US20230172948A1 - Ocular implant made by a double extrusion proces - Google Patents
Ocular implant made by a double extrusion proces Download PDFInfo
- Publication number
- US20230172948A1 US20230172948A1 US17/812,133 US202217812133A US2023172948A1 US 20230172948 A1 US20230172948 A1 US 20230172948A1 US 202217812133 A US202217812133 A US 202217812133A US 2023172948 A1 US2023172948 A1 US 2023172948A1
- Authority
- US
- United States
- Prior art keywords
- eye
- active agent
- agents
- ocular
- ocular region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000007943 implant Substances 0.000 title claims abstract description 32
- 238000001125 extrusion Methods 0.000 title claims description 3
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000013543 active substance Substances 0.000 claims abstract description 18
- 238000002513 implantation Methods 0.000 claims abstract 2
- 206010025415 Macular oedema Diseases 0.000 claims description 16
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 16
- 201000010230 macular retinal edema Diseases 0.000 claims description 16
- 229960003957 dexamethasone Drugs 0.000 claims description 14
- 208000001344 Macular Edema Diseases 0.000 claims description 13
- 206010046851 Uveitis Diseases 0.000 claims description 13
- 210000001525 retina Anatomy 0.000 claims description 13
- 206010025421 Macule Diseases 0.000 claims description 8
- 210000003786 sclera Anatomy 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 150000003431 steroids Chemical class 0.000 claims description 6
- 210000000795 conjunctiva Anatomy 0.000 claims description 5
- 229920001577 copolymer Polymers 0.000 claims description 5
- 208000024304 Choroidal Effusions Diseases 0.000 claims description 4
- 239000002294 steroidal antiinflammatory agent Substances 0.000 claims description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 3
- 210000002159 anterior chamber Anatomy 0.000 claims description 3
- 229960000890 hydrocortisone Drugs 0.000 claims description 3
- 108090000695 Cytokines Proteins 0.000 claims description 2
- 102000004127 Cytokines Human genes 0.000 claims description 2
- 210000003161 choroid Anatomy 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 229960005294 triamcinolone Drugs 0.000 claims description 2
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 claims description 2
- 229920002988 biodegradable polymer Polymers 0.000 claims 4
- 239000004621 biodegradable polymer Substances 0.000 claims 4
- 229940121363 anti-inflammatory agent Drugs 0.000 claims 3
- 239000002260 anti-inflammatory agent Substances 0.000 claims 3
- 239000002245 particle Substances 0.000 claims 3
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 claims 1
- VHRSUDSXCMQTMA-PJHHCJLFSA-N 6alpha-methylprednisolone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 VHRSUDSXCMQTMA-PJHHCJLFSA-N 0.000 claims 1
- 239000005541 ACE inhibitor Substances 0.000 claims 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 claims 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 239000000048 adrenergic agonist Substances 0.000 claims 1
- 239000000674 adrenergic antagonist Substances 0.000 claims 1
- 239000003288 aldose reductase inhibitor Substances 0.000 claims 1
- 229940090865 aldose reductase inhibitors used in diabetes Drugs 0.000 claims 1
- 229940035676 analgesics Drugs 0.000 claims 1
- 229940035674 anesthetics Drugs 0.000 claims 1
- 239000004037 angiogenesis inhibitor Substances 0.000 claims 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 claims 1
- 239000000730 antalgic agent Substances 0.000 claims 1
- 230000003266 anti-allergic effect Effects 0.000 claims 1
- 230000000844 anti-bacterial effect Effects 0.000 claims 1
- 230000000340 anti-metabolite Effects 0.000 claims 1
- 230000000842 anti-protozoal effect Effects 0.000 claims 1
- 239000000043 antiallergic agent Substances 0.000 claims 1
- 229940088710 antibiotic agent Drugs 0.000 claims 1
- 229940121375 antifungal agent Drugs 0.000 claims 1
- 239000002220 antihypertensive agent Substances 0.000 claims 1
- 229940030600 antihypertensive agent Drugs 0.000 claims 1
- 229960005475 antiinfective agent Drugs 0.000 claims 1
- 239000002256 antimetabolite Substances 0.000 claims 1
- 229940100197 antimetabolite Drugs 0.000 claims 1
- 239000004599 antimicrobial Substances 0.000 claims 1
- 239000002246 antineoplastic agent Substances 0.000 claims 1
- 229940036589 antiprotozoals Drugs 0.000 claims 1
- 239000003443 antiviral agent Substances 0.000 claims 1
- 229940121357 antivirals Drugs 0.000 claims 1
- 210000002469 basement membrane Anatomy 0.000 claims 1
- 239000000064 cholinergic agonist Substances 0.000 claims 1
- 229960004544 cortisone Drugs 0.000 claims 1
- 210000002889 endothelial cell Anatomy 0.000 claims 1
- 229940043075 fluocinolone Drugs 0.000 claims 1
- FEBLZLNTKCEFIT-VSXGLTOVSA-N fluocinolone acetonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O FEBLZLNTKCEFIT-VSXGLTOVSA-N 0.000 claims 1
- 239000003193 general anesthetic agent Substances 0.000 claims 1
- 229960004584 methylprednisolone Drugs 0.000 claims 1
- 238000003801 milling Methods 0.000 claims 1
- 239000000178 monomer Substances 0.000 claims 1
- 229960005205 prednisolone Drugs 0.000 claims 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 claims 1
- 229960004618 prednisone Drugs 0.000 claims 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 10
- 230000002209 hydrophobic effect Effects 0.000 abstract description 2
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 abstract 1
- 210000001508 eye Anatomy 0.000 description 31
- 239000003814 drug Substances 0.000 description 27
- 229940079593 drug Drugs 0.000 description 25
- 208000002780 macular degeneration Diseases 0.000 description 15
- 229920000954 Polyglycolide Polymers 0.000 description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000004633 polyglycolic acid Substances 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- 239000003246 corticosteroid Substances 0.000 description 11
- 208000004644 retinal vein occlusion Diseases 0.000 description 11
- 208000002177 Cataract Diseases 0.000 description 10
- 229960001334 corticosteroids Drugs 0.000 description 10
- 208000010412 Glaucoma Diseases 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 206010012689 Diabetic retinopathy Diseases 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000009885 systemic effect Effects 0.000 description 8
- 206010061218 Inflammation Diseases 0.000 description 7
- 206010064930 age-related macular degeneration Diseases 0.000 description 7
- 230000004438 eyesight Effects 0.000 description 7
- 230000004054 inflammatory process Effects 0.000 description 7
- 230000000699 topical effect Effects 0.000 description 7
- 201000005667 central retinal vein occlusion Diseases 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 239000003862 glucocorticoid Substances 0.000 description 6
- 239000003094 microcapsule Substances 0.000 description 6
- 230000002207 retinal effect Effects 0.000 description 6
- 206010058202 Cystoid macular oedema Diseases 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 210000005252 bulbus oculi Anatomy 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 230000004393 visual impairment Effects 0.000 description 5
- 201000004569 Blindness Diseases 0.000 description 4
- 206010022557 Intermediate uveitis Diseases 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 230000004410 intraocular pressure Effects 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 208000001351 Epiretinal Membrane Diseases 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 3
- 206010030113 Oedema Diseases 0.000 description 3
- 208000017442 Retinal disease Diseases 0.000 description 3
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 210000001328 optic nerve Anatomy 0.000 description 3
- 230000000649 photocoagulation Effects 0.000 description 3
- 229920000747 poly(lactic acid) Polymers 0.000 description 3
- 150000003180 prostaglandins Chemical class 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 210000004127 vitreous body Anatomy 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 206010015943 Eye inflammation Diseases 0.000 description 2
- 208000031471 Macular fibrosis Diseases 0.000 description 2
- 208000008469 Peptic Ulcer Diseases 0.000 description 2
- 208000002158 Proliferative Vitreoretinopathy Diseases 0.000 description 2
- 206010064714 Radiation retinopathy Diseases 0.000 description 2
- 206010038848 Retinal detachment Diseases 0.000 description 2
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 2
- 206010038934 Retinopathy proliferative Diseases 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 229920013641 bioerodible polymer Polymers 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 238000000315 cryotherapy Methods 0.000 description 2
- 201000010206 cystoid macular edema Diseases 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 206010014801 endophthalmitis Diseases 0.000 description 2
- 210000000744 eyelid Anatomy 0.000 description 2
- 201000001421 hyperglycemia Diseases 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000003589 local anesthetic agent Substances 0.000 description 2
- 208000018769 loss of vision Diseases 0.000 description 2
- 231100000864 loss of vision Toxicity 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 208000021971 neovascular inflammatory vitreoretinopathy Diseases 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000006785 proliferative vitreoretinopathy Effects 0.000 description 2
- 230000004264 retinal detachment Effects 0.000 description 2
- 210000001210 retinal vessel Anatomy 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229940037128 systemic glucocorticoids Drugs 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000008728 vascular permeability Effects 0.000 description 2
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical class CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- FHIDNBAQOFJWCA-UAKXSSHOSA-N 5-fluorouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 FHIDNBAQOFJWCA-UAKXSSHOSA-N 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 206010002945 Aphakia Diseases 0.000 description 1
- 208000031104 Arterial Occlusive disease Diseases 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 206010007764 Cataract subcapsular Diseases 0.000 description 1
- 208000003569 Central serous chorioretinopathy Diseases 0.000 description 1
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 1
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 1
- 208000002691 Choroiditis Diseases 0.000 description 1
- 208000016134 Conjunctival disease Diseases 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 206010053990 Dacryostenosis acquired Diseases 0.000 description 1
- 206010012688 Diabetic retinal oedema Diseases 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 208000001860 Eye Infections Diseases 0.000 description 1
- 208000029728 Eyelid disease Diseases 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 206010022941 Iridocyclitis Diseases 0.000 description 1
- 208000010038 Ischemic Optic Neuropathy Diseases 0.000 description 1
- 208000035719 Maculopathy Diseases 0.000 description 1
- 206010063341 Metamorphopsia Diseases 0.000 description 1
- 206010061876 Obstruction Diseases 0.000 description 1
- 206010030043 Ocular hypertension Diseases 0.000 description 1
- 206010030924 Optic ischaemic neuropathy Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000004788 Pars Planitis Diseases 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 208000003971 Posterior uveitis Diseases 0.000 description 1
- 208000033796 Pseudophakia Diseases 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 201000007737 Retinal degeneration Diseases 0.000 description 1
- 206010038899 Retinal telangiectasia Diseases 0.000 description 1
- 206010048955 Retinal toxicity Diseases 0.000 description 1
- 208000004350 Strabismus Diseases 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 206010064996 Ulcerative keratitis Diseases 0.000 description 1
- 208000000208 Wet Macular Degeneration Diseases 0.000 description 1
- 208000029977 White Dot Syndromes Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000023564 acute macular neuroretinopathy Diseases 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 201000007058 anterior ischemic optic neuropathy Diseases 0.000 description 1
- 201000004612 anterior uveitis Diseases 0.000 description 1
- 230000001466 anti-adreneric effect Effects 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 206010005159 blepharospasm Diseases 0.000 description 1
- 230000000744 blepharospasm Effects 0.000 description 1
- 210000004155 blood-retinal barrier Anatomy 0.000 description 1
- 230000004378 blood-retinal barrier Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000001886 ciliary effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 208000021921 corneal disease Diseases 0.000 description 1
- 201000007717 corneal ulcer Diseases 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 201000011190 diabetic macular edema Diseases 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 229940068204 drug implant Drugs 0.000 description 1
- 239000003844 drug implant Substances 0.000 description 1
- 208000011325 dry age related macular degeneration Diseases 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 201000004356 excessive tearing Diseases 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- VWQWXZAWFPZJDA-CGVGKPPMSA-N hydrocortisone succinate Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COC(=O)CCC(O)=O)[C@@H]4[C@@H]3CCC2=C1 VWQWXZAWFPZJDA-CGVGKPPMSA-N 0.000 description 1
- 229950006240 hydrocortisone succinate Drugs 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 208000016747 lacrimal apparatus disease Diseases 0.000 description 1
- 208000000617 lacrimal duct obstruction Diseases 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229960003744 loteprednol etabonate Drugs 0.000 description 1
- DMKSVUSAATWOCU-HROMYWEYSA-N loteprednol etabonate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)OCCl)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O DMKSVUSAATWOCU-HROMYWEYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 230000004379 myopia Effects 0.000 description 1
- 210000001640 nerve ending Anatomy 0.000 description 1
- 230000004112 neuroprotection Effects 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 238000011422 pharmacological therapy Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 201000010041 presbyopia Diseases 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 201000007914 proliferative diabetic retinopathy Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 208000022749 pupil disease Diseases 0.000 description 1
- 208000014733 refractive error Diseases 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004258 retinal degeneration Effects 0.000 description 1
- 230000004283 retinal dysfunction Effects 0.000 description 1
- 231100000385 retinal toxicity Toxicity 0.000 description 1
- 210000001957 retinal vein Anatomy 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000001982 uveitic effect Effects 0.000 description 1
- 230000006496 vascular abnormality Effects 0.000 description 1
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 208000000318 vitreous detachment Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/0008—Introducing ophthalmic products into the ocular cavity or retaining products therein
- A61F9/0017—Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
- A61K9/0051—Ocular inserts, ocular implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
- A61K9/1647—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
- A61K9/1694—Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/2031—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
- A61K9/204—Polyesters, e.g. poly(lactide-co-glycolide)
Definitions
- This invention relates to implants and methods for treating an ocular condition.
- the present invention relates to implants and methods for treating an ocular condition by implanting into an ocular region or site a bioerodible implant comprising an active agent and a bioerodible polymer matrix, wherein the implant is made by a double extrusion process.
- the bioerodible implants of this invention have varying and extended release rates to provide for improved kinetics of release of one or more active (therapeutic) agents over time.
- An ocular condition can include a disease, aliment or condition which affects or involves the eye or one of the parts or regions of the eye.
- the eye includes the eyeball and the tissues and fluids which constitute the eyeball, the periocular muscles (such as the oblique and rectus muscles) and the portion of the optic nerve which is within or adjacent to the eyeball.
- An anterior ocular condition is a disease, ailment or condition which affects or which involves an anterior (i.e. front of the eye) ocular region or site, such as a periocular muscle, an eye lid or an eye ball tissue or fluid which is located anterior to the posterior wall of the lens capsule or ciliary muscles.
- an anterior ocular condition primarily affects or involves, the conjunctiva, the cornea, the conjunctiva, the anterior chamber, the iris, the posterior chamber (behind the retina but in front of the posterior wall of the lens capsule), the lens or the lens capsule and blood vessels and nerve which vascularize or innervate an anterior ocular region or site.
- a posterior ocular condition is a disease, ailment or condition which primarily affects or involves a posterior ocular region or site such as choroid or sclera (in a position posterior to a plane through the posterior wall of the lens capsule), vitreous, vitreous chamber, retina, optic nerve (i.e. the optic disc), and blood vessels and nerves which vascularize or innervate a posterior ocular region or site.
- a posterior ocular condition can include a disease, ailment or condition, such as for example, macular degeneration (such as non-exudative age related macular degeneration and exudative age related macular degeneration); choroidal neovascularization; acute macular neuroretinopathy; macular edema (such as cystoid macular edema and diabetic macular edema); Behcet’s disease, retinal disorders, diabetic retinopathy (including proliferative diabetic retinopathy); retinal arterial occlusive disease; central retinal vein occlusion; uveitic retinal disease; retinal detachment; ocular trauma which affects a posterior ocular site or location; a posterior ocular condition caused by or influenced by an ocular laser treatment; posterior ocular conditions caused by or influenced by a photodynamic therapy; photocoagulation; radiation retinopathy; epiretinal membrane disorders; branch retinal vein occlusion; anterior ischemic optic neuro
- An anterior ocular condition can include a disease, ailment or condition, such as for example, aphakia; pseudophakia; astigmatism; blepharospasm; cataract; conjunctival diseases; conjunctivitis; corneal diseases;, corneal ulcer; dry eye syndromes; eyelid diseases; lacrimal apparatus diseases; lacrimal duct obstruction; myopia; presbyopia; pupil disorders; refractive disorders and strabismus.
- Glaucoma can also be considered to be an anterior ocular condition because a clinical goal of glaucoma treatment can be to reduce a hypertension of aqueous fluid in the anterior chamber of the eye (i.e. reduce intraocular pressure).
- the present invention is concerned with and directed to an implant and methods for the treatment of an ocular condition, such as an anterior ocular condition or a posterior ocular condition or to an ocular condition which can be characterized as both an anterior ocular condition and a posterior ocular condition.
- an ocular condition such as an anterior ocular condition or a posterior ocular condition
- an ocular condition which can be characterized as both an anterior ocular condition and a posterior ocular condition.
- Therapeutic compounds useful for the treatment of an ocular condition can include active agents with, for example, an anti-neoplastic, anti-angiogenesis, kinase inhibition, anticholinergic, anti-adrenergic and/or anti-inflammatory activity.
- Macular degeneration such as age related macular degeneration (“AMD”) is a leading cause of blindness in the world. It is estimated that thirteen million Americans have evidence of macular degeneration. Macular degeneration results in a break down the macula, the light-sensitive part of the retina responsible for the sharp, direct vision needed to read or drive. Central vision is especially affected. Macular degeneration is diagnosed as either dry (atrophic) or wet (exudative). The dry form of macular degeneration is more common than the wet form of macular degeneration, with about 90% of AMD patients being diagnosed with dry AMD. The wet form of the disease usually leads to more serious vision loss. Macular degeneration can produce a slow or sudden painless loss of vision. The cause of macular degeneration is not clear.
- AMD age related macular degeneration
- the dry form of AMD may result from the aging and thinning of macular tissues, depositing of pigment in the macula, or a combination of the two processes.
- wet AMD new blood vessels grow beneath the retina and leak blood and fluid. This leakage causes retinal cells to die and creates blind spots in central vision.
- Macular edema (“ME”) can result in a swelling of the macula.
- the edema is caused by fluid leaking from retinal blood vessels. Blood leaks out of the weak vessel walls into a very small area of the macula which is rich in cones, the nerve endings that detect color and from which daytime vision depends. Blurring then occurs in the middle or just to the side of the central visual field. Visual loss can progress over a period of months. Retinal blood vessel obstruction, eye inflammation, and age-related macular degeneration have all been associated with macular edema. The macula may also be affected by swelling following cataract extraction. Symptoms of ME include blurred central vision, distorted vision, vision tinted pink and light sensitivity.
- Causes of ME can include retinal vein occlusion, macular degeneration, diabetic macular leakage, eye inflammation, idiopathic central serous chorioretinopathy, anterior or posterior uveitis, pars planitis, retinitis pigmentosa, radiation retinopathy, posterior vitreous detachment, epiretinal membrane formation, idiopathic juxtafoveal retinal telangiectasia, Nd:YAG capsulotomy or iridotomy.
- Some patients with ME may have a history of use of topical epinephrine or prostaglandin analogs for glaucoma.
- the first line of treatment for ME is typically anti-inflammatory drops topically applied.
- Macular edema is a non-specific response of the retina to a variety of insults. It is associated with a number of diseases, including uveitis, retinal vascular abnormalities (diabetic retinopathy and retinal vein occlusive disease), a sequelae of cataract surgery (post-cataract cystoid macular oedema), macular epiretinal membranes, and inherited or acquired retinal degeneration. Macular edema involves the breakdown of the inner blood retinal barrier at the level of the capillary endothelium, resulting in abnormal retinal vascular permeability and leakage into the adjacent retinal tissues.
- Macular edema may occur in diseases causing cumulative injury over many years, such as diabetic retinopathy, or as a result of more acute events, such as central retinal vein occlusion or branch retinal vein occlusion.
- macular edema resolves spontaneously or with short-term treatment.
- Therapeutic choices for macular oedema depend on the cause and severity of the condition.
- Focal/grid laser photocoagulation has been shown to be efficacious in the prevention of moderate visual loss for macular oedema due to diabetic retinopathy (Akduman L, Olk RS. The early treatment diabetic retinopathy study. In: Kertes PS, Conway MD, eds. Clinical trials in ophthalmology: a summary and practice guide. Baltimore, MD: Lippincott Williams & Wilkins; 1998:15-35; Frank RN. Etiologic mechanisms in diabetic retinopathy.
- An anti-inflammatory (i.e. immunosuppressive) agent can be used for the treatment of an ocular condition, such as a posterior ocular condition, which involves inflammation, such as an uveitis or macula edema.
- an ocular condition such as a posterior ocular condition, which involves inflammation, such as an uveitis or macula edema.
- topical or oral glucocorticoids have been used to treat uveitis.
- a major problem with topical and oral drug administration is the inability of the drug to achieve an adequate (i.e. therapeutic) intraocular concentration. See e.g. Bloch-Michel E. (1992). Opening address: intermediate uveitis , In Intermediate Uveitis, Dev. Ophthalmol, W.R.F. Böke et al. editors., Basel: Karger, 23:1-2; Pinar, V., et al.
- Systemic glucocorticoid administration can be used alone or in addition to topical glucocorticoids for the treatment of uveitis.
- prolonged exposure to high plasma concentrations (administration of 1 mg/kg/day for 2-3 weeks) of steroid is often necessary so that therapeutic levels can be achieved in the eye.
- intravitreal injection of a drug has shown promising results, but due to the short intraocular half-life of active agent, such as glucocorticoids (approximately 3 hours), intravitreal injections must be frequently repeated to maintain a therapeutic drug level. In turn, this repetitive process increases the potential for side effects such as retinal detachment, endophthalmitis, and cataracts. Maurice, D.M. (1983). Micropharmaceutics of the eye , Ocular Inflammation Ther. 1:97-102; Olsen, T.W. et al. (1995). Human scleral permeability: effects of age, cryotherapy, transscleral diode laser, and surgical thinning , Invest. Ophthalmol. Vis. Sci.
- U.S. Pat. 6,217,895 discusses a method of administering a corticosteroid to the posterior segment of the eye, but does not disclose a bioerodible implant.
- U.S. Pat. 5,501,856 discloses controlled release pharmaceutical preparations for intraocular implants to be applied to the interior of the eye after a surgical operation for disorders in retina/vitreous body or for glaucoma.
- U.S. Pat. 5,869,079 discloses combinations of hydrophilic and hydrophobic entities in a biodegradable sustained release implant, and describes a polylactic acid polyglycolic acid (PLGA) copolymer implant comprising dexamethasone.
- PLGA polylactic acid polyglycolic acid
- the 100-120 ⁇ g 50/50 PLGA/dexamethasone implant disclosed did not show appreciable drug release until the beginning of the fourth week, unless a release enhancer, such as HPMC was added to the formulation.
- U.S. Pat. No. 5,824,072 discloses implants for introduction into a suprachoroidal space or an avascular region of the eye, and describes a methylcellulose (i.e. non-biodegradable) implant comprising dexamethasone.
- WO 9513765 discloses implants comprising active agents for introduction into a suprachoroidal or an avascular region of an eye for therapeutic purposes.
- U.S. Pat. 4,997,652 and 5,164,188 disclose biodegradable ocular implants comprising microencapsulated drugs, and describes implanting microcapsules comprising hydrocortisone succinate into the posterior segment of the eye.
- U.S. Pat. 5,164,188 discloses encapsulated agents for introduction into the suprachoroid of the eye, and describes placing microcapsules and plaques comprising hydrocortisone into the pars plana.
- U.S. Pat. Nos. 5,443,505 and 5,766,242 discloses implants comprising active agents for introduction into a suprachoroidal space or an avascular region of the eye, and describes placing microcapsules and plaques comprising hydrocortisone into the pars plana.
- Zhou et al. disclose a multiple-drug implant comprising 5-fluorouridine, triamcinolone, and human recombinant tissue plasminogen activator for intraocular management of proliferative vitreoretinopathy (PVR).
- PVR proliferative vitreoretinopathy
- U.S. Pat. 6,046,187 discusses methods and compositions for modulating local anesthetic by administering one or more glucocorticosteroid agents before, simultaneously with or after the administration of a local anesthetic at a site in a patient.
- U.S. Pat. 3,986,510 discusses ocular inserts having one or more inner reservoirs of a drug formulation confined within a bioerodible drug release rate controlling material of a shape adapted for insertion and retention in the “sac of the eye,” which is indicated as being bounded by the surfaces of the bulbar conjunctiva of the sclera of the eyeball and the palpebral conjunctiva of the eyelid, or for placement over the corneal section of the eye.
- U.S. Pat. 6,369,116 discusses an implant with a release modifier inserted in a scleral flap.
- EP 0 654256 discusses use of a scleral plug after surgery on a vitreous body, for plugging an incision.
- U.S. Pat. 4,863,457 discusses the use of a bioerodible implant to prevent failure of glaucoma filtration surgery by positioning the implant either in the subconjunctival region between the conjunctival membrane overlying it and the sclera beneath it or within the sclera itself within a partial thickness sclera flap.
- EP 488 401 discusses intraocular implants, made of certain polylactic acids, to be applied to the interior of the eye after a surgical operation for disorders of the retina/vitreous body or for glaucoma.
- EP 430539 discusses use of a bioerodible implant which is inserted in the suprachoroid.
- U.S. Pat. 6,726,918 discusses implants for treating inflammation mediated conditions of the eye.
- PLGA co-polymer formulations of a bioerodible polymer comprising an active agent typically release the active agent with a characteristic sigmoidal release profile (as viewed as time vs percent of total active agent released), that is after a relatively long initial lag period (the first release phase) when little if any active agent is released, there is a high positive slope period when most of the active agent is released (the second release phase) followed by another near horizontal (third) release phase, when the drug release reaches a plateau.
- One of the alternatives to intravitreal injection to administer drugs is the placement of biodegradable implants under the sclera or into the subconjunctival or suprachoroidal space, as described in U.S. 4,863,457 to Lee; WO 95/13765 to Wong et al.; WO 00/37056 to Wong et al.; EP 430,539 to Wong; in Gould et al., Can. J. Ophthalmol. 29(4):168-171 (1994); and in Apel et al., Curr. Eye Res. 14:659-667 (1995).
- the composition delivers non-steroidal anti-inflammatory drugs from PLGA microspheres made by a solvent extraction process or PLGA microcapsules prepared by a solvent evaporation process over a duration of 24 hours to 2 months.
- the composition delivers various pharmaceuticals from PLGA microcapsules over a duration of 1-100 days.
- the PLGA microspheres or microcapsules are administered orally or as an aqueous injectable formulation. As mentioned above, there is poor partitioning of drug into the eye with oral administration.
- an aqueous injectable drug composition for injecting into the eye
- an injectable may increase intraocular volume to a point where intraocular pressures would then become pathologic.
- Potent corticosteroids such as dexamethasone suppress inflammation by inhibiting edema, fibrin deposition, capillary leakage and phagocytic migration, all key features of the inflammatory response.
- Corticosteroids prevent the release of prostaglandins, some of which have been identified as mediators of cystoid macular oedema (Leopold IH. Nonsteroidal and steroidal anti-inflammatory agents. In: Sears M, Tarkkanen A, eds. Surgical pharmacology of the eye. New York, NY: Raven Press; 1985:83-133; Tennant JL. Cystoid maculopathy: 125 prostaglandins in ophthalmology. In: Emery JM, ed.
- VEGF vascular endothelial growth factor
- cytokine which is a potent promoter of vascular permeability
- dexamethasone to date, by conventional routes of administration, has yielded limited success in treating retinal disorders, including macular oedema, largely due to the inability to deliver and maintain adequate quantities of the drug to the posterior segment without resultant toxicity.
- topical administration of dexamethasone only about 1% reaches the anterior segment, and only a fraction of that amount moves into the posterior segment (Lee VHL, Pince KJ, Frambach DA, Martini B. Drug delivery to the posterior segment.
- Ogden TE, Schachat AP eds. Retina. St. Louis, MO: CV Mosby, 1989, chap 25:483-498).
- Adverse reactions listed for conventional ophthalmic dexamethasone preparations include: ocular hypertension, glaucoma, posterior subcapsular cataract formation, and secondary ocular infection from pathogens including herpes simplex (Lee et al, 1989 supra; Skalka HW, Prchal JT. Effect of corticosteroids on cataract formation. Arch Ophthalmol 1980;98:1773-1777; Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin 1992;10(3):505-512; Physician’s Desk Reference, 2003). Systemic doses are associated with additional hazardous side-effects including hypertension, hyperglycemias, increased susceptibility to infection, and peptic ulcers (Physician’s Desk Reference, 2003).
- a biodegradable implant for delivering a therapeutic agent to an ocular region may provide significant medical benefit for patients afflicted with a medical condition of the eye.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Ophthalmology & Optometry (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Communicable Diseases (AREA)
- Diabetes (AREA)
- Oncology (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Rheumatology (AREA)
- Virology (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Pain & Pain Management (AREA)
- Emergency Medicine (AREA)
- Obesity (AREA)
- Urology & Nephrology (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Prostheses (AREA)
Abstract
Description
- This application is continuation of U.S. Pat. Application Serial No. 16/915,017, filed Jun. 29, 2020, which is a continuation of U.S. Pat. Application Serial No. 16/132,857, filed Sep. 17, 2018, now U.S. Pat. No. 10,702,539, issued Jul. 7, 2020, which is a continuation of U.S. Pat. Application Serial No. 14/949,454, filed Nov. 23, 2015, now U.S. Pat. No. 10,076,526, issued Sep. 18, 2018, which is a continuation of U.S. Pat. Application Serial No. 13/922,482, filed Jun. 20, 2013, now U.S. Pat. No. 9,192,511, issued Nov. 24, 2015, which is a continuation of U.S. Pat. Application Serial No. 13/797,230, filed Mar. 12, 2013, now U.S. Pat. No. 8,778,381, issued Jul. 15, 2014, which is a continuation of U.S. Pat. Application Serial No. 13/213,473, filed Aug. 19, 2011, now U.S. Pat. No. 8,506,987, issued Aug. 13, 2013, which is a divisional of U.S. Pat. Application Serial No. 11/932,101, filed Oct. 31, 2007, now U.S. Pat. No. 8,034,366, issued Oct. 11, 2011, which is a continuation of U.S. Pat. Application Serial No. 10/918,597, filed Aug. 13, 2004, now abandoned, the entire contents of all seven applications are herein incorporated by reference in their entirety.
- This invention relates to implants and methods for treating an ocular condition. In particular the present invention relates to implants and methods for treating an ocular condition by implanting into an ocular region or site a bioerodible implant comprising an active agent and a bioerodible polymer matrix, wherein the implant is made by a double extrusion process. The bioerodible implants of this invention have varying and extended release rates to provide for improved kinetics of release of one or more active (therapeutic) agents over time.
- An ocular condition can include a disease, aliment or condition which affects or involves the eye or one of the parts or regions of the eye. Broadly speaking the eye includes the eyeball and the tissues and fluids which constitute the eyeball, the periocular muscles (such as the oblique and rectus muscles) and the portion of the optic nerve which is within or adjacent to the eyeball. An anterior ocular condition is a disease, ailment or condition which affects or which involves an anterior (i.e. front of the eye) ocular region or site, such as a periocular muscle, an eye lid or an eye ball tissue or fluid which is located anterior to the posterior wall of the lens capsule or ciliary muscles. Thus, an anterior ocular condition primarily affects or involves, the conjunctiva, the cornea, the conjunctiva, the anterior chamber, the iris, the posterior chamber (behind the retina but in front of the posterior wall of the lens capsule), the lens or the lens capsule and blood vessels and nerve which vascularize or innervate an anterior ocular region or site. A posterior ocular condition is a disease, ailment or condition which primarily affects or involves a posterior ocular region or site such as choroid or sclera (in a position posterior to a plane through the posterior wall of the lens capsule), vitreous, vitreous chamber, retina, optic nerve (i.e. the optic disc), and blood vessels and nerves which vascularize or innervate a posterior ocular region or site.
- Thus, a posterior ocular condition can include a disease, ailment or condition, such as for example, macular degeneration (such as non-exudative age related macular degeneration and exudative age related macular degeneration); choroidal neovascularization; acute macular neuroretinopathy; macular edema (such as cystoid macular edema and diabetic macular edema); Behcet’s disease, retinal disorders, diabetic retinopathy (including proliferative diabetic retinopathy); retinal arterial occlusive disease; central retinal vein occlusion; uveitic retinal disease; retinal detachment; ocular trauma which affects a posterior ocular site or location; a posterior ocular condition caused by or influenced by an ocular laser treatment; posterior ocular conditions caused by or influenced by a photodynamic therapy; photocoagulation; radiation retinopathy; epiretinal membrane disorders; branch retinal vein occlusion; anterior ischemic optic neuropathy; non-retinopathy diabetic retinal dysfunction, retinitis pigmentosa and glaucoma. Glaucoma can be considered a posterior ocular condition because the therapeutic goal is to prevent the loss of or reduce the occurrence of loss of vision due to damage to or loss of retinal cells or optic nerve cells (i.e. neuroprotection).
- An anterior ocular condition can include a disease, ailment or condition, such as for example, aphakia; pseudophakia; astigmatism; blepharospasm; cataract; conjunctival diseases; conjunctivitis; corneal diseases;, corneal ulcer; dry eye syndromes; eyelid diseases; lacrimal apparatus diseases; lacrimal duct obstruction; myopia; presbyopia; pupil disorders; refractive disorders and strabismus. Glaucoma can also be considered to be an anterior ocular condition because a clinical goal of glaucoma treatment can be to reduce a hypertension of aqueous fluid in the anterior chamber of the eye (i.e. reduce intraocular pressure).
- The present invention is concerned with and directed to an implant and methods for the treatment of an ocular condition, such as an anterior ocular condition or a posterior ocular condition or to an ocular condition which can be characterized as both an anterior ocular condition and a posterior ocular condition.
- Therapeutic compounds useful for the treatment of an ocular condition can include active agents with, for example, an anti-neoplastic, anti-angiogenesis, kinase inhibition, anticholinergic, anti-adrenergic and/or anti-inflammatory activity.
- Macular degeneration, such as age related macular degeneration (“AMD”) is a leading cause of blindness in the world. It is estimated that thirteen million Americans have evidence of macular degeneration. Macular degeneration results in a break down the macula, the light-sensitive part of the retina responsible for the sharp, direct vision needed to read or drive. Central vision is especially affected. Macular degeneration is diagnosed as either dry (atrophic) or wet (exudative). The dry form of macular degeneration is more common than the wet form of macular degeneration, with about 90% of AMD patients being diagnosed with dry AMD. The wet form of the disease usually leads to more serious vision loss. Macular degeneration can produce a slow or sudden painless loss of vision. The cause of macular degeneration is not clear. The dry form of AMD may result from the aging and thinning of macular tissues, depositing of pigment in the macula, or a combination of the two processes. With wet AMD, new blood vessels grow beneath the retina and leak blood and fluid. This leakage causes retinal cells to die and creates blind spots in central vision.
- Macular edema (“ME”) can result in a swelling of the macula. The edema is caused by fluid leaking from retinal blood vessels. Blood leaks out of the weak vessel walls into a very small area of the macula which is rich in cones, the nerve endings that detect color and from which daytime vision depends. Blurring then occurs in the middle or just to the side of the central visual field. Visual loss can progress over a period of months. Retinal blood vessel obstruction, eye inflammation, and age-related macular degeneration have all been associated with macular edema. The macula may also be affected by swelling following cataract extraction. Symptoms of ME include blurred central vision, distorted vision, vision tinted pink and light sensitivity. Causes of ME can include retinal vein occlusion, macular degeneration, diabetic macular leakage, eye inflammation, idiopathic central serous chorioretinopathy, anterior or posterior uveitis, pars planitis, retinitis pigmentosa, radiation retinopathy, posterior vitreous detachment, epiretinal membrane formation, idiopathic juxtafoveal retinal telangiectasia, Nd:YAG capsulotomy or iridotomy. Some patients with ME may have a history of use of topical epinephrine or prostaglandin analogs for glaucoma. The first line of treatment for ME is typically anti-inflammatory drops topically applied.
- Macular edema is a non-specific response of the retina to a variety of insults. It is associated with a number of diseases, including uveitis, retinal vascular abnormalities (diabetic retinopathy and retinal vein occlusive disease), a sequelae of cataract surgery (post-cataract cystoid macular oedema), macular epiretinal membranes, and inherited or acquired retinal degeneration. Macular edema involves the breakdown of the inner blood retinal barrier at the level of the capillary endothelium, resulting in abnormal retinal vascular permeability and leakage into the adjacent retinal tissues. The macula becomes thickened due to fluid accumulation resulting in significant disturbances in visual acuity (Ahmed I, Ai E. Macular disorders: cystoid macular oedema. In: Yanoff M, Duker JS, eds. Ophthalmology. London: Mosby; 1999:34; Dick J, Jampol LM, Haller JA. Macular edema. In: Ryan S, Schachat AP, eds. Retina. 3rd ed. St. Louis, MO: CVMosby; 2001, v2,
Section 2 chap 57:967-979). - Macular edema may occur in diseases causing cumulative injury over many years, such as diabetic retinopathy, or as a result of more acute events, such as central retinal vein occlusion or branch retinal vein occlusion.
- In some cases macular edema resolves spontaneously or with short-term treatment. Therapeutic choices for macular oedema depend on the cause and severity of the condition. Currently there are no approved pharmacological therapies for macular edema. Focal/grid laser photocoagulation has been shown to be efficacious in the prevention of moderate visual loss for macular oedema due to diabetic retinopathy (Akduman L, Olk RS. The early treatment diabetic retinopathy study. In: Kertes PS, Conway MD, eds. Clinical trials in ophthalmology: a summary and practice guide. Baltimore, MD: Lippincott Williams & Wilkins; 1998:15-35; Frank RN. Etiologic mechanisms in diabetic retinopathy. In: Ryan S, Schachat AP, eds. Retina. 3rd ed. St. Louis, MO: CV Mosby; 2001, v2,
Section 2, chap 71:1259-1294). Argon laser photocoagulation increased the likelihood of vision improvement in patients with macular oedema due to branch retinal vein occlusion (BRVO) (Orth D. The branch vein occlusion study. In: Kertes P, Conway M, eds. Clinical trials in ophthalmology: a summary and practice guide. Baltimore, MD: Lippincott Williams & Wilkins; 1998:113-127; Fekrat S, Finkelstein D. The Central Vein Occlusion Study. In: Kertes PS, Conway MD, eds. Clinical trials in ophthalmology: a summary and practice guide. Baltimore, MD: Lippincott Williams & Wilkins; 1998:129-143), but not in patients with macular oedema due to central retinal vein occlusion (CRVO) (Fekrat and Finkelstein 1998, supra; Clarkson JG. Central retinal vein occlusion. In: Ryan S, Schachat AP, eds. Retina. 3rd ed. St. Louis, MO: CV Mosby; 2001, v2, chap 75:1368 -1375). For CRVO, there are no known effective therapies. - An anti-inflammatory (i.e. immunosuppressive) agent can be used for the treatment of an ocular condition, such as a posterior ocular condition, which involves inflammation, such as an uveitis or macula edema. Thus, topical or oral glucocorticoids have been used to treat uveitis. A major problem with topical and oral drug administration is the inability of the drug to achieve an adequate (i.e. therapeutic) intraocular concentration. See e.g. Bloch-Michel E. (1992). Opening address: intermediate uveitis, In Intermediate Uveitis, Dev. Ophthalmol, W.R.F. Böke et al. editors., Basel: Karger, 23:1-2; Pinar, V., et al. (1997). “Intraocular inflammation and uveitis” In Basic and Clinical Science Course. Section 9 (1997-1998) San Francisco: American Academy of Ophthalmology, pp. 57-80, 102-103, 152-156; Böke, W. (1992). Clinical picture of intermediate uveitis, In Intermediate Uveitis, Dev. Ophthalmol. W.R.F. Böke et al. editors., Basel: Karger, 23:20-7; and Cheng C-K et al. (1995). Intravitreal sustained-release dexamethasone device in the treatment of experimental uveitis, Invest. Ophthalmol. Vis. Sci. 36:442-53.
- Systemic glucocorticoid administration can be used alone or in addition to topical glucocorticoids for the treatment of uveitis. However, prolonged exposure to high plasma concentrations (administration of 1 mg/kg/day for 2-3 weeks) of steroid is often necessary so that therapeutic levels can be achieved in the eye.
- Unfortunately, these high drug plasma levels commonly lead to systemic side effects such as hypertension, hyperglycemia, increased susceptibility to infection, peptic ulcers, psychosis, and other complications. Cheng C-K et al. (1995). Intravitreal sustained-release dexamethasone device in the treatment of experimental uveitis, Invest. Ophthalmol. Vis. Sci. 36:442-53; Schwartz, B. (1966). The response of ocular pressure to corticosteroids, Ophthalmol. Clin. North Am. 6:929-89; Skalka, H.W. et al. (1980). Effect of corticosteroids on cataract formation, Arch Ophthalmol 98:1773-7; and Renfro, L. et al. (1992). Ocular effects of topical and systemic steroids, Dermatologic Clinics 10:505-12.
- Additionally, delivery to the eye of a therapeutic amount of an active agent can be difficult, if not impossible, for drugs with short plasma half-lives since the exposure of the drug to intraocular tissues is limited. Therefore, a more efficient way of delivering a drug to treat a posterior ocular condition is to place the drug directly in the eye, such as directly into the vitreous. Maurice, D.M. (1983). Micropharmaceutics of the eye, Ocular Inflammation Ther. 1:97-102; Lee, V.H.L. et al. (1989). Drug delivery to the posterior segment”
Chapter 25 In Retina. T.E. Ogden and A.P. Schachat eds., St. Louis: CV Mosby, Vol. 1, pp. 483-98; and Olsen, T.W. et al. (1995). Human scleral permeability: effects of age, cryotherapy, transscleral diode laser, and surgical thinning, Invest. Ophthalmol. Vis. Sci. 36:1893-1903. - Techniques such as intravitreal injection of a drug have shown promising results, but due to the short intraocular half-life of active agent, such as glucocorticoids (approximately 3 hours), intravitreal injections must be frequently repeated to maintain a therapeutic drug level. In turn, this repetitive process increases the potential for side effects such as retinal detachment, endophthalmitis, and cataracts. Maurice, D.M. (1983). Micropharmaceutics of the eye, Ocular Inflammation Ther. 1:97-102; Olsen, T.W. et al. (1995). Human scleral permeability: effects of age, cryotherapy, transscleral diode laser, and surgical thinning, Invest. Ophthalmol. Vis. Sci. 36:1893-1903; and Kwak, H.W. and D’Amico, D. J. (1992). Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection, Arch. Ophthalmol. 110:259-66.
- Additionally, topical, systemic, and periocular glucocorticoid treatment must be monitored closely due to toxicity and the long-term side effects associated with chronic systemic drug exposure sequelae. Rao, N.A. et al. (1997). Intraocular inflammation and uveitis, In Basic and Clinical Science Course. Section 9 (1997-1998) San Francisco: American Academy of Ophthalmology, pp. 57-80, 102-103, 152-156; Schwartz, B. (1966). The response of ocular pressure to corticosteroids, Ophthalmol Clin North Am 6:929-89; Skalka, H.W. and Pichal, J.T. (1980). Effect of corticosteroids on cataract formation, Arch Ophthalmol 98:1773-7; Renfro, L and Snow, J.S. (1992). Ocular effects of topical and systemic steroids, Dermatologic Clinics 10:505-12; Bodor, N. et al. (1992). A comparison of intraocular pressure elevating activity of loteprednol etabonate and dexamethasone in rabbits, Current Eye Research 11:525-30.
- U.S. Pat. 6,217,895 discusses a method of administering a corticosteroid to the posterior segment of the eye, but does not disclose a bioerodible implant.
- U.S. Pat. 5,501,856 discloses controlled release pharmaceutical preparations for intraocular implants to be applied to the interior of the eye after a surgical operation for disorders in retina/vitreous body or for glaucoma.
- U.S. Pat. 5,869,079 discloses combinations of hydrophilic and hydrophobic entities in a biodegradable sustained release implant, and describes a polylactic acid polyglycolic acid (PLGA) copolymer implant comprising dexamethasone. As shown by in vitro testing of the drug release kinetics, the 100-120
µg 50/50 PLGA/dexamethasone implant disclosed did not show appreciable drug release until the beginning of the fourth week, unless a release enhancer, such as HPMC was added to the formulation. - U.S. Pat. No. 5,824,072 discloses implants for introduction into a suprachoroidal space or an avascular region of the eye, and describes a methylcellulose (i.e. non-biodegradable) implant comprising dexamethasone. WO 9513765 discloses implants comprising active agents for introduction into a suprachoroidal or an avascular region of an eye for therapeutic purposes.
- U.S. Pat. 4,997,652 and 5,164,188 disclose biodegradable ocular implants comprising microencapsulated drugs, and describes implanting microcapsules comprising hydrocortisone succinate into the posterior segment of the eye.
- U.S. Pat. 5,164,188 discloses encapsulated agents for introduction into the suprachoroid of the eye, and describes placing microcapsules and plaques comprising hydrocortisone into the pars plana. U.S. Pat. Nos. 5,443,505 and 5,766,242 discloses implants comprising active agents for introduction into a suprachoroidal space or an avascular region of the eye, and describes placing microcapsules and plaques comprising hydrocortisone into the pars plana.
- Zhou et al. disclose a multiple-drug implant comprising 5-fluorouridine, triamcinolone, and human recombinant tissue plasminogen activator for intraocular management of proliferative vitreoretinopathy (PVR). Zhou, T, et al. (1998). Development of a multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy, Journal of Controlled Release 55: 281-295.
- U.S. Pat. 6,046,187 discusses methods and compositions for modulating local anesthetic by administering one or more glucocorticosteroid agents before, simultaneously with or after the administration of a local anesthetic at a site in a patient.
- U.S. Pat. 3,986,510 discusses ocular inserts having one or more inner reservoirs of a drug formulation confined within a bioerodible drug release rate controlling material of a shape adapted for insertion and retention in the “sac of the eye,” which is indicated as being bounded by the surfaces of the bulbar conjunctiva of the sclera of the eyeball and the palpebral conjunctiva of the eyelid, or for placement over the corneal section of the eye.
- U.S. Pat. 6,369,116 discusses an implant with a release modifier inserted in a scleral flap.
-
EP 0 654256 discusses use of a scleral plug after surgery on a vitreous body, for plugging an incision. - U.S. Pat. 4,863,457 discusses the use of a bioerodible implant to prevent failure of glaucoma filtration surgery by positioning the implant either in the subconjunctival region between the conjunctival membrane overlying it and the sclera beneath it or within the sclera itself within a partial thickness sclera flap.
- EP 488 401 discusses intraocular implants, made of certain polylactic acids, to be applied to the interior of the eye after a surgical operation for disorders of the retina/vitreous body or for glaucoma.
- EP 430539 discusses use of a bioerodible implant which is inserted in the suprachoroid.
- U.S. Pat. 6,726,918 discusses implants for treating inflammation mediated conditions of the eye.
- Significantly, it is known that PLGA co-polymer formulations of a bioerodible polymer comprising an active agent typically release the active agent with a characteristic sigmoidal release profile (as viewed as time vs percent of total active agent released), that is after a relatively long initial lag period (the first release phase) when little if any active agent is released, there is a high positive slope period when most of the active agent is released (the second release phase) followed by another near horizontal (third) release phase, when the drug release reaches a plateau.
- One of the alternatives to intravitreal injection to administer drugs is the placement of biodegradable implants under the sclera or into the subconjunctival or suprachoroidal space, as described in U.S. 4,863,457 to Lee; WO 95/13765 to Wong et al.; WO 00/37056 to Wong et al.; EP 430,539 to Wong; in Gould et al., Can. J. Ophthalmol. 29(4):168-171 (1994); and in Apel et al., Curr. Eye Res. 14:659-667 (1995).
- Furthermore, the controlled release of drugs from polylactide/polyglycolide (PLGA) copolymers into the vitreous has been disclosed, e.g., in U.S. 5,501,856 to Ohtori et al. and EP 654,256 to Ogura.
- Recent experimental work has demonstrated that uncapped PLGA degrades faster than capped (end-capped) PLGA (Park et al., J. Control. Rel. 55:181-191 (1998); Tracy et al., Biomaterials 20:1057-1062 (1999); and Jong et al., Polymer 42:2795-2802 (2001). Accordingly, implants containing mixtures of uncapped and capped PLGA have been formed to modulate drug release. For example, U.S. 6,217,911 to Vaughn et al. (‘911) and U.S. 6,309,669 to Setterstrom et al. (‘669) disclose the delivery of drugs from a blend of uncapped and capped PLGA copolymer to curtail initial burst release of the drugs. In the ‘911 patent, the composition delivers non-steroidal anti-inflammatory drugs from PLGA microspheres made by a solvent extraction process or PLGA microcapsules prepared by a solvent evaporation process over a duration of 24 hours to 2 months. In the ‘669 patent, the composition delivers various pharmaceuticals from PLGA microcapsules over a duration of 1-100 days. The PLGA microspheres or microcapsules are administered orally or as an aqueous injectable formulation. As mentioned above, there is poor partitioning of drug into the eye with oral administration. Furthermore, use of an aqueous injectable drug composition (for injecting into the eye) should be avoided since the eye is a closed space (limited volume) with intraocular pressure ranges that are strictly maintained. Administration of an injectable may increase intraocular volume to a point where intraocular pressures would then become pathologic.
- Potent corticosteroids such as dexamethasone suppress inflammation by inhibiting edema, fibrin deposition, capillary leakage and phagocytic migration, all key features of the inflammatory response. Corticosteroids prevent the release of prostaglandins, some of which have been identified as mediators of cystoid macular oedema (Leopold IH. Nonsteroidal and steroidal anti-inflammatory agents. In: Sears M, Tarkkanen A, eds. Surgical pharmacology of the eye. New York, NY: Raven Press; 1985:83-133; Tennant JL. Cystoid maculopathy: 125 prostaglandins in ophthalmology. In: Emery JM, ed. Current concepts in cataract surgery: selected proceedings of the fifth biennial cataract surgical congress,
Section 3. St. Louis, MO: CV Mosby; 1978;360-362). Additionally, corticosteroids including dexamethasone have been shown to inhibit the expression of vascular endothelial growth factor (VEGF), a cytokine which is a potent promoter of vascular permeability (Nauck M, Karakiulakis G, Perruchoud AP, Papakonstantinou E, Roth M. Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur J Pharmacol 1998;341:309-315). - The use of dexamethasone to date, by conventional routes of administration, has yielded limited success in treating retinal disorders, including macular oedema, largely due to the inability to deliver and maintain adequate quantities of the drug to the posterior segment without resultant toxicity. After topical administration of dexamethasone, only about 1% reaches the anterior segment, and only a fraction of that amount moves into the posterior segment (Lee VHL, Pince KJ, Frambach DA, Martini B. Drug delivery to the posterior segment. In: Ogden TE, Schachat AP, eds. Retina. St. Louis, MO: CV Mosby, 1989, chap 25:483-498). Although intravitreal injections of dexamethasone have been used, the exposure to the drug is very brief as the half-life of the drug within the eye is approximately 3 hours (Peyman GA, Herbst R. Bacterial endophthalmitis. Arch Ophthalmol 1974;91:416-418). Periocular and posterior sub-Tenon’s injections of dexamethasone also have a short term treatment effect (Riordan-Eva P, Lightman S. Orbital floor steroid injections in the treatment of uveitis. Eye 1994;8 (Pt 1):66-69; Jennings T, Rusin M, Tessler H, Cunha-Vaz J. Posterior sub-Tenon’s injections of corticosteroids in uveitis patients with cystoid macular edema. Jpn J Ophthalmol 1988;32:385-391).
- Adverse reactions listed for conventional ophthalmic dexamethasone preparations include: ocular hypertension, glaucoma, posterior subcapsular cataract formation, and secondary ocular infection from pathogens including herpes simplex (Lee et al, 1989 supra; Skalka HW, Prchal JT. Effect of corticosteroids on cataract formation. Arch Ophthalmol 1980;98:1773-1777; Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin 1992;10(3):505-512; Physician’s Desk Reference, 2003). Systemic doses are associated with additional hazardous side-effects including hypertension, hyperglycemias, increased susceptibility to infection, and peptic ulcers (Physician’s Desk Reference, 2003).
- By delivering a drug directly into the vitreous cavity, blood eye barriers can be circumvented and intraocular therapeutic levels can be achieved with minimal risk of systemic toxicity (Lee et al, 1989 supra). This route of administration typically results in a short half-life unless the drug can be delivered using a formulation capable of providing sustained release.
- Consequently, a biodegradable implant for delivering a therapeutic agent to an ocular region may provide significant medical benefit for patients afflicted with a medical condition of the eye.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/812,133 US20230172948A1 (en) | 2004-08-13 | 2022-07-12 | Ocular implant made by a double extrusion proces |
US18/611,454 US20240238312A1 (en) | 2004-08-13 | 2024-03-20 | Ocular implant made by a double extrusion process |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/918,597 US20050048099A1 (en) | 2003-01-09 | 2004-08-13 | Ocular implant made by a double extrusion process |
US11/932,101 US8034366B2 (en) | 2003-01-09 | 2007-10-31 | Ocular implant made by a double extrusion process |
US13/213,473 US8506987B2 (en) | 2003-01-09 | 2011-08-19 | Ocular implant made by a double extrusion process |
US13/797,230 US8778381B2 (en) | 2003-01-09 | 2013-03-12 | Ocular implant made by a double extrusion process |
US13/922,482 US9192511B2 (en) | 2003-01-09 | 2013-06-20 | Ocular implant made by a double extrusion process |
US14/949,454 US10076526B2 (en) | 2003-01-09 | 2015-11-23 | Ocular implant made by a double extrusion process |
US16/132,857 US10702539B2 (en) | 2003-01-09 | 2018-09-17 | Ocular implant made by a double extrusion process |
US16/915,017 US20210113592A1 (en) | 2003-01-09 | 2020-06-29 | Ocular implant made by a double extrusion proces |
US17/812,133 US20230172948A1 (en) | 2004-08-13 | 2022-07-12 | Ocular implant made by a double extrusion proces |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/915,017 Continuation US20210113592A1 (en) | 2003-01-09 | 2020-06-29 | Ocular implant made by a double extrusion proces |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/611,454 Continuation US20240238312A1 (en) | 2004-08-13 | 2024-03-20 | Ocular implant made by a double extrusion process |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230172948A1 true US20230172948A1 (en) | 2023-06-08 |
Family
ID=35825444
Family Applications (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/918,597 Abandoned US20050048099A1 (en) | 2003-01-09 | 2004-08-13 | Ocular implant made by a double extrusion process |
US11/931,954 Expired - Fee Related US8034370B2 (en) | 2003-01-09 | 2007-10-31 | Ocular implant made by a double extrusion process |
US11/932,101 Expired - Fee Related US8034366B2 (en) | 2003-01-09 | 2007-10-31 | Ocular implant made by a double extrusion process |
US12/173,746 Expired - Fee Related US8048445B2 (en) | 2003-01-09 | 2008-07-15 | Ocular implant made by a double extrusion process |
US13/213,473 Expired - Lifetime US8506987B2 (en) | 2003-01-09 | 2011-08-19 | Ocular implant made by a double extrusion process |
US13/224,041 Expired - Fee Related US8318070B2 (en) | 2003-01-09 | 2011-09-01 | Ocular implant made by a double extrusion process |
US13/797,230 Expired - Lifetime US8778381B2 (en) | 2003-01-09 | 2013-03-12 | Ocular implant made by a double extrusion process |
US13/922,482 Expired - Fee Related US9192511B2 (en) | 2003-01-09 | 2013-06-20 | Ocular implant made by a double extrusion process |
US14/949,454 Expired - Lifetime US10076526B2 (en) | 2003-01-09 | 2015-11-23 | Ocular implant made by a double extrusion process |
US16/132,857 Expired - Fee Related US10702539B2 (en) | 2003-01-09 | 2018-09-17 | Ocular implant made by a double extrusion process |
US16/915,017 Abandoned US20210113592A1 (en) | 2003-01-09 | 2020-06-29 | Ocular implant made by a double extrusion proces |
US17/812,133 Abandoned US20230172948A1 (en) | 2004-08-13 | 2022-07-12 | Ocular implant made by a double extrusion proces |
US18/611,454 Pending US20240238312A1 (en) | 2004-08-13 | 2024-03-20 | Ocular implant made by a double extrusion process |
Family Applications Before (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/918,597 Abandoned US20050048099A1 (en) | 2003-01-09 | 2004-08-13 | Ocular implant made by a double extrusion process |
US11/931,954 Expired - Fee Related US8034370B2 (en) | 2003-01-09 | 2007-10-31 | Ocular implant made by a double extrusion process |
US11/932,101 Expired - Fee Related US8034366B2 (en) | 2003-01-09 | 2007-10-31 | Ocular implant made by a double extrusion process |
US12/173,746 Expired - Fee Related US8048445B2 (en) | 2003-01-09 | 2008-07-15 | Ocular implant made by a double extrusion process |
US13/213,473 Expired - Lifetime US8506987B2 (en) | 2003-01-09 | 2011-08-19 | Ocular implant made by a double extrusion process |
US13/224,041 Expired - Fee Related US8318070B2 (en) | 2003-01-09 | 2011-09-01 | Ocular implant made by a double extrusion process |
US13/797,230 Expired - Lifetime US8778381B2 (en) | 2003-01-09 | 2013-03-12 | Ocular implant made by a double extrusion process |
US13/922,482 Expired - Fee Related US9192511B2 (en) | 2003-01-09 | 2013-06-20 | Ocular implant made by a double extrusion process |
US14/949,454 Expired - Lifetime US10076526B2 (en) | 2003-01-09 | 2015-11-23 | Ocular implant made by a double extrusion process |
US16/132,857 Expired - Fee Related US10702539B2 (en) | 2003-01-09 | 2018-09-17 | Ocular implant made by a double extrusion process |
US16/915,017 Abandoned US20210113592A1 (en) | 2003-01-09 | 2020-06-29 | Ocular implant made by a double extrusion proces |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/611,454 Pending US20240238312A1 (en) | 2004-08-13 | 2024-03-20 | Ocular implant made by a double extrusion process |
Country Status (24)
Country | Link |
---|---|
US (13) | US20050048099A1 (en) |
EP (3) | EP1870092B1 (en) |
JP (1) | JP4949245B2 (en) |
KR (2) | KR101365772B1 (en) |
CN (3) | CN102319432B (en) |
AR (1) | AR051278A1 (en) |
AT (1) | ATE381319T1 (en) |
AU (2) | AU2005290240B2 (en) |
BR (1) | BRPI0513849B8 (en) |
CA (1) | CA2576392C (en) |
CY (1) | CY1107823T1 (en) |
DE (1) | DE602005003957T2 (en) |
DK (1) | DK1776091T3 (en) |
ES (3) | ES2414231T3 (en) |
IL (2) | IL180865A (en) |
MX (1) | MX2007001538A (en) |
NO (1) | NO342740B1 (en) |
NZ (1) | NZ552679A (en) |
PL (2) | PL382452A1 (en) |
PT (1) | PT1776091E (en) |
RU (1) | RU2389479C2 (en) |
SI (1) | SI1776091T1 (en) |
TW (1) | TWI332846B (en) |
WO (1) | WO2006036280A1 (en) |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060280774A1 (en) * | 1995-06-02 | 2006-12-14 | Allergan, Inc. | Compositions and methods for treating glaucoma |
US5869079A (en) * | 1995-06-02 | 1999-02-09 | Oculex Pharmaceuticals, Inc. | Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents |
US6726918B1 (en) | 2000-07-05 | 2004-04-27 | Oculex Pharmaceuticals, Inc. | Methods for treating inflammation-mediated conditions of the eye |
BR0115772A (en) * | 2000-11-29 | 2004-01-13 | Oculex Pharm Inc | Processes for reducing or preventing eye transplant rejection and intraocular implants for use in transplantation |
US7431710B2 (en) | 2002-04-08 | 2008-10-07 | Glaukos Corporation | Ocular implants with anchors and methods thereof |
US20050048099A1 (en) | 2003-01-09 | 2005-03-03 | Allergan, Inc. | Ocular implant made by a double extrusion process |
CN102380098B (en) | 2003-08-27 | 2015-07-22 | 奥普索特克公司 | Combination therapy for the treatment of ocular neovascular disorders |
US20050244469A1 (en) | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Extended therapeutic effect ocular implant treatments |
US20070212395A1 (en) * | 2006-03-08 | 2007-09-13 | Allergan, Inc. | Ocular therapy using sirtuin-activating agents |
US20050244461A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Controlled release drug delivery systems and methods for treatment of an eye |
US20160106717A1 (en) | 2004-09-24 | 2016-04-21 | Gen Pharma Holdings LLC | Cai-based systems and methods for the localized treatment of uveitis |
US20060204548A1 (en) * | 2005-03-01 | 2006-09-14 | Allergan, Inc. | Microimplants for ocular administration |
AU2006272497B2 (en) | 2005-07-27 | 2012-07-19 | University Of Florida Research Foundation, Inc. | Small compounds that correct protein misfolding and uses thereof |
US8168584B2 (en) | 2005-10-08 | 2012-05-01 | Potentia Pharmaceuticals, Inc. | Methods of treating age-related macular degeneration by compstatin and analogs thereof |
KR101430760B1 (en) * | 2005-10-18 | 2014-08-19 | 알러간, 인코포레이티드 | Ophthalmic therapy using glucocorticoid derivatives selectively penetrating into the posterior segment of the eye |
US8236904B2 (en) * | 2005-12-28 | 2012-08-07 | Ethicon, Inc. | Bioabsorbable polymer compositions exhibiting enhanced crystallization and hydrolysis rates |
US7756524B1 (en) | 2006-01-31 | 2010-07-13 | Nextel Communications Inc. | System and method for partially count-based allocation of vocoder resources |
US20070178138A1 (en) * | 2006-02-01 | 2007-08-02 | Allergan, Inc. | Biodegradable non-opthalmic implants and related methods |
US20070260203A1 (en) * | 2006-05-04 | 2007-11-08 | Allergan, Inc. | Vasoactive agent intraocular implant |
CN101505696B (en) * | 2006-06-21 | 2012-11-14 | 庄臣及庄臣视力保护公司 | Punctal plugs for the delivery of active agents |
US8802128B2 (en) | 2006-06-23 | 2014-08-12 | Allergan, Inc. | Steroid-containing sustained release intraocular implants and related methods |
US8409277B2 (en) * | 2006-07-11 | 2013-04-02 | Refocus Ocular, Inc. | Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods |
US8911496B2 (en) | 2006-07-11 | 2014-12-16 | Refocus Group, Inc. | Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods |
US8846073B2 (en) | 2006-12-19 | 2014-09-30 | Allergan, Inc. | Low temperature processes for making cyclic lipid implants for intraocular use |
US8231892B2 (en) * | 2007-05-24 | 2012-07-31 | Allergan, Inc. | Biodegradable drug delivery system |
CN104288844A (en) * | 2007-10-18 | 2015-01-21 | 杜雷科特公司 | Biodegradable implants with controlled bulk density |
JP5330401B2 (en) * | 2007-11-08 | 2013-10-30 | アリメラ・サイエンシーズ,インコーポレーテッド | Implant device for the eye and kit comprising the device |
GB0722484D0 (en) * | 2007-11-15 | 2007-12-27 | Ucl Business Plc | Solid compositions |
US20090196905A1 (en) * | 2008-02-06 | 2009-08-06 | Spada Lon T | Stabilization of mitochondrial membranes in ocular diseases and conditions |
CN101918002B (en) * | 2008-04-18 | 2013-06-26 | 麦德托尼克公司 | Methods and compositions for treating disc herniation |
US8557273B2 (en) | 2008-04-18 | 2013-10-15 | Medtronic, Inc. | Medical devices and methods including polymers having biologically active agents therein |
USRE48948E1 (en) | 2008-04-18 | 2022-03-01 | Warsaw Orthopedic, Inc. | Clonidine compounds in a biodegradable polymer |
US9095404B2 (en) | 2008-05-12 | 2015-08-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US9877973B2 (en) | 2008-05-12 | 2018-01-30 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US10064819B2 (en) | 2008-05-12 | 2018-09-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
CA2723588A1 (en) | 2008-05-12 | 2009-11-19 | University Of Utah Research Foundation | Intraocular drug delivery device and associated uses |
US20100098772A1 (en) * | 2008-10-21 | 2010-04-22 | Allergan, Inc. | Drug delivery systems and methods for treating neovascularization |
MX2011005311A (en) * | 2008-11-19 | 2011-07-29 | Refocus Group Inc | Artificial intraocular lens, altered natural crystalline lens, or refilled natural crystalline lens capsule with one or more scleral prostheses for improved performance. |
US20100204325A1 (en) * | 2009-02-11 | 2010-08-12 | Allergan, Inc. | Valproic acid drug delivery systems and intraocular therapeutic uses thereof |
US20100239632A1 (en) | 2009-03-23 | 2010-09-23 | Warsaw Orthopedic, Inc. | Drug depots for treatment of pain and inflammation in sinus and nasal cavities or cardiac tissue |
US10206813B2 (en) | 2009-05-18 | 2019-02-19 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
EP3785683B1 (en) | 2009-05-18 | 2023-11-01 | Dose Medical Corporation | Drug eluting ocular implant |
CA2764063C (en) | 2009-06-03 | 2019-05-14 | Forsight Labs, Llc | Anterior segment drug delivery |
IN2012DN00352A (en) | 2009-06-16 | 2015-08-21 | Bikam Pharmaceuticals Inc | |
TW201105363A (en) * | 2009-07-14 | 2011-02-16 | Univ Yamagata | Eye drop for macular edema treatment |
US20120177741A1 (en) * | 2009-09-29 | 2012-07-12 | Eyegate Pharmaceuticals, Inc. | Positively-charged poly (d,l-lactide-co-glycolide) nanoparticles and fabrication methods of the same |
US20110124736A1 (en) | 2009-11-09 | 2011-05-26 | Allergan, Inc. | Compositions and methods for stimulating hair growth |
DE102010014113A1 (en) * | 2010-04-07 | 2011-10-13 | Acino Ag | Release procedure for implants |
WO2011133370A1 (en) * | 2010-04-23 | 2011-10-27 | Medtronic, Inc. | Shelf stable pharmaceutical depot |
US9370444B2 (en) | 2010-10-12 | 2016-06-21 | Emmett T. Cunningham, JR. | Subconjunctival conformer device and uses thereof |
US8915877B2 (en) | 2010-10-12 | 2014-12-23 | Emmett T. Cunningham, JR. | Glaucoma drainage device and uses thereof |
ES2739490T3 (en) | 2010-11-16 | 2020-01-31 | Univ Leland Stanford Junior | Systems for the treatment of dry eye |
US9821159B2 (en) | 2010-11-16 | 2017-11-21 | The Board Of Trustees Of The Leland Stanford Junior University | Stimulation devices and methods |
US9005634B2 (en) | 2011-04-13 | 2015-04-14 | Medtronic, Inc. | Shelf stable pharmaceutical depot |
US10245178B1 (en) | 2011-06-07 | 2019-04-02 | Glaukos Corporation | Anterior chamber drug-eluting ocular implant |
CN106431988A (en) | 2011-06-14 | 2017-02-22 | 比卡姆药品公司 | Opsin-binding ligands, compositions and methods of use |
JP5989780B2 (en) | 2011-09-14 | 2016-09-07 | フォーサイト・ビジョン5・インコーポレイテッドForsight Vision5,Inc. | Eye insertion device and method |
BR112014012997A2 (en) | 2011-11-30 | 2017-06-13 | Bikam Pharmaceuticals Inc | opsin binding binders, compositions and methods of use |
AU2012346537A1 (en) | 2011-12-01 | 2014-07-17 | Bikam Pharmaceuticals, Inc. | Opsin-binding ligands, compositions and methods of use |
GB201120771D0 (en) * | 2011-12-02 | 2012-01-11 | Ljt Projects Ltd | tear duct resistance measuring system |
US8945214B2 (en) | 2011-12-19 | 2015-02-03 | Allergan, Inc. | Intravitreal applicator |
US10675376B2 (en) * | 2012-05-24 | 2020-06-09 | Ethicon Llc | Mechanically strong absorbable polymeric blend compositions of precisely controllable absorption rates, processing methods, and products therefrom |
AU2013323553B2 (en) * | 2012-09-27 | 2018-07-12 | Allergan, Inc. | Biodegradable drug delivery systems for the sustained release of proteins |
PT2911623T (en) | 2012-10-26 | 2019-11-21 | Forsight Vision5 Inc | Ophthalmic system for sustained release of drug to eye |
DK2920201T3 (en) | 2012-11-15 | 2020-04-14 | Apellis Pharmaceuticals Inc | Long-acting compstatin analogs and related compositions and methods |
CA2897197C (en) | 2013-01-15 | 2022-06-07 | The Regents Of The University Of Colorado, A Body Corporate | Lacrimal system drug delivery device |
HK1218850A1 (en) | 2013-02-15 | 2017-03-17 | Allergan, Inc. | Sustained drug delivery implant |
NZ710658A (en) | 2013-02-18 | 2019-12-20 | Vegenics Pty Ltd | Ligand binding molecules and uses thereof |
US9717627B2 (en) | 2013-03-12 | 2017-08-01 | Oculeve, Inc. | Implant delivery devices, systems, and methods |
US10308687B2 (en) | 2013-03-15 | 2019-06-04 | Apellis Pharmaceuticals, Inc. | Cell-penetrating compstatin analogs and uses thereof |
DK2981248T3 (en) * | 2013-04-01 | 2020-11-30 | Allergan Inc | MICROSPHERE MEDICINE DELIVERY SYSTEM FOR LONG-TERM INTRAOCULAR RELEASE |
NZ745920A (en) | 2013-04-19 | 2020-01-31 | Oculeve Inc | Nasal stimulation devices and methods |
CN105431204A (en) | 2013-07-12 | 2016-03-23 | 奥普索特克公司 | Method for treating or preventing ophthalmic diseases |
US20150114855A1 (en) * | 2013-10-24 | 2015-04-30 | Aaren Scientific Inc. | Hydrophilic iol packaging system |
HUE050913T2 (en) * | 2013-11-15 | 2021-01-28 | Allergan Inc | Methods of treatment of ocular conditions with a sustained drug delivery implant |
EP3074056B1 (en) * | 2013-11-27 | 2018-03-14 | Ethicon LLC | Absorbable polymeric blend compositions with precisely controllable absorption rates, processing methods, and dimensionally stable medical devices therefrom |
ES2812752T3 (en) | 2014-02-25 | 2021-03-18 | Oculeve Inc | Polymer formulations for nasolacrimal stimulation |
RU2557925C1 (en) * | 2014-03-17 | 2015-07-27 | Новиков Сергей Викторович | Biodegradable multilayer implant for administering drug substances into vitreal cavity of eye |
JP6655610B2 (en) | 2014-05-29 | 2020-02-26 | グローコス コーポレーション | IMPLANT WITH CONTROLLED DRUG DELIVERY FUNCTION AND METHOD OF USING THE SAME |
EP3171928B1 (en) | 2014-07-25 | 2020-02-26 | Oculeve, Inc. | Stimulation patterns for treating dry eye |
CN104164505B (en) * | 2014-08-08 | 2016-01-13 | 重庆医科大学附属第一医院 | A test kit for detecting VKH syndrome |
AU2015316710B2 (en) * | 2014-09-19 | 2020-07-23 | Oxular Limited | Ophthalmic drug compositions |
WO2016065215A1 (en) | 2014-10-22 | 2016-04-28 | Oculeve, Inc. | Stimulation devices and methods for treating dry eye |
US9764150B2 (en) | 2014-10-22 | 2017-09-19 | Oculeve, Inc. | Contact lens for increasing tear production |
CA2965363A1 (en) | 2014-10-22 | 2016-04-28 | Oculeve, Inc. | Implantable nasal stimulator systems and methods |
US20160296532A1 (en) | 2015-04-13 | 2016-10-13 | Forsight Vision5, Inc. | Ocular Insert Composition of a Semi-Crystalline or Crystalline Pharmaceutically Active Agent |
JP7014610B2 (en) * | 2015-06-29 | 2022-02-01 | ライラ・セラピューティクス・インコーポレーテッド | Implantable scaffolding for the treatment of sinusitis |
WO2017040853A1 (en) | 2015-09-02 | 2017-03-09 | Glaukos Corporation | Drug delivery implants with bi-directional delivery capacity |
US11564833B2 (en) | 2015-09-25 | 2023-01-31 | Glaukos Corporation | Punctal implants with controlled drug delivery features and methods of using same |
AU2016334247B2 (en) | 2015-10-07 | 2021-09-30 | Apellis Pharmaceuticals, Inc. | Dosing regimens |
US11857461B2 (en) | 2015-11-23 | 2024-01-02 | The Regents Of The University Of Colorado, A Body Corporate | Lacrimal system for drug delivery |
US10426958B2 (en) | 2015-12-04 | 2019-10-01 | Oculeve, Inc. | Intranasal stimulation for enhanced release of ocular mucins and other tear proteins |
US10252048B2 (en) | 2016-02-19 | 2019-04-09 | Oculeve, Inc. | Nasal stimulation for rhinitis, nasal congestion, and ocular allergies |
JP7003110B2 (en) | 2016-04-20 | 2022-01-20 | ドーズ メディカル コーポレーション | Bioabsorbable eye drug delivery device |
CA3022683A1 (en) | 2016-05-02 | 2017-11-09 | Oculeve, Inc. | Intranasal stimulation for treatment of meibomian gland disease and blepharitis |
AU2017268379A1 (en) | 2016-05-20 | 2018-12-06 | The Regents Of The University Of Colorado, A Body Corporate | Lacrimal drug delivery device |
CN110022755A (en) | 2016-12-02 | 2019-07-16 | 奥库利维公司 | Device and method for xerophthalmia prediction and treatment recommendations |
US11273072B2 (en) | 2017-01-13 | 2022-03-15 | Gyroscope Therapeutics Limited | Suprachoroidal injection device |
IL314891A (en) | 2017-04-07 | 2024-10-01 | Apellis Pharmaceuticals Inc | Dosage regimens and related preparations and methods |
KR20240146696A (en) | 2017-09-15 | 2024-10-08 | 옥슬러 리미티드 | Ophthalmic delivery device |
JP2021507884A (en) | 2017-12-15 | 2021-02-25 | アペリス・ファーマシューティカルズ・インコーポレイテッドApellis Pharmaceuticals,Inc. | Administration regimen and related compositions and methods |
CN109265458B (en) * | 2018-11-12 | 2020-09-15 | 中国医学科学院药用植物研究所 | Matrine-based antitumor drug compound |
CN109464705B (en) * | 2018-11-19 | 2021-08-17 | 爱尔眼科医院集团股份有限公司 | A kind of RPE cell sheet and its application and preparation method |
US11039954B2 (en) | 2019-03-21 | 2021-06-22 | Microoptx Inc. | Implantable ocular drug delivery devices and methods |
WO2020227407A1 (en) * | 2019-05-07 | 2020-11-12 | Cornell University | Temporary synthetic carrier for corneal tissue insertion and tissue delivery |
CA3144406A1 (en) | 2019-06-27 | 2020-12-30 | Layerbio, Inc. | Ocular device delivery methods and systems |
US20210060316A1 (en) * | 2019-08-30 | 2021-03-04 | Intersect Ent, Inc. | Submucosal bioresorbable drug eluting platform |
WO2021136697A1 (en) * | 2019-12-30 | 2021-07-08 | Universidad Complutense De Madrid | A non-human animal mammalian model of chronic glaucoma |
US20230086256A1 (en) * | 2020-01-28 | 2023-03-23 | Merck Sharp & Dohme Llc | Drug delivery system for the delivery of steroid to vitreous chamber of the eye |
IL296687A (en) | 2020-03-25 | 2022-11-01 | Ocular Therapeutix Inc | Ocular implant containing a tyrosine kinase inhibitor |
CN114533648A (en) * | 2020-11-26 | 2022-05-27 | 成都康弘药业集团股份有限公司 | Axitinib intraocular implant |
US11998562B2 (en) * | 2021-01-25 | 2024-06-04 | University Of South Florida | Ophthalmological formulations for the prevention of a coronavirus infection |
CA3238759A1 (en) * | 2021-12-06 | 2023-06-15 | Ocular Therapeutix, Inc. | Extruded ocular inserts or implants and methods thereof |
CN115969612A (en) * | 2022-12-20 | 2023-04-18 | 重庆医科大学附属第三医院(捷尔医院) | Biodegradable aqueous humor drainage device for treating glaucoma and preparation method thereof |
BE1032133B1 (en) | 2023-11-10 | 2025-06-10 | Unid Mfg Sa | INTEGRATED STRESS EQUALIZATION DURING FILAMENT EXTRUSION FOR MEDICAL APPLICATIONS |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020111603A1 (en) * | 1996-12-02 | 2002-08-15 | Societe De Conseils De Recherches Et D'application | Device for local administration of solid or semi-solid formulations and delayed-release formulations for proposal parental administration and preparation process |
US20020182185A1 (en) * | 2000-11-29 | 2002-12-05 | Wong Vernon G. | Method for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor |
US20040137059A1 (en) * | 2003-01-09 | 2004-07-15 | Thierry Nivaggioli | Biodegradable ocular implant |
US8034366B2 (en) * | 2003-01-09 | 2011-10-11 | Allergan, Inc. | Ocular implant made by a double extrusion process |
Family Cites Families (168)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL297357A (en) * | 1962-08-31 | |||
US3416530A (en) | 1966-03-02 | 1968-12-17 | Richard A. Ness | Eyeball medication dispensing tablet |
US3986510A (en) * | 1971-09-09 | 1976-10-19 | Alza Corporation | Bioerodible ocular device |
US3845770A (en) | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3916899A (en) | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US3914402A (en) * | 1973-06-14 | 1975-10-21 | Alza Corp | Ophthalmic dosage form, for releasing medication over time |
SE390255B (en) * | 1974-02-18 | 1976-12-13 | N G Y Torphammar | RELEASE DEVICE PREFERRED FOR A SAFETY BELT IN A VEHICLE |
US3961628A (en) * | 1974-04-10 | 1976-06-08 | Alza Corporation | Ocular drug dispensing system |
US3921632A (en) | 1974-08-16 | 1975-11-25 | Frank M Bardani | Implant device |
GB1478759A (en) * | 1974-11-18 | 1977-07-06 | Alza Corp | Process for forming outlet passageways in pills using a laser |
US4180646A (en) | 1975-01-28 | 1979-12-25 | Alza Corporation | Novel orthoester polymers and orthocarbonate polymers |
US4144317A (en) * | 1975-05-30 | 1979-03-13 | Alza Corporation | Device consisting of copolymer having acetoxy groups for delivering drugs |
US4014334A (en) * | 1976-02-02 | 1977-03-29 | Alza Corporation | Laminated osmotic system for dispensing beneficial agent |
US4063064A (en) | 1976-02-23 | 1977-12-13 | Coherent Radiation | Apparatus for tracking moving workpiece by a laser beam |
US4201210A (en) * | 1976-06-22 | 1980-05-06 | The United States Of America As Represented By The Secretary Of Agriculture | Veterinary ocular ring device for sustained drug release |
US4186184A (en) * | 1977-12-27 | 1980-01-29 | Alza Corporation | Selective administration of drug with ocular therapeutic system |
US4285987A (en) * | 1978-10-23 | 1981-08-25 | Alza Corporation | Process for manufacturing device with dispersion zone |
US4200098A (en) * | 1978-10-23 | 1980-04-29 | Alza Corporation | Osmotic system with distribution zone for dispensing beneficial agent |
US4300557A (en) | 1980-01-07 | 1981-11-17 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Method for treating intraocular malignancies |
US4402979A (en) * | 1980-03-21 | 1983-09-06 | Merck & Co., Inc. & Laboratories | Ophthalmic formulations of 5-fluoro-2-methyl-1-(p-methylthiobenzylidene)-3-indenylacetic acid |
US4304765A (en) | 1980-10-14 | 1981-12-08 | Alza Corporation | Ocular insert housing steroid in two different therapeutic forms |
DE3168032D1 (en) | 1980-11-10 | 1985-02-14 | Alza Corp | Erodible polymer containing erosion rate modifier |
US4327725A (en) * | 1980-11-25 | 1982-05-04 | Alza Corporation | Osmotic device with hydrogel driving member |
JPS58126435U (en) * | 1982-02-19 | 1983-08-27 | オリンパス光学工業株式会社 | Aperture control circuit for TTL auto strobe |
US4451254A (en) * | 1982-03-15 | 1984-05-29 | Eli Lilly And Company | Implant system |
US4599353A (en) * | 1982-05-03 | 1986-07-08 | The Trustees Of Columbia University In The City Of New York | Use of eicosanoids and their derivatives for treatment of ocular hypertension and glaucoma |
DE3220156C2 (en) * | 1982-05-28 | 1990-01-25 | Heida Houston Tex. Thurlow | Cooking and roasting utensils with lids provided with metal handles, in particular stainless steel handles |
US4530840A (en) | 1982-07-29 | 1985-07-23 | The Stolle Research And Development Corporation | Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents |
IT1229075B (en) | 1985-04-05 | 1991-07-17 | Fidia Farmaceutici | Topical compsn. contg. hyaluronic acid deriv. as vehicle |
US4478818A (en) * | 1982-12-27 | 1984-10-23 | Alza Corporation | Ocular preparation housing steroid in two different therapeutic forms |
US4521210A (en) * | 1982-12-27 | 1985-06-04 | Wong Vernon G | Eye implant for relieving glaucoma, and device and method for use therewith |
US6217911B1 (en) * | 1995-05-22 | 2001-04-17 | The United States Of America As Represented By The Secretary Of The Army | sustained release non-steroidal, anti-inflammatory and lidocaine PLGA microspheres |
US6309669B1 (en) * | 1984-03-16 | 2001-10-30 | The United States Of America As Represented By The Secretary Of The Army | Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix |
US4629621A (en) * | 1984-07-23 | 1986-12-16 | Zetachron, Inc. | Erodible matrix for sustained release bioactive composition |
US5082655A (en) * | 1984-07-23 | 1992-01-21 | Zetachron, Inc. | Pharmaceutical composition for drugs subject to supercooling |
US4668506A (en) * | 1985-08-16 | 1987-05-26 | Bausch & Lomb Incorporated | Sustained-release formulation containing and amino acid polymer |
US4966849A (en) * | 1985-09-20 | 1990-10-30 | President And Fellows Of Harvard College | CDNA and genes for human angiogenin (angiogenesis factor) and methods of expression |
DE3612212A1 (en) * | 1986-04-11 | 1987-10-15 | Basf Ag | METHOD FOR PRODUCING SOLID PHARMACEUTICAL FORMS |
US4756911A (en) * | 1986-04-16 | 1988-07-12 | E. R. Squibb & Sons, Inc. | Controlled release formulation |
US4959217A (en) * | 1986-05-22 | 1990-09-25 | Syntex (U.S.A.) Inc. | Delayed/sustained release of macromolecules |
US5322691A (en) * | 1986-10-02 | 1994-06-21 | Sohrab Darougar | Ocular insert with anchoring protrusions |
US4863457A (en) * | 1986-11-24 | 1989-09-05 | Lee David A | Drug delivery device |
US5006342A (en) * | 1986-12-22 | 1991-04-09 | Cygnus Corporation | Resilient transdermal drug delivery device |
DE3734223A1 (en) | 1987-10-09 | 1989-04-20 | Boehringer Ingelheim Kg | IMPLANTABLE, BIODEGRADABLE ACTIVE SUBSTANCE RELEASE SYSTEM |
US4853224A (en) * | 1987-12-22 | 1989-08-01 | Visionex | Biodegradable ocular implants |
US4997652A (en) * | 1987-12-22 | 1991-03-05 | Visionex | Biodegradable ocular implants |
US4945089A (en) * | 1987-12-29 | 1990-07-31 | Alcon Laboratories, Inc. | Use of tetrahydrocortexolone to prevent elevations in intraocular pressure caused by corticosteroids |
US4865846A (en) * | 1988-06-03 | 1989-09-12 | Kaufman Herbert E | Drug delivery system |
GB8820353D0 (en) * | 1988-08-26 | 1988-09-28 | Staniforth J N | Controlled release tablet |
DE03014533T1 (en) | 1988-09-06 | 2004-07-15 | Pharmacia Ab | Prostaglandin derivatives for the treatment of glaucoma or ocular hypertension |
US5004601A (en) * | 1988-10-14 | 1991-04-02 | Zetachron, Inc. | Low-melting moldable pharmaceutical excipient and dosage forms prepared therewith |
US5019400A (en) * | 1989-05-01 | 1991-05-28 | Enzytech, Inc. | Very low temperature casting of controlled release microspheres |
US5034413A (en) * | 1989-07-27 | 1991-07-23 | Allergan, Inc. | Intraocular pressure reducing 9,11-diacyl prostaglandins |
US5028624A (en) * | 1989-07-27 | 1991-07-02 | Allergan, Inc. | Intraocular pressure reducing 9,15-diacyl prostaglandins |
SG49267A1 (en) * | 1989-08-14 | 1998-05-18 | Photogenesis Inc | Surgical instrument and cell isolation and transplantation |
US5112614A (en) * | 1989-09-14 | 1992-05-12 | Alza Corporation | Implantable delivery dispenser |
US5268178A (en) | 1989-09-25 | 1993-12-07 | The Board Of Regents, The University Of Texas System | Biodegradable antibiotic implants and methods of their use in treating and preventing infections |
US5164188A (en) | 1989-11-22 | 1992-11-17 | Visionex, Inc. | Biodegradable ocular implants |
US5660851A (en) * | 1989-12-26 | 1997-08-26 | Yissum Research Development Company Of The Hebrew Univ. Of Jerusalem | Ocular inserts |
US5175235A (en) | 1990-06-04 | 1992-12-29 | Nova Pharmaceutical Corporation | Branched polyanhydrides |
DE69105495T2 (en) | 1990-04-02 | 1995-04-06 | Pfizer | BENZYLPHOSPHONIC ACID TYROSINKINAS INHIBITORS. |
US5075115A (en) | 1990-04-02 | 1991-12-24 | Fmc Corporation | Process for polymerizing poly(lactic acid) |
ES2062634T3 (en) | 1990-08-30 | 1994-12-16 | Senju Pharma Co | COMPOSITION WITH CONTROLLED RELEASE OF THE PHARMACY. |
KR0185215B1 (en) * | 1990-11-30 | 1999-05-01 | 요시다 쇼오지 | Sustained release eye drops |
US5378475A (en) * | 1991-02-21 | 1995-01-03 | University Of Kentucky Research Foundation | Sustained release drug delivery devices |
EP0586608A1 (en) | 1991-05-29 | 1994-03-16 | Pfizer Inc. | Tricyclic polyhydroxylic tyrosine kinase inhibitors |
AU663328B2 (en) * | 1991-06-21 | 1995-10-05 | Genetics Institute, Llc | Pharmaceutical formulations of osteogenic proteins |
US5356629A (en) * | 1991-07-12 | 1994-10-18 | United States Surgical Corporation | Composition for effecting bone repair |
US5169638A (en) | 1991-10-23 | 1992-12-08 | E. R. Squibb & Sons, Inc. | Buoyant controlled release powder formulation |
EP1236471A3 (en) | 1991-11-22 | 2004-12-15 | Alcon Laboratories, Inc. | Angiostatic steroids |
US5543154A (en) * | 1991-12-27 | 1996-08-06 | Merck & Co., Inc. | Controlled release nifedipine delivery device |
US6045791A (en) * | 1992-03-06 | 2000-04-04 | Photogenesis, Inc. | Retinal pigment epithelium transplantation |
US5656297A (en) * | 1992-03-12 | 1997-08-12 | Alkermes Controlled Therapeutics, Incorporated | Modulated release from biocompatible polymers |
US5384333A (en) * | 1992-03-17 | 1995-01-24 | University Of Miami | Biodegradable injectable drug delivery polymer |
US5178635A (en) | 1992-05-04 | 1993-01-12 | Allergan, Inc. | Method for determining amount of medication in an implantable device |
GB9211268D0 (en) * | 1992-05-28 | 1992-07-15 | Ici Plc | Salts of basic peptides with carboxyterminated polyesters |
RU2155187C2 (en) | 1992-08-06 | 2000-08-27 | Варнер-Ламберт Компани | Derivatives of indole, their tautomers, mixtures of their isomers or separate isomers and pharmaceutically acceptable salts, pharmaceutical composition showing antitumor or inhibiting protein tyrosine kinase activity and method of inhibition of protein tyrosine kinase-depending disease or control of aberrant growth of mammalian or human cells |
US5922340A (en) * | 1992-09-10 | 1999-07-13 | Children's Medical Center Corporation | High load formulations and methods for providing prolonged local anesthesia |
US5688819A (en) | 1992-09-21 | 1997-11-18 | Allergan | Cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents |
US5972991A (en) * | 1992-09-21 | 1999-10-26 | Allergan | Cyclopentane heptan(ene) oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents |
US5330992A (en) * | 1992-10-23 | 1994-07-19 | Sterling Winthrop Inc. | 1-cyclopropyl-4-pyridyl-quinolinones |
DE69233803D1 (en) | 1992-10-28 | 2011-03-31 | Genentech Inc | Use of vascular endothelial growth factor antagonists |
US5314419A (en) * | 1992-10-30 | 1994-05-24 | Pelling George E | Method for dispensing ophthalmic drugs to the eye |
JP3520517B2 (en) * | 1992-11-18 | 2004-04-19 | 藤沢薬品工業株式会社 | Sustained pharmaceutical preparations |
GB9226855D0 (en) | 1992-12-23 | 1993-02-17 | Erba Carlo Spa | Vinylene-azaindole derivatives and process for their preparation |
US5538735A (en) | 1993-02-19 | 1996-07-23 | Ahn; Sam S. | Method of making a drug delivery system using hollow fibers |
CA2118515A1 (en) | 1993-02-26 | 1994-02-23 | Yuichiro Ogura | Biodegradable scleral plug |
JP3000187B2 (en) * | 1993-02-26 | 2000-01-17 | 参天製薬株式会社 | Biodegradable scleral plug |
US5707643A (en) * | 1993-02-26 | 1998-01-13 | Santen Pharmaceutical Co., Ltd. | Biodegradable scleral plug |
US5385887A (en) * | 1993-09-10 | 1995-01-31 | Genetics Institute, Inc. | Formulations for delivery of osteogenic proteins |
US5443505A (en) * | 1993-11-15 | 1995-08-22 | Oculex Pharmaceuticals, Inc. | Biocompatible ocular implants |
US6051576A (en) * | 1994-01-28 | 2000-04-18 | University Of Kentucky Research Foundation | Means to achieve sustained release of synergistic drugs by conjugation |
DE4403326C1 (en) * | 1994-02-03 | 1995-06-22 | Hans Reinhard Prof Dr Koch | Intraocular lens arrangement for astigmatism correction |
US5773021A (en) * | 1994-03-14 | 1998-06-30 | Vetoquinol S.A. | Bioadhesive ophthalmic insert |
US6586006B2 (en) * | 1994-08-04 | 2003-07-01 | Elan Drug Delivery Limited | Solid delivery systems for controlled release of molecules incorporated therein and methods of making same |
US5755785A (en) * | 1994-08-12 | 1998-05-26 | The University Of South Florida | Sutureless corneal transplantation method |
US6063116A (en) * | 1994-10-26 | 2000-05-16 | Medarex, Inc. | Modulation of cell proliferation and wound healing |
US6369116B1 (en) | 1995-06-02 | 2002-04-09 | Oculex Pharmaceuticals, Inc. | Composition and method for treating glaucoma |
US5869079A (en) * | 1995-06-02 | 1999-02-09 | Oculex Pharmaceuticals, Inc. | Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents |
US5693335A (en) | 1995-06-07 | 1997-12-02 | Cygnus, Inc. | Skin permeation enhancer composition for use with sex steroids |
KR100515314B1 (en) * | 1995-08-29 | 2006-01-27 | 피디아어드밴스드바이오폴리머스에스.알.엘 | Biomaterials to prevent adhesion after surgery containing hyaluronic acid derivatives |
US5773019A (en) * | 1995-09-27 | 1998-06-30 | The University Of Kentucky Research Foundation | Implantable controlled release device to deliver drugs directly to an internal portion of the body |
NZ325561A (en) | 1996-01-24 | 1999-06-29 | Us Army | Pharmaceutical composition containing an active ingredient and poly(lactide/glycolide) microcapsules which is a burst free controlled release formulation |
CA2260992C (en) * | 1996-08-20 | 2004-03-09 | The Regents Of The University Of California | Eye treatments using synthetic thyroid hormone compositions |
US6046187A (en) * | 1996-09-16 | 2000-04-04 | Children's Medical Center Corporation | Formulations and methods for providing prolonged local anesthesia |
CA2272073A1 (en) | 1996-11-19 | 1998-05-28 | The Schepens Eye Research Institute, Inc. | Local use of il-1ra in corneal transplant rejection or disorders of the eye |
US5941250A (en) * | 1996-11-21 | 1999-08-24 | University Of Louisville Research Foundation Inc. | Retinal tissue implantation method |
AU729870B2 (en) * | 1997-03-31 | 2001-02-15 | Alza Corporation | Diffusional implantable delivery system |
EP0992244A4 (en) | 1997-07-02 | 2001-01-17 | Santen Pharmaceutical Co Ltd | Polylactic acid scleral plugs |
JPH1170138A (en) * | 1997-07-02 | 1999-03-16 | Santen Pharmaceut Co Ltd | Polylactic acid scleral plug |
DE69827138T2 (en) * | 1997-08-11 | 2006-02-23 | Allergan, Inc., Irvine | Sterile retinoid-containing biodegradable implant with improved biocompatibility and process for its preparation |
US6306426B1 (en) | 1997-08-11 | 2001-10-23 | Allergan Sales, Inc. | Implant device with a retinoid for improved biocompatibility |
US5902598A (en) | 1997-08-28 | 1999-05-11 | Control Delivery Systems, Inc. | Sustained release drug delivery devices |
US6841684B2 (en) * | 1997-12-04 | 2005-01-11 | Allergan, Inc. | Imidiazoles having reduced side effects |
US6329369B1 (en) | 1997-12-04 | 2001-12-11 | Allergan Sales, Inc. | Methods of treating pain and other conditions |
US6196993B1 (en) | 1998-04-20 | 2001-03-06 | Eyelab Group, Llc | Ophthalmic insert and method for sustained release of medication to the eye |
CN1311684A (en) | 1998-07-10 | 2001-09-05 | 悉尼大学 | Propylactic treatments of neovascularisation in macular degeneration |
US6406498B1 (en) * | 1998-09-04 | 2002-06-18 | Bionx Implants Oy | Bioactive, bioabsorbable surgical composite material |
ATE292931T1 (en) | 1998-11-20 | 2005-04-15 | Univ Connecticut | GENERIC INTEGRATED IMPLANTABLE POTENTIOSTAT REMOTE MEASUREMENT ARRANGEMENT FOR ELECTROCHEMICAL SENSORS |
US6217895B1 (en) | 1999-03-22 | 2001-04-17 | Control Delivery Systems | Method for treating and/or preventing retinal diseases with sustained release corticosteroids |
WO2001021173A1 (en) | 1999-09-23 | 2001-03-29 | Sloan-Kettering Institute For Cancer Research | Novel uses of 2-bromopalmitate |
US6331313B1 (en) | 1999-10-22 | 2001-12-18 | Oculex Pharmaceticals, Inc. | Controlled-release biocompatible ocular drug delivery implant devices and methods |
US6579533B1 (en) * | 1999-11-30 | 2003-06-17 | Bioasborbable Concepts, Ltd. | Bioabsorbable drug delivery system for local treatment and prevention of infections |
US6545182B2 (en) * | 2000-04-13 | 2003-04-08 | Allergan Sales, Inc. | Methods and compositions for modulating alpha adrenergic receptor activity |
US7335803B2 (en) * | 2001-10-19 | 2008-02-26 | Allergan, Inc. | Methods and compositions for modulating alpha adrenergic receptor activity |
US7708711B2 (en) | 2000-04-14 | 2010-05-04 | Glaukos Corporation | Ocular implant with therapeutic agents and methods thereof |
US20040208910A1 (en) | 2000-04-26 | 2004-10-21 | Control Delivery Systems, Inc. | Sustained release device and method for ocular delivery of adrenergic agents |
US20040170665A1 (en) * | 2000-06-02 | 2004-09-02 | Allergan, Inc. | Intravitreal botulinum toxin implant |
US6726918B1 (en) | 2000-07-05 | 2004-04-27 | Oculex Pharmaceuticals, Inc. | Methods for treating inflammation-mediated conditions of the eye |
EP1550471A1 (en) | 2000-11-29 | 2005-07-06 | Allergan Inc. | Intraocular implants for preventing transplant rejection in the eye |
US6534542B2 (en) * | 2001-02-27 | 2003-03-18 | Allergen Sales, Inc. | (2-hydroxy)ethyl-thioureas useful as modulators of α2B adrenergic receptors |
US6713081B2 (en) * | 2001-03-15 | 2004-03-30 | The United States Of America As Represented By The Department Of Health And Human Services | Ocular therapeutic agent delivery devices and methods for making and using such devices |
US7056339B2 (en) * | 2001-04-20 | 2006-06-06 | The Board Of Trustees Of The Leland Stanford Junior University | Drug delivery platform |
WO2002089767A1 (en) | 2001-05-03 | 2002-11-14 | Massachusetts Eye And Ear Infirmary | Implantable drug delivery device and use thereof |
JP2004535431A (en) * | 2001-06-22 | 2004-11-25 | サザン バイオシステムズ, インコーポレイテッド | Zero-order long-term release coaxial implant |
WO2003041689A1 (en) * | 2001-11-12 | 2003-05-22 | Alkermes Controlled Therapeutics, Inc. | Biocompatible polymer blends and uses thereof |
US6541504B1 (en) * | 2002-04-03 | 2003-04-01 | Allergan Sales, Llc | (3Z)-3-(2,3-dihydro-1H-inden-1-ylidene)-1,3-dihydro-2H-indol-2-ones as kinase inhibitors |
WO2003094888A1 (en) | 2002-05-07 | 2003-11-20 | Control Delivery Systems, Inc. | Processes for forming a drug delivery device |
US7345065B2 (en) * | 2002-05-21 | 2008-03-18 | Allergan, Inc. | Methods and compositions for alleviating pain |
US7276522B2 (en) | 2002-05-21 | 2007-10-02 | Allergan, Inc. | 4-(substituted cycloalkylmethyl) imidazole-2-thiones, 4-(substituted cycloalkenylmethyl) imidazole-2-thiones, 4-(substituted cycloalkylmethyl) imidazol-2-ones, 4-(substituted cycloalkenylmethyl) imidazol-2-ones and related compounds |
US20040266776A1 (en) | 2003-06-25 | 2004-12-30 | Gil Daniel W. | Methods of preventing and reducing the severity of stress-associated conditions |
US7091232B2 (en) * | 2002-05-21 | 2006-08-15 | Allergan, Inc. | 4-(substituted cycloalkylmethyl) imidazole-2-thiones, 4-(substituted cycloalkenylmethyl) imidazole-2-thiones, 4-(substituted cycloalkylmethyl) imidazol-2-ones and 4-(substituted cycloalkenylmethyl) imidazol-2-ones and related compounds |
US7468065B2 (en) | 2002-09-18 | 2008-12-23 | Allergan, Inc. | Apparatus for delivery of ocular implants |
US6899717B2 (en) | 2002-09-18 | 2005-05-31 | Allergan, Inc. | Methods and apparatus for delivery of ocular implants |
TWI282271B (en) | 2002-09-18 | 2007-06-11 | Allergan Inc | Apparatus for delivery of ocular implants |
JP2006508127A (en) * | 2002-11-06 | 2006-03-09 | アルザ・コーポレーション | Controlled release depot formulation |
WO2004066980A2 (en) * | 2003-01-24 | 2004-08-12 | Control Delivery Systems, Inc. | Sustained release device and method for ocular delivery of carbonic anhydrase inhibitors |
US20050059664A1 (en) * | 2003-09-12 | 2005-03-17 | Allergan, Inc. | Novel methods for identifying improved, non-sedating alpha-2 agonists |
US7141597B2 (en) | 2003-09-12 | 2006-11-28 | Allergan, Inc. | Nonsedating α-2 agonists |
US20050058696A1 (en) * | 2003-09-12 | 2005-03-17 | Allergan, Inc. | Methods and compositions for the treatment of pain and other alpha 2 adrenergic-mediated conditions |
US20050059744A1 (en) * | 2003-09-12 | 2005-03-17 | Allergan, Inc. | Methods and compositions for the treatment of pain and other alpha 2 adrenergic-mediated conditions |
US20050101582A1 (en) * | 2003-11-12 | 2005-05-12 | Allergan, Inc. | Compositions and methods for treating a posterior segment of an eye |
AU2005209201B2 (en) * | 2004-01-20 | 2010-06-03 | Allergan, Inc. | Compositions for localized therapy of the eye, comprising preferably triamcinolone acetonide and hyaluronic acid |
US7691381B2 (en) | 2004-04-15 | 2010-04-06 | Allergan, Inc. | Stabilized biodegradable neurotoxin implants |
US8119154B2 (en) | 2004-04-30 | 2012-02-21 | Allergan, Inc. | Sustained release intraocular implants and related methods |
US20050244471A1 (en) | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Estradiol derivative and estratopone containing sustained release intraocular implants and related methods |
US8685435B2 (en) | 2004-04-30 | 2014-04-01 | Allergan, Inc. | Extended release biodegradable ocular implants |
US7993634B2 (en) * | 2004-04-30 | 2011-08-09 | Allergan, Inc. | Oil-in-oil emulsified polymeric implants containing a hypotensive lipid and related methods |
US20050244458A1 (en) | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Sustained release intraocular implants and methods for treating ocular neuropathies |
US20050244469A1 (en) | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Extended therapeutic effect ocular implant treatments |
US7799336B2 (en) | 2004-04-30 | 2010-09-21 | Allergan, Inc. | Hypotensive lipid-containing biodegradable intraocular implants and related methods |
EP1773350B1 (en) * | 2004-07-12 | 2013-05-29 | Allergan, Inc. | Opthalmic compositions for treating ophthalmic conditions |
US20060204548A1 (en) | 2005-03-01 | 2006-09-14 | Allergan, Inc. | Microimplants for ocular administration |
US20060233857A1 (en) | 2005-04-14 | 2006-10-19 | Amsden Brian G | Degradable elastomeric network |
US20070260203A1 (en) | 2006-05-04 | 2007-11-08 | Allergan, Inc. | Vasoactive agent intraocular implant |
US20070298073A1 (en) | 2006-06-23 | 2007-12-27 | Allergan, Inc. | Steroid-containing sustained release intraocular implants and related methods |
EP3000434A1 (en) | 2007-03-16 | 2016-03-30 | The Regents Of The University Of California | Nanostructure surface coated medical implants and methods of using the same |
US7740604B2 (en) | 2007-09-24 | 2010-06-22 | Ivantis, Inc. | Ocular implants for placement in schlemm's canal |
-
2004
- 2004-08-13 US US10/918,597 patent/US20050048099A1/en not_active Abandoned
-
2005
- 2005-07-25 BR BRPI0513849A patent/BRPI0513849B8/en not_active IP Right Cessation
- 2005-07-25 WO PCT/US2005/026500 patent/WO2006036280A1/en active Search and Examination
- 2005-07-25 EP EP07017089A patent/EP1870092B1/en not_active Revoked
- 2005-07-25 SI SI200530161T patent/SI1776091T1/en unknown
- 2005-07-25 PT PT05814028T patent/PT1776091E/en unknown
- 2005-07-25 DK DK05814028T patent/DK1776091T3/en active
- 2005-07-25 CN CN201110225755.8A patent/CN102319432B/en not_active Expired - Lifetime
- 2005-07-25 ES ES10185774T patent/ES2414231T3/en not_active Expired - Lifetime
- 2005-07-25 KR KR1020077003441A patent/KR101365772B1/en not_active Expired - Lifetime
- 2005-07-25 EP EP10185774A patent/EP2329811B1/en not_active Revoked
- 2005-07-25 DE DE602005003957T patent/DE602005003957T2/en not_active Expired - Lifetime
- 2005-07-25 ES ES05814028T patent/ES2297766T3/en not_active Expired - Lifetime
- 2005-07-25 EP EP05814028A patent/EP1776091B1/en not_active Expired - Lifetime
- 2005-07-25 RU RU2007103318/15A patent/RU2389479C2/en active
- 2005-07-25 AT AT05814028T patent/ATE381319T1/en active
- 2005-07-25 CN CN200910224822.7A patent/CN101721354B/en not_active Expired - Lifetime
- 2005-07-25 MX MX2007001538A patent/MX2007001538A/en active IP Right Grant
- 2005-07-25 PL PL382452A patent/PL382452A1/en not_active IP Right Cessation
- 2005-07-25 KR KR1020137025447A patent/KR101451060B1/en not_active Expired - Lifetime
- 2005-07-25 AU AU2005290240A patent/AU2005290240B2/en not_active Expired
- 2005-07-25 CN CN2005800273099A patent/CN101083976B/en not_active Expired - Lifetime
- 2005-07-25 CA CA2576392A patent/CA2576392C/en not_active Expired - Lifetime
- 2005-07-25 ES ES07017089T patent/ES2412881T3/en not_active Expired - Lifetime
- 2005-07-25 JP JP2007525641A patent/JP4949245B2/en not_active Expired - Lifetime
- 2005-07-25 NZ NZ552679A patent/NZ552679A/en not_active IP Right Cessation
- 2005-07-25 PL PL05814028T patent/PL1776091T3/en unknown
- 2005-08-10 TW TW094127159A patent/TWI332846B/en active
- 2005-08-12 AR ARP050103402A patent/AR051278A1/en not_active Application Discontinuation
-
2007
- 2007-01-22 IL IL180865A patent/IL180865A/en active IP Right Grant
- 2007-02-21 NO NO20070992A patent/NO342740B1/en unknown
- 2007-10-31 US US11/931,954 patent/US8034370B2/en not_active Expired - Fee Related
- 2007-10-31 US US11/932,101 patent/US8034366B2/en not_active Expired - Fee Related
-
2008
- 2008-03-04 CY CY20081100251T patent/CY1107823T1/en unknown
- 2008-07-15 US US12/173,746 patent/US8048445B2/en not_active Expired - Fee Related
-
2010
- 2010-10-22 AU AU2010235967A patent/AU2010235967C1/en not_active Expired
- 2010-12-05 IL IL209771A patent/IL209771A/en active IP Right Grant
-
2011
- 2011-08-19 US US13/213,473 patent/US8506987B2/en not_active Expired - Lifetime
- 2011-09-01 US US13/224,041 patent/US8318070B2/en not_active Expired - Fee Related
-
2013
- 2013-03-12 US US13/797,230 patent/US8778381B2/en not_active Expired - Lifetime
- 2013-06-20 US US13/922,482 patent/US9192511B2/en not_active Expired - Fee Related
-
2015
- 2015-11-23 US US14/949,454 patent/US10076526B2/en not_active Expired - Lifetime
-
2018
- 2018-09-17 US US16/132,857 patent/US10702539B2/en not_active Expired - Fee Related
-
2020
- 2020-06-29 US US16/915,017 patent/US20210113592A1/en not_active Abandoned
-
2022
- 2022-07-12 US US17/812,133 patent/US20230172948A1/en not_active Abandoned
-
2024
- 2024-03-20 US US18/611,454 patent/US20240238312A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020111603A1 (en) * | 1996-12-02 | 2002-08-15 | Societe De Conseils De Recherches Et D'application | Device for local administration of solid or semi-solid formulations and delayed-release formulations for proposal parental administration and preparation process |
US20020182185A1 (en) * | 2000-11-29 | 2002-12-05 | Wong Vernon G. | Method for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor |
US20040137059A1 (en) * | 2003-01-09 | 2004-07-15 | Thierry Nivaggioli | Biodegradable ocular implant |
US8034366B2 (en) * | 2003-01-09 | 2011-10-11 | Allergan, Inc. | Ocular implant made by a double extrusion process |
US8034370B2 (en) * | 2003-01-09 | 2011-10-11 | Allergan, Inc. | Ocular implant made by a double extrusion process |
US8506987B2 (en) * | 2003-01-09 | 2013-08-13 | Allergan, Inc. | Ocular implant made by a double extrusion process |
US9192511B2 (en) * | 2003-01-09 | 2015-11-24 | Allergan, Inc. | Ocular implant made by a double extrusion process |
US10076526B2 (en) * | 2003-01-09 | 2018-09-18 | Allergan, Inc. | Ocular implant made by a double extrusion process |
US10702539B2 (en) * | 2003-01-09 | 2020-07-07 | Allergan, Inc. | Ocular implant made by a double extrusion process |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230172948A1 (en) | Ocular implant made by a double extrusion proces | |
US20050244465A1 (en) | Drug delivery systems and methods for treatment of an eye | |
US20050244461A1 (en) | Controlled release drug delivery systems and methods for treatment of an eye | |
US20090081277A1 (en) | Pharmaceutical formulations and methods for treating ocular conditions | |
JP2016169233A (en) | Method for treating atrophic age related macular degeneration | |
WO2007047626A1 (en) | Combination treatment with anecortave acetate and bevacizumab or ranibizumab for pathologic ocular angiogenesis | |
JP7022735B2 (en) | How to Treat Eye Conditions with Sustained Drug Delivery Implants | |
Fischer et al. | Drug delivery to the posterior segment of the eye | |
De Smet et al. | The role of steroids in the management of uveitic macular edema | |
Kang et al. | Phacoemulsification and posterior chamber intraocular lens implantation in uveitis. | |
Fu et al. | Subconjunctival ab externo gel stent implantation for refractory glaucoma after high-risk penetrating keratoplasty | |
Fang et al. | Increased intraocular pressure after cataract surgery | |
Agahan et al. | Intracameral Triamcinolone for the Treatment of Hyphema and Post-Surgical Iridocyclitis | |
HK40038783A (en) | Methods of treatment of ocular conditions with a sustained drug delivery implant | |
Arevalo et al. | Pseudophakic Cystoid Macular Edema | |
KR20080078042A (en) | Use of Anecortave Acetate as an Adjuvant in Filter Surgery | |
Elwehidy et al. | Long-term Follow-up Of Ahmed Glaucoma Valve Implantation in Management of Uveitic Glaucoma | |
Mittal et al. | CORTICOSTEROIDUSEINTHEMANAGEMENTOF DIABETICMACULAREDEMA | |
HK1228770B (en) | Methods of treatment of ocular conditions with a sustained drug delivery implant | |
HK1228770A1 (en) | Methods of treatment of ocular conditions with a sustained drug delivery implant | |
Papadaki | TREATMENT OF UVEITIC GLAUCOMA AND THE USE OF AHMED VALVE | |
Murray Fingeret | Glaucoma Surgical Treatments | |
ZA200509532B (en) | Formulations or non-steroidal anti-inflammatory agents to treat pathologic ocular angiogenesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALLERGAN, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIVAGGIOLI, THIERRY;CHOU, DAVID;WEBER, DAVID A.;AND OTHERS;SIGNING DATES FROM 20040812 TO 20040901;REEL/FRAME:060493/0350 Owner name: ALLERGAN, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLANDA, WENDY;REEL/FRAME:060493/0412 Effective date: 20060421 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |