 7B and 7C are respectively side, upper perspective and lower perspective views of an upper clamping unit of the example cartomizer. -
FIGS. 8A, 8B and 8C are respectively an upper perspective view (with the block shown as being transparent, so as to illustrate some hidden features), an upper perspective view (without transparency) and a lower perspective view of a lower support unit of the example cartomizer. -
FIG. 9 is an exploded perspective view of an embodiment of a cartomizer in accordance with the present disclosure suitable for use in the vaping device ofFIG. 1 . -
FIGS. 10A, 10B and 10C are respectively a vertical sectional view, an enlarged sectional view portion and a side view of the embodiment of the cartomizer. -
FIG. 11 is a diagrammatic depiction of some dimensions of components of a variant of the embodiment of the cartomizer. -
FIG. 12 is a diagrammatic depiction of air flow paths in a variant of the embodiment of the cartomizer. -
FIG. 13 is an exploded perspective view of an embodiment of a second embodiment of a cartomizer in accordance with the present disclosure, one that is suitable for use in a vaping device similar to the vaping device ofFIG. 1 . -
FIG. 14 is a perspective view of a microfluidic vaporizer suitable for use in the second embodiment of the cartomizer, in accordance with a first example. -
FIG. 15 is a perspective view of a microfluidic vaporizer suitable for use in the second embodiment of the cartomizer, in accordance with a second example. -
FIG. 16 is a perspective view of a microfluidic vaporizer, in accordance with a third example. - In some embodiments, the aerosol-generating device is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system (END), although it is noted that the presence of nicotine in the aerosol-generating liquid is not a requirement.
- In some embodiments, the aerosol-generating device is a hybrid system to generate aerosol using a combination of aerosol-generating materials. Each of the aerosol-generating materials may or may not contain nicotine. In some embodiments, the hybrid system comprises a liquid aerosol-generating material and a solid aerosol-generating material. The solid aerosol-generating material may comprise, for example, tobacco or a non-tobacco product.
- In some embodiments, the or each aerosol-generating material may comprise one or more active constituents, one or more flavors, one or more aerosol-former materials, and/or one or more other functional materials.
- The active substance as used herein may be a physiologically active material, which is a material intended to achieve or enhance a physiological response. The active substance may for example be selected from nutraceuticals, nootropics, psychoactives. The active substance may be naturally occurring or synthetically obtained. The active substance may comprise for example nicotine, caffeine, taurine, theine, vitamins such as B6 or B12 or C, melatonin, cannabinoids, or constituents, derivatives, or combinations thereof. The active substance may comprise one or more constituents, derivatives or extracts of tobacco, cannabis or another botanical.
- In some embodiments, the active substance comprises nicotine. In some embodiments, the active substance comprises caffeine, melatonin or vitamin B12.
- As noted herein, the active substance may comprise or be derived from one or more botanicals or constituents, derivatives or extracts thereof. As used herein, the term “botanical” includes any material derived from plants including, but not limited to, extracts, leaves, bark, fibers, stems, roots, seeds, flowers, fruits, pollen, husk, shells or the like. Alternatively, the material may comprise an active compound naturally existing in a botanical, obtained synthetically. The material may be in the form of liquid, gas, solid, powder, dust, crushed particles, granules, pellets, shreds, strips, sheets, or the like. Example botanicals are tobacco, eucalyptus, star anise, hemp, cocoa, cannabis, fennel, lemongrass, peppermint, spearmint, rooibos, chamomile, flax, ginger, ginkgo biloba, hazel, hibiscus, laurel, licorice (liquorice), matcha, mate, orange skin, papaya, rose, sage, tea such as green tea or black tea, thyme, clove, cinnamon, coffee, aniseed (anise), basil, bay leaves, cardamom, coriander, cumin, nutmeg, oregano, paprika, rosemary, saffron, lavender, lemon peel, mint, juniper, elderflower, vanilla, wintergreen, beefsteak plant, curcuma, turmeric, sandalwood, cilantro, bergamot, orange blossom, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon balm, lemon basil, chive, carvi, verbena, tarragon, geranium, mulberry, ginseng, theanine, theacrine, maca, ashwagandha, damiana, guarana, chlorophyll, baobab or any combination thereof. The mint may be chosen from the following mint varieties: Mentha arventis, Mentha c.v., Mentha niliaca, Mentha piperita, Mentha piperita citrata c.v., Mentha piperita c.v, Mentha spicata crispa, Mentha cardifolia, Memtha longifolia, Mentha suaveolens variegata, Mentha pulegium, Mentha spicata c.v. and Mentha suaveolens
- In some embodiments, the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is tobacco.
- In some embodiments, the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from eucalyptus, star anise, cocoa and hemp.
- In some embodiments, the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from rooibos and fennel.
- As used herein, the terms “flavor” and “flavorant” refer to materials which, where local regulations permit, may be used to create a desired taste, aroma or other somatosensorial sensation in a product for adult consumers. They may include naturally occurring flavor materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis, licorice (liquorice), hydrangea, eugenol, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, maple, matcha, menthol, Japanese mint, aniseed (anise), cinnamon, turmeric, Indian spices, Asian spices, herb, wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fruit, papaya, rhubarb, grape, durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch, whiskey, gin, tequila, rum, spearmint, peppermint, lavender, aloe vera, cardamom, celery, cascarilla, nutmeg, sandalwood, bergamot, geranium, khat, naswar, betel, shisha, pine, honey essence, rose oil, vanilla, lemon oil, orange oil, orange blossom, cherry blossom, cassia, caraway, cognac, jasmine, ylang-ylang, sage, fennel, wasabi, piment, ginger, coriander, coffee, hemp, a mint oil from any species of the genus Mentha, eucalyptus, star anise, cocoa, lemongrass, rooibos, flax, ginkgo biloba, hazel, hibiscus, laurel, mate, orange skin, rose, tea such as green tea or black tea, thyme, juniper, elderflower, basil, bay leaves, cumin, oregano, paprika, rosemary, saffron, lemon peel, mint, beefsteak plant, curcuma, cilantro, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon balm, lemon basil, chive, carvi, verbena, tarragon, limonene, thymol, camphene), flavor enhancers, bitterness receptor site blockers, sensorial receptor site activators or stimulators, sugars and/or sugar substitutes (e.g., sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, or mannitol), and other additives such as charcoal, chlorophyll, minerals, botanicals, or breath freshening agents. They may be imitation, synthetic or natural ingredients or blends thereof. They may be in any suitable form.
- In some embodiments, the flavor comprises menthol, spearmint and/or peppermint. In some embodiments, the flavor comprises flavor components of cucumber, blueberry, citrus fruits and/or redberry. In some embodiments, the flavor comprises eugenol. In some embodiments, the flavor comprises flavor components extracted from tobacco. In some embodiments, the flavor comprises flavor components extracted from cannabis.
- In some embodiments, the flavor may comprise a sensate, which is intended to achieve a somatosensorial sensation which are usually chemically induced and perceived by the stimulation of the fifth cranial nerve (trigeminal nerve), in addition to or in place of aroma or taste nerves, and these may include agents providing heating, cooling, tingling, numbing effect. A suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether and a suitable cooling agent may be, but not limited to eucolyptol, WS-3.
- The aerosol-former material may comprise one or more constituents capable of forming an aerosol. In some embodiments, the aerosol-former material may comprise one or more of glycerine, glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate.
- The one or more other functional materials may comprise one or more of pH regulators, coloring agents, preservatives, binders, fillers, stabilizers, and/or antioxidants.
- An aerosol-modifying agent is a substance, typically located downstream of the aerosol generation area, that is configured to modify the aerosol generated, for example by changing the taste, flavor, acidity or another characteristic of the aerosol. The aerosol-modifying agent may be provided in an aerosol-modifying agent release component, that is operable to selectively release the aerosol-modifying agent.
- The aerosol-modifying agent may, for example, be an additive or a sorbent. The aerosol-modifying agent may, for example, comprise one or more of a flavorant, a colorant, water, and a carbon adsorbent. The aerosol-modifying agent may, for example, be a solid, a liquid, or a gel. The aerosol-modifying agent may be in powder, thread or granule form. The aerosol-modifying agent may be free from filtration material.
-
FIG. 1 shows avaping device 1 comprising amain housing 2 and a cartomizer 3. Themain housing 2 is in the form of a power pack because it contains a rechargeable battery, as well as control electronics. The cartomizer 3 plugs in to atop end 21 of themain housing 2 and may be unplugged therefrom when the cartomizer 3 needs to be re-filled with liquid or replaced with a new cartomizer upon depletion of the liquid in the original cartomizer. This plugging and unplugging occurs along a longitudinal axis L1 of thevaping device 1. -
FIGS. 2 to 8 show an example of a first type of cartomizer 3A suitable for use in the vaping device ofFIG. 1 . From the exploded view ofFIG. 2 , it may be seen that the cartomizer 3A is assembled from a stack of components: anouter housing 4, anupper clamping unit 5, aplanar vaporizer 6, alower support unit 7 and anend cap 8. - In the exploded views of
FIGS. 3 and 4 , theplanar vaporizer 6 and theend cap 8 are omitted to improve the clarity of depiction of the components that are shown. - All of the components are shown assembled together in
FIGS. 5 and 6 . - The cartomizer 3A has a
top end 31 and abottom end 32 which are spaced apart along the longitudinal axis L1, which is the longitudinal axis of the cartomizer as well as being the longitudinal axis of thevaping device 1. Thetop end 31 of the cartomizer defines a mouthpiece end of the vaping device, and themouthpiece 33 includes amouthpiece orifice 41 which is provided at thetop end 42 of theouter housing 4 in the center of atop face 43. - The
outer housing 4 includes acircumferential side wall 44 which leads down from thetop end 42 to abottom end 45 of theouter housing 4 and which defines aninternal reservoir 46. Prior to assembly of the cartomizer 3A, thebottom end 45 of the outer housing is open, but upon assembly thebottom end 45 is closed by a plug formed by theupper clamping unit 5 and thelower support unit 7 which are stacked together with theplanar vaporizer 6 sandwiched therebetween. - The
upper clamping unit 5 is an intermediate component of the stack of components and is shown in detail inFIGS. 7A to 7C . Theupper clamping unit 5 includes afoot 51 in the form of a block and an upwardly extendingair tube 52. On each side of theair tube 52, thefoot 51 includes a well 53 which descends from a flattop surface 54 to aflat bottom surface 55 of thefoot 51. At thebottom surface 55, each well 53 is open (seeFIG. 7C ) and, specifically, opens into anelongate recess 56 formed in thebottom surface 55, with the depth of therecess 56 matching the thickness of theplanar vaporizer 6. Thefoot 51 includes two circumferential capillary breaks 57 for reducing or preventing leakage of liquid from thereservoir 46. Theair tube 52 extends up from the bottom of thewells 53 and aninternal air passage 58 of theair tube 52 has abottom end 581 at a central portion of therecess 56 and atop end 582 at the top of theair tube 52. FromFIG. 5 , it may be seen that the top of theair tube 52 fits onto thebottom end 471 of an air tube 47 which extends downwards from themouthpiece orifice 41 in thetop face 43 of theouter housing 4. Thus, theair passage 58 is connected to anair passage 48 of the air tube 47. - The
lower support unit 7 is shown in detail inFIGS. 8A to 8C and is in the form of a block having a flattop surface 71 and a flat bottom surface 72. Acentral air passage 73 extends upwardly from the bottom surface 72 to thetop surface 71. On each side of theair passage 73, the block of thelower support unit 7 includes a throughhole 74 which is shown empty inFIGS. 8A to 8C , but which in practice (see, for example,FIGS. 5 and 6 ) includes aco-molded contact pad 75 in the form of a pin. Eachcontact pad 75 is a press fit in its respective throughhole 74. Eachcontact pad 75 provides an electrical connection path from the bottom surface 72 to a respective end portion of theplanar vaporizer 6 when theplanar vaporizer 6 is sandwiched between thetop surface 71 of thelower support unit 7 and therecess 56 of thebottom surface 55 of the upper clamping unit 5 (see, for example,FIG. 5 ). - The block of the
lower support unit 7 includes two circumferential capillary breaks 76 for reducing or preventing leakage of liquid from thereservoir 46. Thefoot 51 of theupper clamping unit 5 and the lower support unit 7 (with its block-like form) combine together to form a plug which seals the bottom end of the reservoir 46 (seeFIG. 5 ) and in total four circumferential capillary breaks 57, 76 are present for reducing or preventing leakage of liquid from thereservoir 46. - When the components of the cartomizer 3A have been assembled together, an
overall air passage 34 exists from thebottom end 32 to thetop end 31 of the cartomizer 3A and it is formed by theair passage 73 leading to theair passage 58 which, in turn, leads to theair passage 48 and themouthpiece orifice 41. Where theair passage 73 meets theair passage 58, the air flow bifurcates as it passes around the side edges of theplanar vaporizer 6. - The version of the
vaporizer 6 used in the cartomizer 3A is planar and is in the form of a plate and is elongate in the direction of a longitudinal axis. Theplanar vaporizer 6 has the shape of a strip and has parallel sides. Theplanar vaporizer 6 has parallel upper and lower major (planar) surfaces and parallel side surfaces and parallel end surfaces. The length of theplanar vaporizer 6 is 10 mm. Its width is 1 mm, and its thickness is 0.12 mm. The planar vaporizer has a resistance of 0.5 to 0.6 Ohms. The small size of theplanar vaporizer 6 enables it to take less time to reach a desired operating temperature compared with a large-size vaporizer, and less energy is used in doing so. The small size of theplanar vaporizer 6 enables the overall size of the cartomizer to be reduced and the overall mass of the components of the cartomizer to be reduced. - Along the longitudinal axis, the
vaporizer 6 has acentral portion 67 and first andsecond end portions 68, 69 (shown inFIG. 2 ). When the vaporizer is in situ in the cartomizer, thecentral portion 67 is positioned in theair passage 34 as is shown in, for example,FIGS. 5 and 6 . Thecentral portion 67 extends across the top end of theair passage 73 of thelower support unit 7, and across thebottom end 581 of theair passage 58 of theupper clamping unit 5. Theend portions upper clamping unit 5 and thelower support unit 4. - The
end portions contact pads 75. Theend portions reservoir 46 from above, by virtue of being positioned beneath thewells 53 of theupper clamping unit 5. Relative to the longitudinal axis L1, thewells 53 are inboard of thecontact pads 75, as may be seen inFIGS. 5 and 6 . - The
vaporizer 6 is made of a porous and electrically conductive material. For example, it is formed from sintered metal fibers having a mean diameter of 12 microns or less. The material may be a 316 L stainless steel non-woven sintered mesh. The density of fibers may be between 100 g/m2 and 500 g/m2. The mesh thickness may be 0.10 mm to 1 mm. The sintering temperature range may be 850° C. to 1400° C. under a weighted mass of between 0.5 kg and 25 kg. A vacuum and an inert gas such as nitrogen may be used, with a cycle time ranging from 2 hours to 16 hours. The resultant mesh is then compressed to the required thickness using a powered press. The mesh is then cut through to the required shape using mechanical cutting or laser cutting. Other metals may be used, such as Hastalloy or nickel chrome. - When the
planar vaporizer 6 is clamped in position inside the cartomizer 3A, the longitudinal axis L2 of theplanar vaporizer 6 is transverse to the longitudinal axis L1 of the cartomizer 3A. The plane of the plate-likeplanar vaporizer 6 is perpendicular to the longitudinal axis L1. Theend portions lower support unit 7 on thetop surface 71 thereof. The thickness dimension of the planar vaporizer is typically small (e.g. the thickness of 0.12 mm already mentioned) and the orientation of the planar vaporizer is such that the planar vaporizer barely contributes to the overall height of the components making up the cartomizer compared with a cartomizer in which the planar vaporizer is upright (with the planar vaporizer extending in the longitudinal direction of the cartomizer). Also, the liquid storage volume of thereservoir 46 does not have to be reduced as a result of the planar vaporizer projecting up into the reservoir. - Because the
planar vaporizer 6 is seated in therecess 56, it may be considered that the presence of the planar vaporizer does not itself contribute any height at all to the overall height of the stack of internal components of the cartomizer (the lower support unit, the vaporizer and the upper clamping unit). - The
top end 21 of themain housing 2 includes an air inlet hole 22 on each side of the main housing 2 (with one of the two air inlet holes 22 being visible inFIG. 1 ). Air can enter the air inlet holes 22 and flow transversely inwards to the longitudinal axis L1 so as to enter the bottom end of theair passage 73 of thelower support unit 7 and to start to flow in the direction of the longitudinal axis L1 towards themouthpiece 33. Themain housing 2 has two power supply pins (not shown) which make contact with the bottom ends of thecontact pads 75. The top ends of thecontact pads 75 are in electrical contact with theend portions planar vaporizer 6. Theend portions planar vaporizer 6 are exposed at the bottom of thewells 53 to the liquid in thereservoir 46, and the wicking characteristic of the porousplanar vaporizer 6 transports a supply of the liquid to thecentral portion 67 of theplanar vaporizer 6 which is exposed to the air flow along the air passage 34 (theair passage 73, theair passage 58 and the air passage 48). The current supplied by thecontact pads 75 from the power source (e.g. the battery) of themain housing 2 causes thecentral portion 67 of theplanar vaporizer 6 to heat up. The wicked liquid in theplanar vaporizer 6 at thecentral portion 67 thereof becomes an aerosol and becomes entrained in the air flow along theair passage 34. The aerosol travels up theair passage 34 and out of themouthpiece orifice 41 and is breathed in by the user of thevaping device 1. - As shown in
FIG. 2 , the cartomizer 3A includes anend cap 8 at its bottom end. Theend cap 8 is made of metal and serves to assist with retaining the cartomizer 3A in themain housing 2 when the cartomizer 3A is plugged in to the top end of themain housing 2, because themain housing 2 is provided with magnets which are attracted to the metal of theend cap 8. Theend cap 8 has a bottom wall 81 with a central opening 82 (seeFIG. 5 ) which conforms to the shape of the raised central portion of the bottom surface 72 of thelower support unit 7. Theend cap 8 also has acircumferential side wall 83 which has two opposed cut-outs 84 which latch ontocorresponding projections 49 on the outer surface of the bottom end of theside wall 44 of theouter housing 4, so that theend cap 8 has a snap-fit type connection onto the bottom end of theouter housing 4. When theend cap 8 has been fitted in position, it holds in position thelower support unit 7, theupper clamping unit 5 and theplanar vaporizer 6 which is sandwiched between thelower support unit 7 and theupper clamping unit 5. - It would be possible to omit the end cap 8 (in order to reduce the component count) by arranging for the
lower support unit 7 to form a snap-fit type connection with the bottom end of theside wall 44 of theouter housing 4. Additionally, the cartomizer 3A could be provided with indentations which engage with projections at thetop end 21 of themain housing 2, so that a releasable connection is provided between the cartomizer and the main housing. - In any case, the cartomizer 3A is provided with what may more generally be referred to as a device interface which is a part of the cartomizer 3A that interfaces with the main housing 2 (or aerosol-generating device). In the above example, the device interface may include the
metal cap 8 including the bottom wall 81 andcircumferential side wall 83 and/or thelower support unit 7 including the bottom surface 72. More generally, the device interface of the cartomizer 3A may encompass any part or parts of the cartomizer 3A that contact, abut, engage or otherwise couple to themain housing 2. - In accordance with aspects of the present disclosure,
FIGS. 9 to 12 show an embodiment of acartomizer 3B suitable for use in the vaping device ofFIG. 1 . Thecartomizer 3B is generally the same as the cartomizer 3A; however, as will be discussed below, thecartomizer 3B is configured in such a way as to provide an electrical contact between thevaporizer 6 and the battery in themain housing 2 of thevaping device 1 which reduces the number of components, particularly in thecartomizer 3B itself. In this regard, noting that thevaping device 1 is configured such thatmultiple cartomizers 3, 3A, 3B are to be used with the main housing 2 (e.g., when the cartomizer is depleted), reducing the number of components in thecartomizer 3B can be beneficial for reducing waste when the cartomizer is disposed of and/or of reducing costs when the cartomizer is produced. - The
cartomizer 3B is substantially the same as the example cartomizer 3A described above. Like components are represented with like reference signs, and a detailed description thereof will be omitted for conciseness; Only the differences relative thereto will be discussed herein. - The
cartomizer 3B omits the twocontact pads 75 of the cartomizer 3A. Instead, in thecartomizer 3B, the throughholes 74 of the of thelower support unit 7 are designed to receive power-supply pins 23 of themain housing 2 which are longer than the power-supply pins of the main housing that would be used with the cartomizer 3A. The additional length corresponds approximately to the height of thelower support unit 7. Hence, when the cartomizer 3A is engaged with themain housing 2, the power-supply pins 23 protruding from a part of themain housing 2, enter thecartomizer 3B and pass through the through holes 74. The power-supply pins are spring-loaded (also known as pogo pins). However, in other implementations, the power-supply pins may not be spring-loaded. - In accordance with the principles of the present disclosure, the device interface comprises one or more through holes (e.g., the two through
holes 74 through the lower support unit 7) which are configured to permit power-supply pins 23 of themain housing 2 to be received in the one or more through holes (as shown inFIG. 3B , this may encompass one power-supply pin 23 received in a first through hole and another power-supply pin 23 received in a second through hole). That is to say, the throughholes 74 form part of the device interface that allow the power-supply pins 23 of themain housing 2 to interface with thecartridge 3B. As shown inFIGS. 10A and 10B , thetop end 231 of each power-supply pin 23 is shown as touching the undersurface (the lower surface 62) of a respective one of theend portions planar vaporizer 6 so as to form an electrical connection therewith. Accordingly, the power supply pins 23 interface with/contact theplanar vaporizer 6 of thecartomizer 3B to form an electric circuit therewith. It should also be appreciated that theplanar vaporizer 6 is arranged in thecartridge 3B such that the vaporizer is adjacent the through holes 74 (specifically, theend portions - There is also shown an annular gap between the
top end 231 and the side wall of the throughhole 74. This annular gap may be omitted if, for example, the throughhole 74 is given a taper and thetop end 231 of the power-supply pin 23 is given a corresponding taper so that, when the power-supply pin 23 is fully inserted, thetop end 231 seals against the side wall of the throughhole 74. - This can assist with preventing leakage of liquid down the two through
holes 74. In relation to the tapering of each throughhole 74, it involves the hole having a slightly wider width at the bottom surface 72 of thelower support unit 7 and a slightly narrower width at thetop surface 71 of thelower support unit 7. In other implementations, additional or alternative mechanisms may be employed to help reduce or prevent leakage, such as a flexible member made, e.g., from silicone (such as an O-ring) against which the power-supply pin 23 (ortop end 231 thereof) forms a corresponding seal. However, more generally, each throughhole 74 is sized and/or shaped to receive a corresponding power-supply pin 23 (or thetop end 231 thereof) from themain housing 2. - Therefore, in accordance with the principles of the present disclosure, the
planar vaporizer 6 is arranged such that theplanar vaporizer 6 is adjacent the one or more throughholes 74 of thelower support unit 7 so that, when thecartomizer 3B is engaged with the main housing 2 (or more generally, the aerosol-generating device), the respective power-supply pins 23 of themain housing 2 electrically couple to theplanar vaporizer 6. -
FIG. 11 is a diagrammatic depiction of some dimensions of components of a variant of thecartomizer 3B. In this variant, the height of theupper clamping unit 5 and the height of thelower support unit 7 have been reduced, compared to thecartomizer 3B. Also, theend cap 8 ofcartomizer 3B has been omitted. InFIG. 11 , a friction fit and/or an adhesive and/or a weld may be used to secure theupper clamping unit 5 and thelower support unit 7 in thebottom end 45 of theouter housing 4. -
FIG. 12 is a diagrammatic depiction of the air flow paths in said variant of thecartomizer 3B. The arrows A1 represent air flow that has entered thevaping device 1 through the air inlet holes 22 of themain housing 2 and is travelling transversely towards the central (longitudinal) axis of the vaping device. The arrows A2 represent air flow that is turning from the horizontal to the vertical ready to enter theair passage 73 of thelower support unit 7. The arrow A3 represents air flow that is approaching thelower surface 62 of theplanar vaporizer 6 and is getting ready to bifurcate ready to pass around the sides of the planar vaporizer. The arrow A4 represents air flow that has entrained the aerosol produced by the heating of theplanar vaporizer 6 by the electric current passing therealong. - In the implementations described above, the orientation of the vaporizer means that the contribution of the vaporizer to the height of the components making up the cartomizer is reduced compared with a cartomizer in which the vaporizer is upright (with the elongate vaporizer extending in the longitudinal direction of the cartomizer).
- The height of the lower support unit and the vaporizer is less than for a lower support unit which has an elongate vaporizer which extends upright from (is perpendicular to) the lower support unit.
- In relation to the reservoir which is positioned above the vaporizer, the liquid storage volume of the reservoir does not have to be reduced as a result of the vaporizer projecting up into the reservoir.
- Corrugations of the central portion of the vaporizer increase an effective length of the central portion that is exposed to an air flow of the air passage, and this may provide an increased rate of evaporation from the central portion. When the central portion is rotated (twisted), this may reduce the air flow resistance imparted by the presence of the central portion in the air passage, whilst still maintaining the surface area of evaporation provided by the central portion.
- This arrangement of the upper clamping unit so it sits on top of the lower support unit may securely hold the (planar) vaporizer in position, and the orientation of the vaporizer minimises the contribution of the vaporizer to the overall height of the stack of components (lower support unit, vaporizer and upper clamping unit).
- The provision of the recess may assist with assembling the components of the cartomizer, because the recesss provides a destination location in which the vaporizer is to be positioned. If the depth of the recess is the same as or greater than the thickness of the end portions of the vaporizer, the vaporizer does not itself contribute any height to the overall height of the stack of components (lower support unit, vaporizer and upper clamping unit).
- The plug (formed by the lower support unit and the upper clamping unit) which closes the bottom end of the outer housing also serves a second purpose of closing the reservoir which is defined inside the outer housing.
- The first and second through holes of the lower support unit enable power supply pins, of the main housing, when the cartomizer is plugged into the main housing, to directly contact the end portions of the vaporizer.
- The tapering of the holes may enable the holes to seal against correspondingly tapered power supply pins, which may help with reducing leakage of liquid from the reservoir of the cartomizer.
- The co-molded contact pads may be used as an alternative to the through holes. The co-molded contact pads may provide a more-secure means of reducing leakage of liquid from the reservoir of the cartomizer, compared with sealing the tapered through holes with tapered power supply pins which are repeatedly inserted into and removed from the tapered through holes as the cartomizer is plugged into and unplugged from the main housing.
- By positioning the wells inboard of the first and second through holes of the lower support unit or the first and second co-molded contact pads of the lower support unit, it is ensured that, in use, the reservoir liquid is wicked along heated portions of the vaporizer as the wicked liquid migrates to the central portion of the vaporizer.
- A small size of the vaporizer enables it to take less time to reach a desired operating temperature compared with a large-size vaporizer, and less energy is used in doing so. A small size of the vaporizer enables the overall size of the cartomizer to be reduced and the overall mass of the components of the cartomizer to be reduced.
- By having a narrow central part instead of a uniform width along the length of a planar vaporizer, the rate of aerosol generation may be increased, and the aerosol particle size may be reduced, for example to an average of about 0.5 microns.
- By using the lower support unit to provide the bottom surface of the cartomizer, the component count of the cartomizer may be reduced. For example, there is no need to provide a bottom end cap (e.g. a metal end cap) which clips onto the other components at the bottom end of the cartomizer. If the number of components of the cartomizer is reduced, the cost of the cartomizer is reduced.
-
FIG. 13 is an exploded perspective view of afurther cartomizer 3C in accordance with aspects of the present disclosure. Thecartomizer 3C is suitable for use in a vaping device similar to the vaping device ofFIG. 1 . The differences relative to thecartomizer 3B will be discussed in more detail below. - In
cartomizer 3C, thevaporizer 6′ is different to thevaporizer 6 described above. For example, thevaporizer 6 described above is made of a porous and electrically conductive material. However, thevaporizer 6′ incartomizer 3C is amicrofluidic vaporizer 6′. - The
microfluidic vaporizer 6′ is shown, highly schematically, inFIG. 14 . Themicrofluidic vaporizer 6′ is formed from a non-conductive substrate material 162 (such as silicon dioxide) and an electricallyresistive layer 164 provided on a surface of thesubstrate material 162. The electricallyresistive layer 164 may be formed from any suitable electrically conductive material, for example a metal or metal alloy, such as nickel chromium (NiCr) or titanium. The electricallyresistive layer 164 is capable of heating when a suitable electrical current is passed through the electrically resistive layer 164 (for example, as supplied by main housing 2). - The
microfluidic vaporizer 6′ comprises three sections or parts; acentral part 167 and twoend parts central part 167. As seen inFIG. 14 ,microfluidic vaporizer 6′ also includes a plurality ofcapillary tubes 166 in thecentral part 167. Thecapillary tubes 166 extend through themicrofluidic vaporizer 6′. More specifically, thecapillary tubes 166 extend from a first surface of thesubstrate material 162 opposite the surface on which the electricallyresistive layer 164 is disposed (not shown inFIG. 14 ), through thesubstrate material 162 and through the electricallyresistive layer 164. That is, thecapillary tubes 166 extend from a first side of thevaporizer 6′, through thevaporizer 6′ and to a second side of thevaporizer 6′. The side of thesubstrate material 162 opposite the electricallyresistive layer 164 is arranged in thecartomizer 3C so as to receive fluid from the reservoir 46 (explained in more detail below). Thecapillary tubes 166 are configured so as to facilitate the transfer of liquid aerosol-generating material from one side of thesubstrate material 162 to the electricallyresistive layer 164 via capillary action/capillary forces. Hence, thecapillary tubes 166 provide liquid aerosol-generating material to the electricallyresistive layer 164 which, when energised, vaporizes the liquid aerosol-generating material. - The
capillary tubes 166 are formed in thevaporizer 6′ via a manufacturing process. That is to say, thecapillary tubes 166 do not naturally exist in thesubstrate material 162, e.g., as a result of the selection of the substrate material, such as a porous material, but rather, thecapillary tubes 166 are formed in thesubstrate material 162 and/or electricallyresistive layer 164 through a suitable process. A suitable process is laser drilling, however any other suitable technique may be employed in order to generate thecapillary tubes 166. Thecapillary tubes 166 may have a diameter on the order to tens of microns, e.g., 10 μm to 100 μm. However, the exact size of thecapillary tubes 166 may depend on the properties of the liquid aerosol-generating material (e.g., viscosity) that is intended to pass along the capillary tubes 166 (that is, the properties of the liquid in thereservoir 46 of thecartomizer 3C). In addition, because thecapillary tubes 166 are engineered in thevaporizer 6′, thecapillary tubes 166 follow a substantially linear (straight) path from one side of thevaporizer 6′ to the other side of thevaporizer 6′. Put another way, the engineeredcapillary tubes 166 span the shortest distance between points on different sides of thevaporizer 6′. Providing engineeredcapillary tubes 166 enables not only more flexibility in the choice of material to use as thesubstrate material 162 but also allows for thecapillary tubes 166 to be engineered to provide optimal capillary action for the specific liquid aerosol-generating material to be used with thevaporizer 6′. - Turning back to
FIG. 13 , themicrofluidic vaporizer 6′ is located in a similar position between alower support unit 7′ andupper clamping unit 5′ as discussed in respect of thevaporizer 6 incartomizer 3B. More specifically, themicrofluidic vaporizer 6′ is orientated such that the electricallyresistive layer 164 faces towards thelower support unit 7′ while the opposite side of the substrate material 162 (i.e., the lower surface not shown inFIG. 14 ) is orientated towards theupper clamping unit 5′. - The
upper clamping unit 5′ andlower support unit 7′ are substantially similar to their counterparts described incartomizer 3B. However, owing in part to the differences in thevaporizers cartomizer 3C as compared tocartomizer 3B. In particular, with thevaporizer 6 ofcartomizer 3B, liquid is able to wick in the direction along the longitudinal axis of thevaporizer 6 towards thecentral portion 67 of thevaporizer 6 where it is subsequently vaporized and is entrained in airflow flowing through thecentral air passage 73 and along theair tube 52. - Conversely, the
vaporizer 6′ is less adapt at transporting liquid along the longitudinal axis of thevaporizer 6′; predominantly because thecapillary tubes 166 extend in a relatively vertical orientation. Accordingly, in theexample cartomizer 3B shown inFIG. 13 , theupper clamping unit 5′ is provided with a central well/opening (not shown inFIG. 13 ) that substantially aligns with a central portion of thevaporizer 6′. Liquid held in thereservoir 46 is able to flow to the central portion of thevaporizer 6′ (and more specifically the capillary tubes 166) via the central opening of theupper clamping unit 5′. Instead of an airflow channel that passes through the center of theupper clamping unit 5′, anairflow channel 52′ is provided by an indentation in thefoot 51 of theupper clamping unit 5′. - In order to complete the airflow pathway, the
lower support unit 7′ is provided with a substantially larger opening forming thecentral air passage 73′. Compared toFIG. 9 , thecentral air passage 73′ is show as being square and has a width dimension substantially larger than the width dimension of thevaporizer 6′. That is to say, thevaporizer 6′ (or a central portion thereof) extends across a part of the opening ofair passage 73′ but theair passage 73′ extends either side of thevaporizer 6′. When thecartomizer 3C is assembled, the indentation overlaps one side of the opening ofair passage 73′ such that the indentation allows for air to pass through theair passage 73′ and along theairflow channel 52′. Accordingly, air that enters thelower support unit 7′ and passes alongair passage 73′ is able to pass across the surface of thevaporizer 6′, thereby entraining vaporized liquid in the airflow, and subsequently pass around a side of thevaporizer 6′ and up through theairflow channel 52′. - Additionally, the
outer housing 4′ is correspondingly adapted to accommodate the different air flow. In this regard,outer housing 4 ofcartomizer 3B is configured to couple to thecentral air channel 52 of theupper clamping unit 5. Conversely, incartomizer 3C, theouter housing 4′ is provided with a side channel (not shown) providing a tubular passageway extending from thebottom end 45 of thehousing 4′ to themouthpiece orifice 41. The end of the side channel at thebottom end 45 ofhousing 4′ is configured to engage with the indentation of thefoot 51 of theupper clamping unit 5′. That is, a wall of the side channel ofhousing 4′ may be pressed into engagement with theupper clamping unit 5′ at the location of the indentation to provide a fluid tight coupling between the two. In some implementations, the side channel may comprise a wall which extends along, or part way along, the indentation when thehousing 4′ andupper clamping unit 5′ are coupled together, such that the indentation/foot 51 surrounds the wall of the side channel. The coupling between thehousing 4′ andupper clamping unit 5′ is configured to be fluid tight, such that liquid from thereservoir 46 may not leak into theair channel 52′/side channel ofhousing 4′, while air/aerosol from theair channel 52′/side channel ofhousing 4′ is unable to pass into thereservoir 46. Any suitable coupling may be employed. - It should be appreciated that
upper clamping unit 5′ shown inFIG. 13 comprises one indentation. In this example, the opposite side of the opening ofair passage 73′ is blocked off by theupper clamping unit 5′, such that air is only permitted to flow past one side of thevaporizer 6′. However, in other implementations, a second indentation may be provided on the opposite side of theupper clamping unit 5′, forming a corresponding air channel, Subsequently, air may be permitted to flow past both sides of thevaporizer 6′ in such implementations. - Further, as seen in
FIG. 13 , thevaporizer 6′ is arranged such that it is adjacent the throughholes 74 inlower support unit 7′. More specifically, thevaporizer 6′ extends over/overlaps the through holes 74. With reference toFIG. 11 , thevaporizer 6′ in this example has a longitudinal extent (i.e., an extent in the longitudinal direction) of approximately 9 to 10 mm. However, in other implementations, thevaporizer 6′ may have a longitudinal extent that is equal to or greater than 4 mm, equal to or greater than 3 mm or equal to or greater than 2 mm. Both aerosol generation performance of thevaporizer 6′ and the separation distance of the power-supply pins 23 may dictate the overall size/footprint of thevaporizer 6′. - As should be appreciated with reference to
FIG. 14 , the twoend portions vaporizer 6′ each overlap a respective throughhole 74. Theend portions capillary tubes 166 but are provided with the electricallyresistive layer 164. Accordingly, much like withcartomizer 3B, it should be understood that power-supply pins 23 (and top ends 231) of themain housing 2 are capable of extending through the throughholes 74 and contacting respective ends of thevaporizer 6′ when thecartomizer 3C is coupled to themain housing 2. In this way, similarly, an electrical circuit is capable of being formed with the rechargeable battery of themain housing 2. Electrical power is able to be supplied to thevaporizer 6′ from the rechargeable battery via the power-supply pins 23 to cause heating of the electricallyresistive layer 164 and subsequently any liquid brought into contact/proximity of the electricallyresistive layer 164. - In the
cartomizer 3C described above, it should be appreciated that thereservoir 46 is effectively a sealed volume defined by the inner surface of theouter housing 4′, theupper clamping unit 5′ andlower support unit 7′, and at least thecentral portion 167 of thevaporizer 6′ which is positioned to abut against the central well (not shown) of theupper clamping unit 5′. Owing to the construction of thevaporizer 6′, namely that thecapillary tubes 166 are substantially the only the designed fluid passage into/out of thereservoir 46, when thecapillary tubes 166 are filled with liquid, then air may be unable to pass into thereservoir 46. In some implementations, as the liquid in thereservoir 46 depletes, the pressure within thereservoir 46 may change if air is unable to enter thereservoir 46 to help balance out this pressure change. The change in pressure may impact the ability of the vaporizer/capillary tubes 166 to transport liquid to the electricallyresistive layer 164. In such cases, thecartomizer 3C is designed to have an air inlet in fluid communication with thereservoir 46 that allows air to enter thereservoir 46 to counteract the pressure change. The air inlet may be liquid impermeable to prevent or reduce liquid exiting thereservoir 46 through the air inlet. In some implementations, the air inlet may be an opening (e.g., towards thetop end 31 of thecartomizer 3C), having a small diameter such that any liquid is unable to escape the reservoir through the opening due to surface tension, or the opening may be provided with a liquid impermeable, air permeable layer to allow air to enter thereservoir 46 but prevent liquid escaping. - In other implementations, the
upper clamping unit 5′ and/orlower support unit 7′ may be designed with a weakness in the seal formed by the outer circumferential surface of thefoot 51 or the outer circumferential surface of thelower support unit 7′. Such weakness may be provided via a thinning of the wall of theupper clamping unit 5′/lower support unit 7′ which may temporarily deform or marginally separate from theouter housing 4′ when exposed to a change in pressure, to thereby produce a temporary gap that allows air to enter into thereservoir 46. Thus, broadly, there may be provided a cartomizer for an aerosol-generating device, the cartomizer comprising: a vaporizer for generating aerosol from aerosol-generating material held in a reservoir of the cartomizer, wherein the vaporizer comprises a substrate and an electrically resistive layer disposed on a first surface of the substrate, wherein one or more capillary tubes extend from another surface of the substrate and through the electrically resistive layer disposed on the first surface of the substrate, and the cartomizer comprises an air inlet configured to allow air to enter the reservoir of the cartomizer. The air inlet may optionally be configured to reduce or prevent liquid escaping the reservoir through the air inlet. The air inlet may optionally be provided via a weakened region in one or more liquid sealing elements of the cartomizer. - Above is described an example of a
cartomizer 3C employing amicrofluidic vaporizer 6′. However, it should be appreciated that theexample cartomizer 3C is one example of acartomizer 3C employing amicrofluidic vaporizer 6′ in which power-supply pins 23 are provided to pass through thoughholes 74 in a device interface of thecartomizer 3C, with the power supply-pins 23 subsequently forming an electric circuit with thevaporizer 6′. Other configurations of cartomizers including themicrofluidic vaporizer 6′ may be realised (for example, having different shapes, different components, different configurations, different airflow paths, etc.). - However, in accordance with the principles of the present disclosure, there is provided a
cartomizer 3C that comprises amicrofluidic vaporizer 6′ for generating aerosol from aerosol-generating material held in the cartomizer. Thecartomizer 3C includes an aerosol-generating device interface configured to interface with an aerosol-generating device/main housing 2 (whereby the device interface may include themetal cap 8 including the bottom wall 81 andcircumferential side wall 83 and/or thelower support unit 7′ including the bottom surface 72). More generally, the device interface of thecartomizer 3C may encompass any part or parts of thecartomizer 3C that contact, abut, engage or otherwise couple to themain housing 2. The aerosol-generating device interface further comprises one or more throughholes 74, with each throughhole 74 sized so as to receive a power-supply pin 23 of the aerosol generating device/main housing 2. Furthermore, thevaporizer 6′ is arranged in thecartomizer 3C such that thevaporizer 6′ is adjacent the one or more throughholes 74 so that, when thecartomizer 3C is engaged with the aerosol-generating device/main housing 2, the respective power-supply pins 23 of the aerosol-generating device/electrically couple to thevaporizer 6′. - In the example shown above, the
end portions vaporizer 6′ do not comprisecapillary tubes 166. However, in some implementations, theend portions capillary tubes 166. Depending on the specific configuration, thecapillary tubes 166 in theend portions capillary tubes 166 of theend portions upper clamping unit 5′ and thus are not in fluid communication with thereservoir 46. - The
microfluidic vaporizer 6′ may, in some implementations, be formed to have a relatively small footprint. Because thecapillary tubes 166 are engineered to provide suitable capillary action for the liquid aerosol-generating material stored in thecartomizer 3C, themicrofluidic vaporizer 6′ may be effective at supplying liquid to the electricallyresistive layer 164 and thus a smaller footprint for thevaporizer 6′ having suitable performance characteristics for the given application at hand may be achievable. For example, in some instances, thevaporizer 6′ may have a footprint of 4×4 mm (16 mm2) or less, 3 mm×3 mm (9 mm2) or less, or 2×2 mm (4 mm2) or less. Regardless of the exact footprint, the significant quantity is the longitudinal extent. Hence, in some implementations, thevaporizer 6′ may have a longitudinal extent of less than or equal to 4 mm, 3 mm, or 2 mm. While such smaller footprint/longitudinal extent vaporizers 6′ may be achievable, the process of electrically coupling thevaporizer 6′ to the power-supply pins 23 may require further adaptation of thecartomizer 3C. - For instance, with reference to
FIG. 11 , it can be seen that the power-supply pins 23 are spaced apart a distance of 8.5 mm, and each power-supply pin 23 may have a diameter on the order of one millimetre or so. In some implementations, the spacing of the power-supply pins 23 on themain housing 2, along with the corresponding throughholes 74, may be decreased (to a distance comparable to the length of thevaporizer 6′). However, bringing the power-supply pins closer together may necessitate a variation in the airflow through thecartomizer 3C (for example, for a 3×3mm vaporizer 6′, thepins 23 may be spaced around 2-3 mm apart which may restrict the size of theair channel 52′). In other implementations, thevaporizer 6′ may be coupled to electrically conductive contact elements at end portions thereof, so as to facilitate the electrical coupling of themicrofluidic vaporizer 6′. -
FIG. 15 depicts, highly schematically, such an example of themicrofluidic vaporizer 6″ coupled to electrically conductive contact elements. As can be seen inFIG. 15 , thesubstrate material 162 has a different (i.e., smaller) dimension in the longitudinal direction than the substrate material ofFIG. 14 . More specifically, thesubstrate material 162 is approximately the same size as thecentral portion 167 comprising the plurality ofcapillary tubes 166. The electricallyresistive layer 164 is provided in thecentral portion 167 of thevaporizer 6″. Instead of the end portions shown inFIG. 14 , thevaporizer 6″ is shown as being coupled to electricallyconductive contact elements 168″ and 169″. The electrically conductive contact elements may be formed from any suitable conductive material (e.g., the same or different material that electricallyresistive layer 164 is formed from). The electricallyconductive contact elements 168″, 169″ may be in the form of contact pads. The electricallyconductive contact elements 168″, 169″ are electrically connected to the electricallyresistive layer 164, e.g., via suitable wiring or soldering, etc. It should be appreciated that the electricallyconductive contact elements 168″, 169″ are provided at a position relative to thevaporizer 6″ so as to electrically couple the power-supply pins 23 to the electricallyresistive layer 164 of thevaporizer 6″. Accordingly, it should be appreciated that even when the vaporizer itself does not have an adequate footprint that overlaps with the throughholes 74, electricallyconductive contact elements 168″, 169″ can be provided to thevaporizer 6″ to take account of the spacing stipulated by the placement of the power-supply pins 23 of the main housing 2 (e.g., when the length of thesubstrate material 162 is different (i.e., smaller) than the distance between the power-supply pins 23). In these implementations, thevaporizer 6″ is provided adjacent the throughholes 74; however, it is the electrically conductive contact elements that overlap the through holes 74. - Further, it should be appreciated that while
FIG. 15 shows avaporizer 6″ in which electricallyconductive contact elements 168″, 169″ are provided at opposing longitudinal ends of thevaporizer 6″, in other implementations, the electrically conductive contact elements may be formed by extensions of the electricallyresistive layer 164. That is to say, rather than providing separate electricallyconductive contact elements 168″, 169″ that are subsequently electrically coupled to thevaporizer 6″, the electricallyresistive layer 164 may have a greater dimension in the longitudinal direction than thesubstrate material 162. Put another way, the electricallyresistive layer 164 may overhang the ends of thesubstrate material 162. In these implementations, the extended ends of the electricallyresistive layer 164 overlap the throughholes 74 and provide contact with the power-supply pins 23. - Broadly speaking, in some implementations, when the footprint of the
substrate material 162 of thevaporizer 6′, 6″ is chosen so as to have a length that is less than twice the diameter of the power supply pins 23, then thevaporizer 6′, 6″ is provided either with an extension of theresistive layer 164, or with separate electrically conductive contact elements as shown inFIG. 15 . Moreover, in implementations where the footprint of thesubstrate material 162 of thevaporizer 6′, 6″ is chosen so as to have a length that is greater than twice the diameter of the power supply pins 23, thevaporizer 6′, 6″ may still be provided either with an extension of theresistive layer 164 or with separate electrically conductive contact elements as shown inFIG. 15 , depending on the configuration of the power-supply pins 23 of themain housing 2. - In the example shown in
FIG. 13 , the power-supply pins 23 directly contact thevaporizer 6′ (specifically the electrically resistive layer 164). This is achievable in part due to the orientation of thevaporizer 6′ such that the electricallyresistive layer 164 faces towards the bottom of thecartomizer 3C (device interface) and subsequently the power supply pins 23 of themain housing 2 when the main housing couples to thecartomizer 3C. However, the orientation of thevaporizer 6′ is not limited to this and, in other implementations, thevaporizer 6′ may be provided in alternative implementations, for example, where the electrically resistive layer faces away from the bottom of thecartomizer 3C (device interface). - In such implementations, the vaporizer may be provided with electrically conductive elements that facilitate the electrical coupling of the power-
supply pins 23 to the electricallyresistive layer 164. -
FIG. 16 depicts, highly schematically, such an example of themicrofluidic vaporizer 6′″. Themicrofluidic vaporizer 6′″ is similar tomicrofluidic vaporizer 6′; however, themicrofluidic vaporizer 6′″ includesvias respective end portions vaporizer 6′″, shown in phantom inFIG. 16 . Thevias substrate material 162 to the other side of thesubstrate material 162 and may or may not also extend through the electricallyresistive layer 164. In any case, thevias FIG. 16 ) of thesubstrate material 162 and the electricallyresistive layer 164. In such an example, thevaporizer 6′″ is orientated in thecartomizer 3C such that the electricallyresistive layer 164 faces away from the device interface. Accordingly, when the power-supply pins 23 pass through the throughholes 74 of thelower support unit 7′, the power-supply pins 23 make electrical contact with the surface of thevias resistive layer 164. An electrical circuit may nonetheless be formed but, in this implementation, the current supplied by the power-supply pins 23 additionally passes through thevias - It should also be appreciated that the
vias FIG. 16 are one example of an electrically conductive element designed to electrically connect the electricallyresistive layer 164 when the electricallyresistive layer 164 is unable to directly contact the power-supply pins 23. In other implementations, theend portions substrate material 162 such that an electrical path is formed around the outside surfaces of thesubstrate material 162 and coupled to the electricallyresistive layer 164. In other implementations, thesubstrate material 162 itself may include, locally at theend portions substrate material 162, conductive elements (e.g., fibers/wires) that permit current to be applied to the underside of the vaporizer and pass to the electricallyresistive layer 164. - It should also be appreciated that when the
vaporizer 6′″ is orientated such that the electricallyresistive layer 164 faces away from the device interface, the cartomizer may be adapted in order to supply liquid to the underside of thevaporizer 6′″. In some implementations, thereservoir 46 may be moved so as to sit beneath thevaporizer 6′″. However, this has some drawbacks including separating thevaporizer 6′″ from the device interface by a greater margin. In other implementations, a wicking element (or more generally a liquid transport element) may be provided to transport liquid from the reservoir 46 (which may be located above thevaporizer 6′″, e.g., as incartomizers vaporizer 6′″. - Thus, there has been described a cartomizer for an aerosol-generating device, the cartomizer including an aerosol-generating device interface configured to interface with an aerosol-generating device; and a vaporizer for generating aerosol from aerosol-generating material held in a reservoir of the cartomizer. The aerosol-generating device interface further comprises one or more through holes, each through hole sized so as to receive a power-supply pin of the aerosol generating device, and the vaporizer is arranged in the cartridge such that the vaporizer is adjacent the one or more through holes so that, when the cartomizer is engaged with the aerosol-generating device, the respective power-supply pins of the aerosol-generating device electrically couple to the vaporizer. Also described is an aerosol-generating device comprising the abovementioned cartomizer.
- The various embodiments described herein are presented only to assist in understanding and teaching the claimed features. These embodiments are provided as a representative sample of embodiments only, and are not exhaustive and/or exclusive. It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects described herein are not to be considered limitations on the scope of the invention as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilized and modifications may be made without departing from the scope of the claimed invention. Various embodiments of the invention may suitably comprise, consist of, or consist essentially of, appropriate combinations of the disclosed elements, components, features, parts, steps, means, etc, other than those specifically described herein. In addition, this disclosure may include other inventions not presently claimed, but which may be claimed in future.
Claims (23)
1. A cartomizer for an aerosol-generating device, the cartomizer comprising:
an aerosol-generating device interface configured to interface with an aerosol-generating device; and
a vaporizer for generating aerosol from aerosol-generating material held in a reservoir of the cartomizer, wherein
the aerosol-generating device interface further comprises one or more through holes, each through hole sized so as to receive a power-supply pin of the aerosol generating device, and
the vaporizer is arranged in the cartridge such that the vaporizer is adjacent the one or more through holes so that, when the cartomizer is engaged with the aerosol-generating device, the respective power-supply pins of the aerosol-generating device electrically couple to the vaporizer.
2. The cartomizer of claim 1 , wherein the vaporizer is arranged such that the vaporizer extends over the one or more through holes, and wherein, when the cartomizer is engaged with the aerosol-generating device, the respective power-supply pins of the aerosol-generating device directly contact the vaporizer.
3. The cartomizer of claim 2 , wherein the vaporizer has a longitudinal extent of greater than 2 mm, or greater than 3 mm, or greater than 4 mm.
4. The cartomizer of claim 1 , wherein the cartomizer further comprises one or more electrically conductive contact elements arranged to electrically couple to ends of the vaporizer, and wherein the electrically conductive contact elements are arranged to extend over the one or more through holes, and wherein, when the cartomizer is engaged with the aerosol-generating device, the respective power-supply pins of the aerosol-generating device directly contact the electrically conductive contact elements.
5. The cartomizer of claim 4 , wherein the vaporizer has a longitudinal extent of less than or equal to 4 mm, 3 mm, or 2 mm.
6. The cartomizer of claim 1 , wherein the vaporizer is elongate along a longitudinal axis and has a central portion and first and second end portions.
7. The cartomizer of claim 6 , wherein at least the central portion of the vaporizer is configured to wick liquid aerosol-generating material.
8. The cartomizer of claim 1 , wherein the vaporizer comprises a substrate and an electrically resistive layer disposed on a first surface of the substrate, wherein one or more capillary tubes extend from another surface of the substrate and through the electrically resistive layer disposed on the first surface of the substrate.
9. The cartomizer of claim 8 , wherein the another surface of the vaporizer is provided in fluid communication with the reservoir of the cartomizer.
10. The cartomizer of claim 8 , wherein the one or more capillary tubes have a diameter such that a liquid aerosol-generating material held in the reservoir of the cartomizer is able to move, via capillary forces, along the one or more capillary tubes.
11. The cartomizer of claim 10 , wherein the capillary tubes are configured move liquid aerosol-generating material held in the reservoir of the cartomizer to the electrically resistive layer of the vaporizer.
12. The cartomizer of claim 8 , wherein the one or more capillary tubes are formed by a laser drilling process.
13. The cartomizer of claim 8 , wherein the substrate of the vaporizer is formed from a non-conductive material, such as silicon dioxide.
14. The cartomizer of claim 8 , wherein the electrically resistive layer of the vaporizer is formed from an electrically conductive material, such as titanium.
15. The cartomizer of claim 1 , wherein:
the cartomizer has a top end and a bottom end which are spaced apart along a longitudinal axis of the cartomizer; and
the vaporizer is positioned below the reservoir of the cartomizer and vaporizer sits flat on top of a lower support unit such that the longitudinal axis of the vaporizer is positioned transverse to the longitudinal axis of the cartomizer.
16. The cartomizer according to claim 15 , wherein the central portion of the vaporizer is planar with the end portions of the vaporizer and extends across an air passage of the lower support unit.
17. The cartomizer according to claim 15 , wherein the plane of the vaporizer is perpendicular to the longitudinal axis of the cartomizer.
18. The cartomizer according to claim 15 , wherein the cartomizer includes an upper clamping unit which sits on top of the lower support unit with the vaporizer sandwiched between the lower support unit and the upper clamping unit.
19. The cartomizer according to claim 15 , wherein:
the cartomizer includes an outer housing and at the top end of the cartomizer the outer housing includes a mouthpiece;
the vaporizer is positioned inside the outer housing at the bottom end of the cartomizer; and
the reservoir is positioned inside the outer housing between the mouthpiece and the vaporizer.
20. The cartomizer according to claim 18 , wherein the lower support unit and the upper clamping unit form a plug which closes a bottom end of the outer housing and a bottom end of the reservoir.
21. The cartomizer according to claim 15 , wherein the lower support unit comprises the one or more through holes, wherein each through hole leads from a bottom surface of the lower support unit to the vaporizer.
22. The cartomizer according to claim 15 , wherein each through hole is tapered from having a wider width at the bottom surface of the lower support unit to having a narrower width at the top surface of the lower support unit.
23. An aerosol-generating device comprising a cartomizer according to claim 1 .
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB202118793 | 2021-12-22 | ||
GB2118793.5 | 2021-12-22 | ||
GBGB2206239.2A GB202206239D0 (en) | 2021-12-22 | 2022-04-28 | Cartomiser |
GB2206239.2 | 2022-04-28 | ||
PCT/GB2022/053342 WO2023118864A1 (en) | 2021-12-22 | 2022-12-21 | Cartomiser |
Publications (1)
Publication Number | Publication Date |
---|---|
US20250049119A1 true US20250049119A1 (en) | 2025-02-13 |
Family
ID=85018391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/722,664 Pending US20250049119A1 (en) | 2021-12-22 | 2022-12-21 | Cartomiser |
Country Status (5)
Country | Link |
---|---|
US (1) | US20250049119A1 (en) |
EP (1) | EP4451957A1 (en) |
KR (1) | KR20240103055A (en) |
CA (1) | CA3240935A1 (en) |
WO (1) | WO2023118864A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB202206234D0 (en) * | 2022-04-28 | 2022-06-15 | Nicoventures Trading Ltd | Heater assembly and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT507187B1 (en) * | 2008-10-23 | 2010-03-15 | Helmut Dr Buchberger | INHALER |
GB201605101D0 (en) * | 2016-03-24 | 2016-05-11 | Nicoventures Holdings Ltd | Electronic vapour provision system |
IL267678B2 (en) * | 2016-12-27 | 2023-10-01 | Juul Labs Inc | Heat fuse for an electronic vaporizer |
EP3821726A1 (en) * | 2019-11-15 | 2021-05-19 | Nerudia Limited | Smoking substitute device |
-
2022
- 2022-12-21 WO PCT/GB2022/053342 patent/WO2023118864A1/en active Application Filing
- 2022-12-21 EP EP22846920.1A patent/EP4451957A1/en active Pending
- 2022-12-21 KR KR1020247020433A patent/KR20240103055A/en active Pending
- 2022-12-21 US US18/722,664 patent/US20250049119A1/en active Pending
- 2022-12-21 CA CA3240935A patent/CA3240935A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4451957A1 (en) | 2024-10-30 |
KR20240103055A (en) | 2024-07-03 |
WO2023118864A1 (en) | 2023-06-29 |
CA3240935A1 (en) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3801078B1 (en) | Aerosol provision systems | |
US20250049119A1 (en) | Cartomiser | |
WO2024157017A1 (en) | Heater assembly and method | |
US20250057222A1 (en) | Cartomiser | |
WO2024033623A1 (en) | Heater assembly and method | |
EP3939376B1 (en) | An electrode assembly and corresponding method | |
EP4516065A1 (en) | Heater assembly and method | |
EP4568517A1 (en) | Heater assembly and method | |
WO2024033622A1 (en) | Heater assembly and method | |
CN118695789A (en) | Atomizer cartridge | |
WO2024105380A1 (en) | Heater assembly and method | |
WO2024189342A1 (en) | Heater assembly, aerosol provision system, and method | |
WO2024105367A1 (en) | Heater assembly and method | |
WO2024189341A1 (en) | Aerosol provision system, consumable, and method | |
WO2024105366A1 (en) | Heater assembly and method | |
WO2024157018A1 (en) | Aerosol provision system, heater assembly and method | |
WO2025088298A1 (en) | Aerosol delivery systems | |
WO2025088299A1 (en) | Aerosol delivery systems | |
WO2025088300A1 (en) | Aerosol delivery systems | |
CN120154141A (en) | Aerosol supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |